CN107782731B - 用于维护零部件表面受损的机械设备的方法 - Google Patents

用于维护零部件表面受损的机械设备的方法 Download PDF

Info

Publication number
CN107782731B
CN107782731B CN201610797410.2A CN201610797410A CN107782731B CN 107782731 B CN107782731 B CN 107782731B CN 201610797410 A CN201610797410 A CN 201610797410A CN 107782731 B CN107782731 B CN 107782731B
Authority
CN
China
Prior art keywords
maintaining
component
mechanical device
data
damaged surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610797410.2A
Other languages
English (en)
Other versions
CN107782731A (zh
Inventor
诺克尔·格哈德
恩格斯·比约恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Inc filed Critical Siemens Energy Inc
Priority to CN201610797410.2A priority Critical patent/CN107782731B/zh
Priority to US16/328,779 priority patent/US10605743B2/en
Priority to EP17845458.3A priority patent/EP3508838A4/en
Priority to PCT/CN2017/099751 priority patent/WO2018041156A1/zh
Publication of CN107782731A publication Critical patent/CN107782731A/zh
Application granted granted Critical
Publication of CN107782731B publication Critical patent/CN107782731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Abstract

本发明涉及用于维护零部件表面受损的机械设备的方法,其能够降低维护零部件表面受损的机械设备的难度、提高工作效率、节省操作人员的体力,并避免人为失误。这种方法依次包括以下步骤:S1:为至少一个零部件拍摄至少一张照片;S2:对所述照片进行处理来获得所述零部件的几何数据;S3:将所述数据与预定标准进行比较;S4:对达到所述预定标准的所述零部件进行指示。

Description

用于维护零部件表面受损的机械设备的方法
技术领域
本发明涉及用于维护机械设备的方法,尤其是其零部件表面受损的机械设备。这种机械设备可以为燃气轮机、蒸汽轮机、风力发电机及压缩机等。
背景技术
机械设备在运行一段时间后其零部件表面会受到损伤。这种损伤可以是对零部件材料造成的磨损,也可以是表面的裂痕。为了确保机械设备的可靠运行,必须及时对这些损伤进行处理,例如通过用新的零部件来替换受损的零部件。以燃气轮机为例,在其维护过程中最频繁的工作是用新的陶瓷隔热瓦来替换出现裂痕和/或材料磨损的旧的陶瓷隔热瓦。通常,这需要首先停止燃气轮机的运行,再由经专门训练的工程师通过视觉对陶瓷隔热瓦逐一检查,以根据裂痕的位置和长度或者材料的损耗量来评估哪些陶瓷隔热瓦需要被替换。
上述现有做法具有以下缺点:首先,检查只能由专门人员以人工方式完成;其次,专门人员的视觉检查不仅耗时费力,而且偶尔还会发生人为错误,进而影响燃气轮机的可靠运行。
发明内容
本发明的目的在于提供一种用于维护零部件表面受损的机械设备的方法,其能够降低维护零部件表面受损的机械设备的难度、提高工作效率、节省操作人员的体力,并避免人为失误。这种方法依次包括以下步骤:
S1:为至少一个零部件拍摄至少一张照片;
S2:对所述照片进行处理来获得所述零部件的几何数据;
S3:将所述数据与预定标准进行比较;
S4:对达到所述预定标准的所述零部件进行指示。
根据本发明用于维护零部件表面受损的机械设备的方法的一个方面,其中步骤S3依次包括以下步骤:
S31:将所述数据与各类零部件的几何特征进行比较以识别所述零部件的种类;
S32:将所述数据与该零部件所允许的裂痕的位置和长度进行比较。
其中,步骤S31使得可以更加简单、迅速地找到零部件所对应的预定标准。
根据本发明用于维护零部件表面受损的机械设备的方法的另一方面,其中在步骤S31之后还包括步骤S33:将所述数据与该零部件的标准几何形状进行比较以计算材料损失。
根据本发明用于维护零部件表面受损的机械设备的方法的再一方面,其中在步骤S31之后和步骤S32之前还包括步骤S312:识别该零部件在机械设备中的位置。这一步骤有利于进一步明确零部件所对应的更加具体和详细的预定标准,并可方便操作人员对需要替换的零部件进行定位。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S312中通过对该零部件上的标记进行扫描来识别该零部件在机械设备中的位置。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S312中通过将所述数据与该零部件的几何特征进行比较来识别该零部件在机械设备中的位置。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S4之后还包括步骤S5:发送所述数据至服务器。这一步骤使得相关数据能够进行远程处理。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中步骤S1、步骤S2、步骤S3和步骤S4通过一个评测装置来实施。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中所述评测装置为一个移动电子设备。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S1中所述照片通过一个或多个相机来拍摄,而在步骤S2、步骤S3和步骤S4中对所述照片进行处理、将所述数据与预定标准进行比较以及对达到所述预定标准的所述零部件进行指示均通过一个移动电子设备来实施。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中所述移动电子设备为一个智能手机或一个平板电脑。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中所述相机为立体相机或相机眼镜。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S5之后还包括步骤S61:分析所述服务器中的所述数据。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S61之后还包括步骤S62:对所述预定标准进行更新。这一步骤有利于通过制定和更新替换零部件的新标准来保证总是基于最新的开发成果来对机械设备进行维护。
根据本发明用于维护零部件表面受损的机械设备的方法的又一方面,其中在步骤S5之后还包括步骤S63:提供用于替换的零部件的报价或作出澄清。这一步骤方便了用户,并进一步提高了维护效率,节省了更多时间。
附图说明
以下附图仅对本发明做示意性说明和解释,并不限定本发明的范围。
图1展示了依据本发明第一种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图;
图2展示了依据本发明第二种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图;
图3展示了依据本发明第三种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图;
图4展示了依据本发明第四种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图;
图5展示了依据本发明第五种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图;
图6展示了依据本发明第六种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图。
具体实施方式
为了对发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,在各图中相同的标号表示相同的部分。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。
在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
图1展示了依据本发明第一种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图。这种方法依次包括以下步骤:
S1:为至少一个零部件拍摄至少一张照片;
S2:对所述照片进行处理来获得所述零部件的几何数据;
S3:将所述数据与预定标准进行比较;
S4:对达到所述预定标准的所述零部件进行指示。
本发明的方法用于维护零部件表面受损的机械设备,其中零部件会因表面受损而出现裂痕和/或材料磨损。在本申请中,裂痕既包括材料的开裂也包括各种形状的孔洞或凹坑,只要其能够体现在零部件的表面上。相关的机械设备可以是燃气轮机、蒸汽轮机、风力发电机以及压缩机等,而相关的零部件则可以是陶瓷隔热瓦、静叶片、动叶片、轴承、壳体以及火车车轮等。本发明的方法能够降低维护零部件表面受损的机械设备的难度、提高工作效率、节省操作人员的体力,并避免人为失误。
仍以燃气轮机的陶瓷隔热瓦为例,可由操作人员为陶瓷隔热瓦(即零部件)拍摄照片。只要该操作人员有能力用相机拍摄清晰的照片,就无须对其进行培训。拍摄照片所使用的相机可以是普通的相机,也可以是立体相机或是相机眼镜。拍摄的既可以是数码照片,也可以是胶片照片。之后,将计算机或智能手机、平板电脑等移动电子设备用作评测装置来对数码照片进行处理,以获得陶瓷隔热瓦的几何数据,例如陶瓷隔热瓦的长度、宽度、厚度等各种尺寸以及其上裂痕的长度、位置、形状等。当然,在拍摄的是胶片照片的情况下,为了进行步骤S2,还需要事先对胶片照片进行数码化处理,将其转化为数码照片。所获得的数据进一步与评测装置中存储的预定标准进行比较。在相关数据达到预定标准的情况下,即陶瓷隔热瓦的长度、宽度、厚度等尺寸或者其上裂痕的长度、位置、形状等超过了设计允许的范围,则说明继续使用该陶瓷隔热瓦可能会影响燃气轮机的可靠运行。此时,评测装置对所需替换的陶瓷隔热瓦进行指示,例如通过计算机的显示器或者直接在智能手机或平板电脑的屏幕上指示需要替换的陶瓷隔热瓦。本领域技术人员将理解,预定标准所允许的具体范围会根据不同的设计而变化,并可依据具体的情况而调整。步骤S1、步骤S2、步骤S3和步骤S4可以全部通过一个评测装置来实施,而评测装置可以是计算机或者是智能手机、平板电脑等移动电子设备。步骤S1中的照片也可以通过一个或多个相机来拍摄,而在步骤S2、步骤S3和步骤S4中对所述照片进行处理、将所述数据与预定标准进行比较以及对达到所述预定标准的所述零部件进行指示均通过作为评测装置的一个移动电子设备来实施。其中,评测装置中安装有相应的软件,例如智能手机或平板电脑中的应用软件。这些软件可以根据特定的算法来对所述照片进行处理,以获得所述零部件的几何数据,并将所述数据与预定标准进行比较,且对达到所述预定标准的所述零部件进行指示。
图2展示了依据本发明第二种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图,其与第一种实施方式的区别在于,步骤S3依次包括以下步骤:
S31:将所述数据与各类零部件的几何特征进行比较以识别所述零部件的种类;
S32:将所述数据与该零部件所允许的裂痕的位置和长度进行比较;
S33:将所述数据与该零部件的标准几何形状进行比较以计算材料损失。
某类零部件的几何特征是指这类零部件所共有的几何形状上的特点,其可用于区分不同种类的零部件,例如用于区分动叶片与静叶片,或者动叶片自身的不同种类。零部件所允许的裂痕的位置和长度既可以是该类零部件所允许的裂痕的位置,在不同位置的同类零部件所允许的裂痕的位置和长度存在区别的情况下,则是指该位置的具体零部件所允许的裂痕的位置和长度。零部件的标准几何形状既可以是按照设计该类零部件所应具有的几何形状,在不同位置的同类零部件的标准几何形状存在区别的情况下,则是指按照设计该位置的具体零部件所应具有的几何形状。在对不同种类的零部件进行检查的情况下,零部件可以是燃气轮机的陶瓷隔热瓦、静叶片和动叶片中的几种。在已经明确了是何种零部件的情况下,例如是陶瓷隔热瓦的情况下,零部件的种类还可进一步细分为燃气轮机所使用到的各种陶瓷隔热瓦。这样评测装置就可以更加简单、迅速地找到零部件所对应的预定标准。本领域技术人员将理解,在步骤S32之后包括步骤S33并不是必须的,也可以仅采用本发明的方法对裂痕进行处理,而采用其他方式处理材料磨损。在采用步骤S33,即需要计算材料磨损的情况下,则须通过三维照片来获得几何数据,且步骤S32和步骤S33顺序可以交换。三维照片可以通过立体相机来获得,或者通过结合普通相机从不同角度拍摄的至少两张二维照片来获得,而表面上的裂痕的几何数据仅通过二维照片就可获得,但也可以通过三维照片等来获得。
图3展示了依据本发明第三种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图,其与第一、二种实施方式的区别在于,其中在步骤S31之后和步骤S32之前还包括步骤S312:识别该零部件在机械设备中的位置。
识别该零部件在机械设备中的位置有利于进一步明确零部件所对应的更加具体和详细的预定标准,并可方便操作人员对需要替换的零部件进行定位。仍以燃气轮机的陶瓷隔热瓦为例,多个陶瓷隔热瓦通常彼此挨着排列来形成一个隔热层。因此,可以将全部或者多个陶瓷隔热瓦包含在一张照片中,而评测装置(例如智能手机)可以自动识别出需要替换的陶瓷隔热瓦的位置。这张包含全部或者多个陶瓷隔热瓦的照片可以通过将多个局部照片结合成全景照片来形成,而照片的结合本身可以由评测装置完成。在步骤S312中通过对该零部件上的标记进行扫描(即所谓的光学字符识别,简称OCR)来识别该零部件在机械设备中的位置,或者通过将所述数据与该零部件的几何特征进行比较来识别该零部件在机械设备中的位置。
图4展示了依据本发明第四种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图,其与第一至三种实施方式的区别在于,其中在步骤S4之后还包括步骤S5:发送所述数据至服务器。
尽管例如智能手机或平板电脑的评测装置可以独立工作,但是如果能将相关数据通过服务器进行远程处理将具有额外的优点。例如,可以通过将相关数据上传至云端进行保存,防止数据丢失。
图5展示了依据本发明第五种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图,其与第一至四种实施方式的区别在于,其中在步骤S5之后还包括步骤:
S61:分析所述服务器中的所述数据;
S62:对所述预定标准进行更新。
通过对服务器中的数据进行大数据分析能够带来如下好处:首先,对来自同类的不同机械设备的数据进行收集和分析,可以了解受损的推测及设计的标准是否正确,从而为延长维护周期、降低维修频率提供了可能性;其次,通过将大量零部件的受损信息与机械设备的运行信息(包括负荷、温度、振动等信息)结合可以建立对受损状况进行预测的模型;最后,机械设备的制造商能够了解所替换的零部件,并及时对竣工文件进行更新,从而能够全面、准确地掌握机械设备的当前信息用于后续的运行和维护。尽管在步骤S61之后包括步骤S62不是必须的,但是对所述预定标准进行更新可以通过制定和更新替换零部件的标准来保证总是基于最新的开发成果机械设备进行维护。
图6展示了依据本发明第六种实施方式的用于维护零部件表面受损的机械设备的方法的流程示意图,其与第一至五种实施方式的区别在于,其中在步骤S5之后还包括步骤S63:提供用于替换的零部件的报价或作出澄清。用于替换的零部件的报价或澄清优选由远程的计算机系统通过服务器自动进行。如果评测装置获得的几何数据的质量较差,或者自动评测没有结果或结果不清,则通过人工方式远程进行澄清。在这种情况下,可通过服务器自动触发一个制造商的工程部门的流程,由相应的工程师来负责在一定期限内解答用户的问题,并将结果通过服务器发到评测装置,例如发送到智能手机或平板电脑。还可增加在维护完成后通过服务器向评测装置发送报告的步骤。此外,如果用户接受制造商的报价,用户还可通过评测装置中的软件在线进行购买。制造商能在第一时间向用户发货,从而方便了用户,并进一步提高了维护效率,节省了更多时间。
应当理解,虽然本说明书是按照各个实施方式描述的,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方案或变更,如特征的组合、分割或重复,均应包含在本发明的保护范围之内。

Claims (12)

1.用于维护零部件表面受损的机械设备的方法,依次包括以下步骤:
S1:为至少一个零部件拍摄至少一张照片;
S2:对所述照片进行处理来获得所述零部件的几何数据;
S3:将所述数据与预定标准进行比较;
S4:对达到所述预定标准的所述零部件进行指示,
其中步骤S3依次包括以下步骤:
S31:将所述数据与各类零部件的几何特征进行比较以识别所述零部件的种类;
S32:将所述数据与该零部件所允许的裂痕的位置和长度进行比较,
其中在步骤S31之后和步骤S32之前还包括步骤S312:识别该零部件在所述机械设备中的位置,从而根据所识别的所述零部件的种类和所识别的所述零部件在所述机械设备中的位置,确定所述零部件所对应的所述预定标准,
其中在步骤S32之后还包括步骤S33:将根据所述零部件的三维照片获得的几何数据与该零部件的标准几何形状进行比较以计算材料损失。
2.如权利要求1所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S312中通过对该零部件上的标记进行扫描来识别该零部件在机械设备中的位置。
3.如权利要求1所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S312中通过将所述数据与该零部件的几何特征进行比较来识别该零部件在机械设备中的位置。
4.如权利要求1所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S4之后还包括步骤S5:发送所述数据至服务器。
5.如权利要求1所述的用于维护零部件表面受损的机械设备的方法,其中步骤S1、步骤S2、步骤S3和步骤S4通过一个评测装置来实施。
6.如权利要求5所述的用于维护零部件表面受损的机械设备的方法,其中所述评测装置为一个移动电子设备。
7.如权利要求1所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S1中所述照片通过一个或多个相机来拍摄,而在步骤S2、步骤S3和步骤S4中对所述照片进行处理、将所述数据与预定标准进行比较以及对达到所述预定标准的所述零部件进行指示均通过一个移动电子设备来实施。
8.如权利要求6或7所述的用于维护零部件表面受损的机械设备的方法,其中所述移动电子设备为一个智能手机或一个平板电脑。
9.如权利要求7所述的用于维护零部件表面受损的机械设备的方法,其中所述相机为立体相机或相机眼镜。
10.如权利要求4所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S5之后还包括步骤S61:分析所述服务器中的所述数据。
11.如权利要求10所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S61之后还包括步骤S62:对所述预定标准进行更新。
12.如权利要求4所述的用于维护零部件表面受损的机械设备的方法,其中在步骤S5之后还包括步骤S63:提供用于替换的零部件的报价或作出澄清。
CN201610797410.2A 2016-08-31 2016-08-31 用于维护零部件表面受损的机械设备的方法 Active CN107782731B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610797410.2A CN107782731B (zh) 2016-08-31 2016-08-31 用于维护零部件表面受损的机械设备的方法
US16/328,779 US10605743B2 (en) 2016-08-31 2017-08-30 Method for maintaining mechanical apparatus based on analytics of surface photographies
EP17845458.3A EP3508838A4 (en) 2016-08-31 2017-08-30 METHOD FOR MAINTAINING A MECHANICAL APPARATUS HAVING A DAMAGED COMPONENT SURFACE
PCT/CN2017/099751 WO2018041156A1 (zh) 2016-08-31 2017-08-30 用于维护零部件表面受损的机械设备的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610797410.2A CN107782731B (zh) 2016-08-31 2016-08-31 用于维护零部件表面受损的机械设备的方法

Publications (2)

Publication Number Publication Date
CN107782731A CN107782731A (zh) 2018-03-09
CN107782731B true CN107782731B (zh) 2021-08-03

Family

ID=61300057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610797410.2A Active CN107782731B (zh) 2016-08-31 2016-08-31 用于维护零部件表面受损的机械设备的方法

Country Status (4)

Country Link
US (1) US10605743B2 (zh)
EP (1) EP3508838A4 (zh)
CN (1) CN107782731B (zh)
WO (1) WO2018041156A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076783A (zh) * 1993-02-23 1993-09-29 上海城市建设学院 光滑圆柱零件表面裂纹检测方法
CN1576829A (zh) * 2003-07-09 2005-02-09 通用电气公司 分析和识别制造零件中的缺陷的系统及方法
CN1619414A (zh) * 2003-11-20 2005-05-25 Ge医疗系统环球技术有限公司 准直器及x光照射装置和x光摄影装置
CN103175844A (zh) * 2012-03-16 2013-06-26 沈阳理工大学 一种金属零部件表面划痕缺陷检测方法
CN103380057A (zh) * 2010-09-29 2013-10-30 航空机器股份有限公司 飞机的无损检测的创新系统和方法
CN104422696A (zh) * 2013-08-26 2015-03-18 通用电气公司 模块化检查系统
CN102481668B (zh) * 2009-08-20 2015-04-01 西门子公司 自动化维修方法和系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192342A (ja) * 1982-05-07 1983-11-09 Hitachi Ltd パターンの検査方法及び装置
US5461417A (en) 1993-02-16 1995-10-24 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US7668667B2 (en) * 2005-03-07 2010-02-23 Microstrain, Inc. Miniature stimulating and sensing system
JP4789630B2 (ja) * 2006-01-19 2011-10-12 株式会社東京精密 半導体製造装置、半導体外観検査装置、及び外観検査方法
JPWO2010052891A1 (ja) * 2008-11-04 2012-04-05 株式会社ニコン 表面検査装置
CN201413296Y (zh) * 2009-06-11 2010-02-24 浙江创鑫木业有限公司 一种检测木板表面缺陷的装置
CN101726498B (zh) 2009-12-04 2011-06-15 河海大学常州校区 基于视觉仿生的铜带表面质量智能检测装置及方法
EP2428795A1 (en) * 2010-09-14 2012-03-14 Siemens Aktiengesellschaft Apparatus and method for automatic inspection of through-holes of a component
DE102011103003A1 (de) 2011-05-24 2012-11-29 Lufthansa Technik Ag Verfahren und Vorrichtung zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils
TW201329651A (zh) * 2011-11-29 2013-07-16 尼康股份有限公司 測定裝置、測定方法、及半導體元件製造方法
US20140267677A1 (en) * 2013-03-14 2014-09-18 General Electric Company Turbomachine component monitoring system and method
CN203299134U (zh) 2013-05-06 2013-11-20 中国计量学院 基于四轴飞行器的风力发电机叶片表面裂纹检测装置
US20140336928A1 (en) * 2013-05-10 2014-11-13 Michael L. Scott System and Method of Automated Civil Infrastructure Metrology for Inspection, Analysis, and Information Modeling
JP2016112947A (ja) * 2014-12-12 2016-06-23 三菱航空機株式会社 航空機の外観検査方法およびシステム
CN105115976B (zh) * 2015-06-24 2018-03-20 上海图甲信息科技有限公司 一种铁轨磨耗缺陷检测系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076783A (zh) * 1993-02-23 1993-09-29 上海城市建设学院 光滑圆柱零件表面裂纹检测方法
CN1576829A (zh) * 2003-07-09 2005-02-09 通用电气公司 分析和识别制造零件中的缺陷的系统及方法
CN1619414A (zh) * 2003-11-20 2005-05-25 Ge医疗系统环球技术有限公司 准直器及x光照射装置和x光摄影装置
CN102481668B (zh) * 2009-08-20 2015-04-01 西门子公司 自动化维修方法和系统
CN103380057A (zh) * 2010-09-29 2013-10-30 航空机器股份有限公司 飞机的无损检测的创新系统和方法
CN103175844A (zh) * 2012-03-16 2013-06-26 沈阳理工大学 一种金属零部件表面划痕缺陷检测方法
CN104422696A (zh) * 2013-08-26 2015-03-18 通用电气公司 模块化检查系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于机器视觉系统的零件识别与检测的研究;许巧游;《万方数据库》;20101013;摘要、第54-61页 *

Also Published As

Publication number Publication date
EP3508838A4 (en) 2020-04-29
CN107782731A (zh) 2018-03-09
US10605743B2 (en) 2020-03-31
WO2018041156A1 (zh) 2018-03-08
EP3508838A1 (en) 2019-07-10
US20190226998A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
TW201417002A (zh) 行動化建置產品履歷系統及產線作業之管控方法
JP2011113161A (ja) 現場点検システム
JP5634142B2 (ja) 部品検索装置及び部品検索用コンピュータプログラム
CN115953120A (zh) 一种图纸检测方法、装置、电子设备及存储介质
JP2014219670A (ja) コンポーネント識別システム
CN107782731B (zh) 用于维护零部件表面受损的机械设备的方法
KR102098263B1 (ko) 웹기반 풍력발전 블레이드 관리 시스템
JP5822555B2 (ja) 点検補修支援装置およびその方法
DE102017213060A1 (de) Computerimplementiertes Verfahren und Vorrichtung zum automatischen Generieren von gekennzeichneten Bilddaten und Analysevorrichtung zum Überprüfen eines Bauteils
JP2023018016A (ja) 管理システムおよび原因分析システム
JP2008217608A (ja) 産業機械の遠隔監視システム及び方法
TW201439928A (zh) 設備檢修方法及系統
WO2015174115A1 (ja) データ管理装置及びデータ管理プログラム
CN114923913A (zh) 生产缺陷检测系统和方法
JP5427198B2 (ja) 設備劣化診断装置、設備劣化診断方法および設備劣化診断プログラム
CN113378810B (zh) 一种螺丝锁附检测方法、装置、设备和可读存储介质
CN112102252B (zh) 一种微带天线焊点外观缺陷的检测方法及装置
KR20150047727A (ko) 휴대용 철근배근 자동 검사 시스템
KR20220084703A (ko) 시설물 점검 시스템 및 이를 이용한 시설물 점검방법
CN113034620A (zh) 校正方法、校正装置、计算机可读存储介质及计算机设备
CN114092382A (zh) 产品瑕疵标记装置和方法
JP2012083128A (ja) 学習型欠陥弁別処理システム、方法及びプログラム
Fedorko et al. Conveyor belt quality assessment for in-house logistics
US20220230349A1 (en) Alignment method for use in plant
Alalsayednassir et al. AI-Enabled, Automated Digital Dull Bit Analysis-Field Experience

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210622

Address after: Room 409, 4th floor, No.38 Yinglun Road, Pudong New Area pilot Free Trade Zone, Shanghai, 200120

Applicant after: SIEMENS ENERGY, Inc.

Address before: 100102 No. 7 South Central Road, Chaoyang District, Beijing, China

Applicant before: Siemens (China) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant