CN107769652A - 一种永磁同步电机分步反推滑模控制方法 - Google Patents
一种永磁同步电机分步反推滑模控制方法 Download PDFInfo
- Publication number
- CN107769652A CN107769652A CN201711067457.4A CN201711067457A CN107769652A CN 107769652 A CN107769652 A CN 107769652A CN 201711067457 A CN201711067457 A CN 201711067457A CN 107769652 A CN107769652 A CN 107769652A
- Authority
- CN
- China
- Prior art keywords
- synchronous motor
- mode control
- counter
- push away
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0007—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供一种永磁同步电机分步反推滑模控制方法,针对永磁同步电机复杂系统的控制器设计问题,提出了分步反推滑模控制方法,有效的解决了内在和外在干扰问题,思路清晰,易于理解。设计了非线性滑模面,而且在控制律设计中包含了干扰自适应调节观测器,可以有效消弱抖振。本发明针对有干扰和不确定性不满足匹配条件的复杂系统,优势明显,大大提高了系统的鲁棒性,实现简单,具有很好的应用前景。
Description
技术领域
本发明涉及一种永磁同步电机分步反推滑模控制方法。
背景技术
永磁同步电机(PMSM)具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高,而且无需激磁电流,提高了电机效率和功率密度,永磁同步电机已经成为伺服系统的主流之选,广泛应用于数控机床、工业机器人等领域。
随着微电子技术、微处理器、控制技术的发展,使得很多算法复杂的控制策略可以应用到电机控制中。反推法,是一种针对不确定非线性系统的控制策略,其基本原理就是从系统的输出开始向控制输入回推,首先把系统分解成不超过系统阶数的子系统,逐步对每个子系统采用Lyapunov函数方法,设计反馈控制律和参数自适应估计,一直后退到整个系统,最终实现系统全局渐进稳定和跟踪。国内外学者对交流伺服系统的反推滑模控制策略研究取得了一定的成果,比如:非线性二元机翼的自适应反演滑模控制方法及装置(发明专利,申请号号:201510762272X),一种机动飞行器多终端约束反演滑模末制导方法(发明专利,申请号:2014106103229),由于永磁同步电机系统外在干扰和系统建模不准确性,导致目前的目前反推滑模控制效果不够理想,还有一些理论问题未解决。
发明内容
鉴于以上所述现有技术的缺点,为了提高永磁同步电机系统性能,消弱滑模变结构控制的抖振,本发明提供一种永磁同步电机分步反推滑模控制方法。
永磁同步电机的状态方程如下式:
其中Ap=-B/J,Bp=Kt/J,J为转动惯量,B是粘滞摩擦系数,Kt是感应系数与极对数乘积,Δd(t)表示内在和外在干扰,内在干扰主要来自建模参数的不确定性,
其特征在于:采用滑模面为
其中e=x1-x1d,β1,β2为常数,Δd(t)干扰自适应调节观测器为分步反推设计方法为
步骤一:
定义
定义Lyapunov函数
则
步骤二:
定义
其中为Δd(t)的估计值,
则
在λ1>0,λ2>0,λ1(β1-α)>α+0.25,
设计控制律为
则整个系统是稳定的。
综上所述,本发明针对永磁同步电机复杂系统的控制器设计问题,提出了分步反推滑模控制方法,有效的解决了内在和外在干扰问题,思路清晰,易于理解。并且,设计了非线性滑模面,在控制律设计中包含了干扰自适应调节观测器,可以有效减少系统干扰消弱抖振。本发明针对有干扰和不确定性不满足匹配条件的复杂系统,优势明显,大大提高了系统的鲁棒性,实现简单,具有很好的应用前景。
附图说明
图1为本发明控制方法设计流程图。
图2为本发明实施例位置跟踪曲线。
图3为本发明实施例位置跟踪误差曲线。
图4为为本发明实施例控制输入。
图5为本发明实施例滑模面。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地实施。
永磁同步电机的状态方程如下式:
其中Ap=-B/J,Bp=Kt/J,J为转动惯量,B是粘滞摩擦系数,Kt是感应系数与极对数乘积,Δd(t)表示内在和外在干扰,内在干扰主要来自建模参数的不确定性,
Δd(t)干扰自适应调节观测器为采用滑模面为:
其中e=x1-x1d,β1,β2为常数,分步反推设计方法为
步骤一:
定义
定义Lyapunov函数
则
步骤二:
定义
其中为Δd(t)的估计值,
则
而
把上式代入有
取控制律为
其中λ1、λ2为正的常数。
将控制律代入得到
取Δd(t)干扰自适应调节观测器为
因此有
满足下列不等式组条件下,可得到
λ1>0,λ2>0
λ1(β1-α)>α+0.25
根据Lyapunov稳定性理论知,系统是渐近稳定的,证毕。
由MATLAB仿真结果,判断是否需要参数调整,若需要调整,返回修改参数。考虑如下永磁同步电机位置交流伺服系统:
控制律为
其中选择参数,λ1=20,λ2=20,β1=1,α=1/2,β2=1,Ap=-14.62,Bp=5.34,假设位置指令为x1d=sin(2t),滑模面初始位置x0=[0.5,0],Δd(x,t)=3.6+0.4sin(t/2),Terminal时间为T=0.5,初始条件θr(t0)=1.5,干扰自适应调节观测器取为取为
仿真结果如图2-图5,图2中虚线是位置参考信号,实线是位置跟踪信号。从图中可以看出分步反推滑模控制算法有效削弱抖振,系统跟踪误差在有限时间内收敛到零。
综上所述,本发明针对永磁同步电机复杂系统的控制器设计问题,提出了分步反推滑模控制方法,有效的解决了外在干扰和建模参数的不确定性问题,思路清晰,易于理解。设计了非线性滑模面,而且在控制律设计中包含了干扰自适应调节观测器,可以有效减少系统干扰消弱抖振。本发明针对有干扰和不确定性不满足匹配条件的复杂系统,优势明显,大大提高了系统的鲁棒性,实现简单,有效克服了现有技术中的种种缺点而具有高度应用价值。
Claims (1)
1.一种永磁同步电机分步反推滑模控制方法,永磁同步电机的状态方程如下式:
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<msub>
<mover>
<mi>x</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>1</mn>
</msub>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
<mo>=</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>x</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
<mo>=</mo>
<msub>
<mi>A</mi>
<mi>p</mi>
</msub>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
<mo>+</mo>
<msub>
<mi>B</mi>
<mi>p</mi>
</msub>
<mi>u</mi>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
<mo>+</mo>
<mi>&Delta;</mi>
<mi>d</mi>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mtd>
</mtr>
</mtable>
</mfenced>
其中Ap=-B/J,Bp=Kt/J,J为转动惯量,B是粘滞摩擦系数,Kt是感应系数与极对数乘积,Δd(t)表示内在和外在干扰,
其特征在于:采用滑模面为
<mrow>
<mi>s</mi>
<mo>=</mo>
<mover>
<mi>e</mi>
<mo>&CenterDot;</mo>
</mover>
<mo>+</mo>
<msub>
<mi>&beta;</mi>
<mn>1</mn>
</msub>
<mi>e</mi>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mn>2</mn>
</msub>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</mrow>
其中e=x1-x1d,β1,β2为常数,Δd(t)干扰自适应调节观测器为分步反推设计方法为
步骤一:
定义
定义Lyapunov函数
<mrow>
<msub>
<mi>V</mi>
<mn>1</mn>
</msub>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
则
步骤二:
定义
<mrow>
<msub>
<mi>V</mi>
<mn>2</mn>
</msub>
<mo>=</mo>
<msub>
<mi>V</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msup>
<mi>s</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<msup>
<mrow>
<mo>&lsqb;</mo>
<mi>&Delta;</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>&Delta;</mi>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
其中为Δd(t)的估计值,
则
<mfenced open = "" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mover>
<mi>V</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>=</mo>
<msub>
<mover>
<mi>V</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>1</mn>
</msub>
<mo>+</mo>
<mi>s</mi>
<mo>&CenterDot;</mo>
<mover>
<mi>s</mi>
<mo>&CenterDot;</mo>
</mover>
<mo>-</mo>
<mi>&Delta;</mi>
<mover>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>&lsqb;</mo>
<mi>&Delta;</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>&Delta;</mi>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>=</mo>
<mi>e</mi>
<mrow>
<mo>(</mo>
<mi>&psi;</mi>
<mo>-</mo>
<mi>&alpha;</mi>
<mo>&CenterDot;</mo>
<mover>
<mi>e</mi>
<mo>&CenterDot;</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>s</mi>
<mo>&CenterDot;</mo>
<mover>
<mi>s</mi>
<mo>&CenterDot;</mo>
</mover>
<mo>-</mo>
<mi>&Delta;</mi>
<mover>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>&lsqb;</mo>
<mi>&Delta;</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>&Delta;</mi>
<mover>
<mi>d</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
在λ1>0,λ2>0,λ1(β1-α)>α+0.25,
设计控制律为
<mrow>
<mi>u</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>-</mo>
<msubsup>
<mi>B</mi>
<mi>p</mi>
<mrow>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msubsup>
<mo>&lsqb;</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>A</mi>
<mi>p</mi>
</msub>
<mo>+</mo>
<msub>
<mi>&beta;</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>+</mo>
<mi>&Delta;</mi>
<mi>d</mi>
<mo>-</mo>
<msub>
<mover>
<mi>x</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>d</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mn>1</mn>
</msub>
<msub>
<mover>
<mi>x</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>d</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>&beta;</mi>
<mn>2</mn>
</msub>
<mover>
<mi>p</mi>
<mo>&CenterDot;</mo>
</mover>
<mo>+</mo>
<msub>
<mi>&lambda;</mi>
<mn>1</mn>
</msub>
<mi>s</mi>
<mo>+</mo>
<msub>
<mi>&lambda;</mi>
<mn>2</mn>
</msub>
<mi>sgn</mi>
<mrow>
<mo>(</mo>
<mi>s</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
</mrow>
则整个系统是稳定的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711067457.4A CN107769652B (zh) | 2017-11-02 | 2017-11-02 | 一种永磁同步电机分步反推滑模控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711067457.4A CN107769652B (zh) | 2017-11-02 | 2017-11-02 | 一种永磁同步电机分步反推滑模控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107769652A true CN107769652A (zh) | 2018-03-06 |
CN107769652B CN107769652B (zh) | 2020-06-30 |
Family
ID=61272489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711067457.4A Expired - Fee Related CN107769652B (zh) | 2017-11-02 | 2017-11-02 | 一种永磁同步电机分步反推滑模控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107769652B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113064347A (zh) * | 2021-03-15 | 2021-07-02 | 贵州大学 | 考虑非对称输入与输出约束的pmsm混沌系统自适应控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105182741A (zh) * | 2015-07-15 | 2015-12-23 | 北京理工大学 | 一种无超调的分数阶时变滑模控制方法 |
CN106788043A (zh) * | 2017-01-18 | 2017-05-31 | 华北电力大学(保定) | Mees 中永磁同步电机反推自适应直接转矩控制方法 |
-
2017
- 2017-11-02 CN CN201711067457.4A patent/CN107769652B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105182741A (zh) * | 2015-07-15 | 2015-12-23 | 北京理工大学 | 一种无超调的分数阶时变滑模控制方法 |
CN106788043A (zh) * | 2017-01-18 | 2017-05-31 | 华北电力大学(保定) | Mees 中永磁同步电机反推自适应直接转矩控制方法 |
Non-Patent Citations (3)
Title |
---|
FAA-JENG LIN等: "FPGA-Based Adaptive Backstepping Sliding-Mode Control for Linear Induction Motor Drive", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 * |
GUO SHUAI等: "Adaptive Dynamic Terminal Sliding Mode Control Method", 《2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION》 * |
刘正华等: "基于自适应反推滑模控制的虚拟转台样机研究", 《宇航学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113064347A (zh) * | 2021-03-15 | 2021-07-02 | 贵州大学 | 考虑非对称输入与输出约束的pmsm混沌系统自适应控制方法 |
CN113064347B (zh) * | 2021-03-15 | 2022-09-23 | 贵州大学 | 考虑非对称输入与输出约束的pmsm混沌系统自适应控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107769652B (zh) | 2020-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique | |
CN107121932B (zh) | 电机伺服系统误差符号积分鲁棒自适应控制方法 | |
CN108183645A (zh) | 基于扩张状态观测器的永磁同步电机双幂次滑模控制方法 | |
CN110703591A (zh) | 一种转阀驱动电机自抗扰控制器的控制方法 | |
CN109617482B (zh) | 永磁同步电机的l2滑模控制方法 | |
Wang et al. | A novel inertia identification method for PMSM servo system based on improved particle swarm optimization | |
CN109507873B (zh) | 一种带宽参数化直流调速反馈控制系统 | |
CN109687703B (zh) | 基于干扰上界估计的降压型直流变换器固定时间滑模控制方法 | |
Liu et al. | Iterative learning based neural network sliding mode control for repetitive tasks: With application to a PMLSM with uncertainties and external disturbances | |
CN107769652B (zh) | 一种永磁同步电机分步反推滑模控制方法 | |
Rajendran et al. | H-infinity robust control technique for controlling the speed of switched reluctance motor | |
Yang et al. | Antiwindup design for the speed loop PI controller of a PMSM servo system | |
CN105137763B (zh) | 超声波电机鲁棒性递归式神经网络滑动模态控制系统及方法 | |
Plestan et al. | Advances in high order and adaptive sliding mode control–theory and applications | |
CN110687779A (zh) | 一种基于模糊pid的pmsm自适应控制系统 | |
KR20170003254A (ko) | 인공지능 알고리즘을 이용한 실시간 적응 제어 시스템 및 방법 | |
Long | Adaptive fuzzy back-stepping control system of permanent magnet synchronous motor | |
Ali et al. | Design of a speed controller using extended Kalman filter for PMSM | |
Borisevich et al. | Energy efficient control of an induction machine under load torque step change | |
CN107769651A (zh) | 一种基于动态滑模面的永磁同步电机控制方法 | |
Song et al. | A hybrid adaptive fuzzy variable structure speed controller for brushless DC motor | |
Dong et al. | Design and simulation a fuzzy-adaptive PI controller based on MRAS | |
Ankarao et al. | Implementation of PI Fuzzy & ANN controllers to improve dynamic response of vector controlled Induction motor drive | |
CN108282123B (zh) | 一种基于非线性滑模面的永磁同步电机控制方法 | |
Hassan et al. | Block diagram analysis of speed time characteristics of a simple DC motor and modeling of a PID controller in fuzzy systems engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200630 Termination date: 20201102 |