CN107759238A - 氮化硅结合碳化硅耐火制品的氮化烧成方法 - Google Patents

氮化硅结合碳化硅耐火制品的氮化烧成方法 Download PDF

Info

Publication number
CN107759238A
CN107759238A CN201711023562.8A CN201711023562A CN107759238A CN 107759238 A CN107759238 A CN 107759238A CN 201711023562 A CN201711023562 A CN 201711023562A CN 107759238 A CN107759238 A CN 107759238A
Authority
CN
China
Prior art keywords
biscuit
stove
low
temperature
warm area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711023562.8A
Other languages
English (en)
Other versions
CN107759238B (zh
Inventor
吕春江
张海涛
王波
杨奎
龚剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Ningxia R & D Binhe New Material Co Ltd
Original Assignee
Sinosteel Ningxia R & D Binhe New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Ningxia R & D Binhe New Material Co Ltd filed Critical Sinosteel Ningxia R & D Binhe New Material Co Ltd
Priority to CN201711023562.8A priority Critical patent/CN107759238B/zh
Publication of CN107759238A publication Critical patent/CN107759238A/zh
Application granted granted Critical
Publication of CN107759238B publication Critical patent/CN107759238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

一种氮化硅结合碳化硅耐火制品的氮化烧成方法,包括低温区素坯压制、正常温区素坯压制、进炉、升温烧成、冷却出炉的步骤,低温区素坯压制步骤为按比例称取碳化硅及粒度不高于20um的细硅粉为原料制成低温区素坯,正常温区素坯压制为按比例称取碳化硅及粒度为大于20um、且小于40um的粗硅粉制成正常温区素坯,进炉操作为将低温区素坯送入梭式氮化炉的低温区,将正常温区素坯送入梭式氮化炉的正常温区,本发明方法采用传统成熟的氮化硅结合碳化硅生产设备,通过合理分析炉内温场分布情况,对应设置不同粒度的硅粉作为原材料,分别形成对应不同区域的素坯,进而使温度与素坯对应,从而解决了熔硅和氮化反应不彻底的问题,一举两得。

Description

氮化硅结合碳化硅耐火制品的氮化烧成方法
技术领域
本发明涉及耐火材料制备技术领域,尤其涉及一种氮化硅结合碳化硅耐火制品的氮化烧成方法。
背景技术
氮化硅结合碳化硅耐火材料制品具有抗渣能力强、热震稳定性好、高温强度高等诸多优良性能,在大型炼铁高炉、铝电解槽、陶瓷窑具等行业广泛使用。然而,随着冶金、陶瓷等行业工业技术水平进步以及新兴行业的不断出现,对所要求耐火材料的使用性能提出了更高的要求,为此本发明在现有生产线的基础上提出了一种高效的氮化硅结合碳化硅耐火制品的氮化烧成方法,所制备产品可应用于工况环境较为苛刻的各种高温工业设备中。
氮化硅结合碳化硅耐火材料制品的生产制备是以不同级配的碳化硅颗粒和细粉、硅粉等为原料,经混炼成型干燥等工序,在流动的高纯氮气(通常不低于99.999%)气氛中,利用氮与硅的高温氮化反应,烧结形成Si3N4相,把碳化硅骨料颗粒直接紧密结合,形成一定形状的制品。虽然目前这种材料的制备工艺水平已较为成熟,但在实际生产过程中仍有两个问题还未得到很好的解决:一是由于梭式氮化炉的加热器是沿着炉体长度方向设置在炉体的两个侧壁上,造成炉内温场不均匀,局部温差对制品质量的影响;二是金属硅粉氮化放热效应的影响。
梭式氮化炉局部温差的影响:通常梭式氮化炉中部比炉门区域温度高,顶部比底部温度高,温差最高可达到100℃以上。除了不断改善氮化炉的保温和加热体分布结构外,常用的解决办法是提高氮化炉整体温度以保证氮化炉低温区也在氮化反应发生的温度范围,增加了能耗,且也不能完全避免氮化炉低温区制品氮化不彻底、转化率低的风险。
金属硅粉氮化放热效应的影响:硅粉粒度较细时,由于比表面积大,其氮化动力较强,氮化烧结反应放热较快,会造成炉温自发升高无法控制。温度一旦在反应烧结前期超过硅的熔点,将发生熔硅现象,堵塞坯体内部的氮化通道,导致氮化反应无法继续;在硅粉粒度较粗时,氮化炉温度易控制,但氮化反应速度缓慢,硅粉最终转化率偏低,需要更高的烧成温度或更长的保温时间,增加了能耗和氮化不彻底的风险。
上述两个问题是造成造成氮化硅结合碳化硅耐火制品成本偏高、性能和质量波动的主要原因。
发明内容
有必要提出一种通过粗硅粉和细硅粉分别制备素坯、且在炉内合理布局的氮化硅结合碳化硅耐火制品的氮化烧成方法。
一种氮化硅结合碳化硅耐火制品的氮化烧成方法,包括以下步骤:
低温区素坯压制:按比例称取碳化硅及粒度不高于20um的细硅粉为原料,混炼、振动成型,干燥后得到低温区素坯;
正常温区素坯压制:按比例称取碳化硅及粒度为48-76um的粗硅粉为原料,混炼、振动成型,干燥后得到正常温区素坯;
进炉:将低温区素坯送入梭式氮化炉的低温区,码放整齐,将正常温区素坯送入梭式氮化炉的正常温区,码放整齐,低温区的体积与正常温区的体积比为1/7-1/4,其中,低温区为梭式氮化炉靠近两个炉门和炉底的两个三角区域,正常温区为两个三角区域之间的区域;
升温烧成:将梭式氮化炉送电台阶式升温,同时向炉内流动通入氮气,使炉内发生氮化烧成反应;
冷却出炉。
本发明方法采用传统成熟的氮化硅结合碳化硅生产设备,即梭式氮化硅炉,通过合理分析炉内温场分布情况,对应设置不同粒度的硅粉作为原材料,分别形成对应不同区域的素坯,进而使温度与素坯对应,从而解决了熔硅和氮化反应不彻底的问题,一举两得。
附图说明
图1为梭式氮化硅炉的俯视结构示意图。
图2为图1沿着A-A的剖视示意图。
图中:炉门10、出气口11、进气口12、低温区素坯20。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
参见图1、图2,本发明实施例提供了一种氮化硅结合碳化硅耐火制品的氮化烧成方法,包括以下步骤:
低温区素坯压制:按比例称取碳化硅及粒度不高于20um的细硅粉为原料,混炼、振动成型,干燥后得到低温区素坯20;
正常温区素坯压制:按比例称取碳化硅及粒度为48-76um的粗硅粉为原料,混炼、振动成型,干燥后得到正常温区素坯;
进炉:将低温区素坯送入梭式氮化炉的低温区,码放整齐,将正常温区素坯送入梭式氮化炉的正常温区,码放整齐,低温区的体积与正常温区的体积比为1/7-1/4,其中,低温区为梭式氮化炉靠近两个炉门和炉底的两个三角区域,正常温区为两个三角区域之间的区域;即,两个三角区域的体积和与正常温区的体积比为1/7-1/4;
升温烧成:将梭式氮化炉送电台阶式升温,同时向炉内流动通入氮气,使炉内发生氮化烧成反应;该电台阶式升温为待炉温升温至1150℃,保温2-5h,继续升温至1250℃,保温2-5h,继续升温至1400℃,保温4-8h,最高氮化温度不高于1400℃,保温4-8h,使氮化烧结反应过程接近完成。
冷却出炉。
进一步,还在“升温烧成”之后设置二次沉积步骤,所述二次沉积步骤为:待升温烧成结束后,关闭出气口,以降低氮气流量,直至氮化炉从正压状态转变为近常压状态,例如炉内、炉外压差为0-10mm水柱,同时炉内氧分压增加至20-50ppm,继续保持1400℃恒温4-6h,以使正常温区素坯内残余的粗硅粉转化为氮化硅沉积在坯体内部。
该步骤中,粗硅粉为易氧化物质,先采用氧气与粗硅粉发生积极氧化反应生成SiO,然后利用氮气的还原性,使得氮气与SiO反应生成氮化硅,进而促使粗硅粉氮化反应彻底。通常炉体为长L为4-5米,宽1-2米,高H为1-2米的大型封闭炉体,由于体型较大,存在密封不良的情况,所以降低氮气气压时,极少量外界氧气可渗入至炉体内参与反应,而无需设置单独的氧气通入通道。
进一步,在“进炉”步骤中,低温区素坯20的码放高度为从炉门向炉内逐渐降低。
由于炉内温度分布为:底部温度低于顶部温度,靠近炉门10区域温度低于中部温度,所以在炉内从炉门20向中部的温度逐渐升高,从炉体底部向顶部温度逐渐升高,形成了如图2中虚线所示的三角形的低温区,对应的低温区素坯20的码放高度也为从炉门向炉内逐渐降低,以使细硅粉落在低温区,粗硅粉落在高温区,以使细硅粉与低温相适应,粗硅粉与高温相适应,从而将解决了熔硅和氮化反应不充分的矛盾。
进一步,低温区素坯20靠近炉门10的码放厚度不超过炉身高度的0.6倍,从炉门10向炉内的码放长度不超过炉身长度的0.4倍。
进一步,在炉身沿着长度方向的两个侧壁上设置相对设置进气口12和出气口11,向炉内流动通入氮气的操作为同时打开进气口12和出气口11,将高纯氮气从进气口12通入,从出气口11流出。
进一步,在“升温烧成”的步骤中,对梭式氮化炉送电台阶式升温时,对炉温进行监测,监测区域为正常温区,监测温度为正常温区的温度。
由于正常温区占据炉体内较大的体积,该区域内放置的素坯也较多,所以以正常温区的温度为标准来控制炉内的温度,而低温区的温度通常低于正常温区的温度100-150℃,所以将正常温区的温度作为控制温度,以使较多的粗硅粉素坯按照工艺要求进行反应,而在低温区,由于温度达不到工艺要求,则对应设置细硅粉,细硅粉由于粒度较小,比较于粗硅粉,起始反应温度点低于粗硅粉,终止反应温度的也低于粗硅粉,所以低温区素坯内的细硅粉提前开始反应,在温度达到粗硅粉彻底反应时,首先,细硅粉已经全部转化为氮化硅,而不存在没有反应的细硅粉的熔硅问题,其次,低温区的温度未达到正常温区的温度,例如正常温区的温度为1400℃,低温区的温度为1300℃,该温度也不足以导致低温区的细硅粉熔硅。
以下为两个具体实施例。
实施例1:
选用纯度在98%以上的工业黑碳化硅和细硅粉及粗硅粉为原料,细硅粉粒度D50为15-20μm,将细硅粉与工业黑碳化硅通过混炼、成型、干燥等工序制得70mm厚的低温区砖坯,粗硅粉粒度D50为65-76μm,再将粗硅粉与工业黑碳化硅通过混炼、成型、干燥等工序制得70mm厚的正常温区砖坯,以与低温区砖坯配烧,低温区砖坯与正常温区砖坯体积比为1:5,监测最高氮化烧成温度1400℃,正常程序保温4h后关闭出气口,调小N2流量,至氮化炉为常压状态,继续保温6h,然后停止通N2再保温3h停炉,制得氮化硅结合碳化硅制品的典型化学指标:SiC%=72.77%,Si3N4%=24.56%(合量97.33%);Fe2O3%=0.18%;XRD物相分析结果显示制品以SiC相为主,α-Si3N4:8%,β-Si3N4:12%。同烧氮化硅结合碳化硅制品化学指标:SiC%=75.41%,Si3N4%=19.73%(合量95.14%);Fe2O3%=0.29%;XRD物相分析结果显示制品以SiC相为主,α-Si3N4:10~15%,β-Si3N4:6~8%。
实施例2:
选用纯度在98%以上的工业黑碳化硅和细硅粉及粗硅粉为原料,细硅粉粒度D50为10-15μm,将细硅粉与工业黑碳化硅通过混炼、成型、干燥等工序制得50mm厚的低温区砖坯,粗硅粉粒度D50为48-65μm,再将粗硅粉与工业黑碳化硅通过混炼、成型、干燥等工序制得50mm厚的正常温区砖坯,以与低温区砖坯配烧,低温区砖坯与正常温区砖坯体积比为1:7,监测最高氮化烧成温度1380℃,正常程序保温6h后关闭出气口,调小N2流量,至氮化炉为常压状态,继续保温5h,然后停止通N2再保温1h停炉,制得氮化硅结合碳化硅制品典型化学指标:SiC%=73.13%,Si3N4%=23.06%(合量96.19%);Fe2O3%=0.22%;XRD物相分析结果显示制品以SiC相为主,α-Si3N4:8~15%,β-Si3N4:5~10%。同烧的常规氮化硅结合碳化硅制品化学指标:SiC%=74.31%,Si3N4%=20.82%(合量95.13%);Fe2O3%=0.28%;XRD物相分析结果显示制品以SiC相为主,α-Si3N4:12%,β-Si3N4:6~8%。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (6)

1.一种氮化硅结合碳化硅耐火制品的氮化烧成方法,其特征在于包括以下步骤:
低温区素坯压制:按比例称取碳化硅及粒度不高于20um的细硅粉为原料,混炼、振动成型,干燥后得到低温区素坯;
正常温区素坯压制:按比例称取碳化硅及粒度为48-76um的粗硅粉为原料,混炼、振动成型,干燥后得到正常温区素坯;
进炉:将低温区素坯送入梭式氮化炉的低温区,码放整齐,将正常温区素坯送入梭式氮化炉的正常温区,码放整齐,低温区的体积与正常温区的体积比为1/7-1/4,其中,低温区为梭式氮化炉靠近两个炉门和炉底的两个三角区域,正常温区为两个三角区域之间的区域;
升温烧成:将梭式氮化炉送电台阶式升温,同时向炉内流动通入氮气,使炉内发生氮化烧成反应;
冷却出炉。
2.如权利要求1所述的氮化硅结合碳化硅耐火制品的氮化烧成方法,其特征在于:还在“升温烧成”之后设置二次沉积步骤,所述二次沉积步骤为:待升温烧成结束后,关闭出气口,以降低氮气流量,直至氮化炉从正压状态转变为近常压状态,同时炉内氧分压增加至20-50ppm,继续保持1400℃恒温4-6h,以使正常温区素坯内残余的粗硅粉转化为氮化硅沉积在坯体内部。
3.如权利要求1所述的氮化硅结合碳化硅耐火制品的氮化烧成方法,其特征在于:在“进炉”步骤中,低温区素坯的码放高度为从炉门向炉内逐渐降低。
4.如权利要求3所述的氮化硅结合碳化硅耐火制品的氮化烧成方法,其特征在于:低温区素坯的靠近炉门的码放高度不超过炉身高度的0.6倍,从炉门向炉内的码放长度不超过炉身长度的0.4倍。
5.如权利要求1所述的氮化硅结合碳化硅耐火制品的氮化烧成方法,其特征在于:在炉身沿着长度方向的两个侧壁上分别设置进气口和出气口,向炉内流动通入氮气的操作为同时打开进气口和出气口,将高纯氮气从进气口通入,从出气口流出。
6.如权利要求1所述的氮化硅结合碳化硅耐火制品的氮化烧成方法,其特征在于:在“升温烧成”的步骤中,对梭式氮化炉送电台阶式升温时,对炉温进行监测,监测区域为正常温区,监测温度为正常温区的温度。
CN201711023562.8A 2017-10-27 2017-10-27 氮化硅结合碳化硅耐火制品的氮化烧成方法 Active CN107759238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711023562.8A CN107759238B (zh) 2017-10-27 2017-10-27 氮化硅结合碳化硅耐火制品的氮化烧成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711023562.8A CN107759238B (zh) 2017-10-27 2017-10-27 氮化硅结合碳化硅耐火制品的氮化烧成方法

Publications (2)

Publication Number Publication Date
CN107759238A true CN107759238A (zh) 2018-03-06
CN107759238B CN107759238B (zh) 2020-09-18

Family

ID=61271821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711023562.8A Active CN107759238B (zh) 2017-10-27 2017-10-27 氮化硅结合碳化硅耐火制品的氮化烧成方法

Country Status (1)

Country Link
CN (1) CN107759238B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906315A (zh) * 2020-07-17 2020-11-10 歌尔光学科技有限公司 粉末冶金方法
CN114988879A (zh) * 2022-06-30 2022-09-02 中钢集团洛阳耐火材料研究院有限公司 一种大型复相反应烧结碳化硅制品及制备方法
CN115368143A (zh) * 2022-05-30 2022-11-22 宜兴市拓邦耐火科技有限公司 氮化硅微晶板及其生产工艺
CN115650183A (zh) * 2022-10-28 2023-01-31 福建新航凯材料科技有限公司 一种氮化硅生产工艺及设备
CN116178026A (zh) * 2022-12-05 2023-05-30 山西华钠碳能科技有限责任公司 一种用于电池材料烧结的匣钵及其制备方法和应用
CN117800742A (zh) * 2024-02-29 2024-04-02 泰晟新材料科技有限公司 α相氮化硅粉体的制备方法
CN117800742B (zh) * 2024-02-29 2024-05-31 泰晟新材料科技有限公司 α相氮化硅粉体的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407192A2 (en) * 2001-06-15 2004-04-14 Harvest Precision Components, Inc. Fabrication of an electrically conductive silicon carbide article
CN101201218A (zh) * 2006-12-15 2008-06-18 辽宁弘光科技集团有限公司 一种连续热处理装置
CN102135376A (zh) * 2010-01-26 2011-07-27 蒋明学 阶梯炉
CN102822355A (zh) * 2010-03-05 2012-12-12 勒舍有限公司 用于不锈钢熔渣和钢铁制品熔渣的金属回收的制备方法
CN103726007A (zh) * 2014-01-15 2014-04-16 山东东益机械制造有限公司 一种减少盘类、齿轮工件的氮化变形量的工艺
CN104744048A (zh) * 2015-03-20 2015-07-01 中原工学院 致密原位Si4N3-SiC复合材料的制备方法
JP2015224169A (ja) * 2014-05-29 2015-12-14 住友電気工業株式会社 炭化珪素インゴットの製造方法
CN106698437A (zh) * 2017-01-03 2017-05-24 昆明理工大学 一种利用热等离子法制备球形纳米硅的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407192A2 (en) * 2001-06-15 2004-04-14 Harvest Precision Components, Inc. Fabrication of an electrically conductive silicon carbide article
CN101201218A (zh) * 2006-12-15 2008-06-18 辽宁弘光科技集团有限公司 一种连续热处理装置
CN102135376A (zh) * 2010-01-26 2011-07-27 蒋明学 阶梯炉
CN102822355A (zh) * 2010-03-05 2012-12-12 勒舍有限公司 用于不锈钢熔渣和钢铁制品熔渣的金属回收的制备方法
CN103726007A (zh) * 2014-01-15 2014-04-16 山东东益机械制造有限公司 一种减少盘类、齿轮工件的氮化变形量的工艺
JP2015224169A (ja) * 2014-05-29 2015-12-14 住友電気工業株式会社 炭化珪素インゴットの製造方法
CN104744048A (zh) * 2015-03-20 2015-07-01 中原工学院 致密原位Si4N3-SiC复合材料的制备方法
CN106698437A (zh) * 2017-01-03 2017-05-24 昆明理工大学 一种利用热等离子法制备球形纳米硅的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANESAN,NS等: "Simulation analysis on impurity distribution in mc-Si grown by directional solidification for solar cell applications", 《INTERNATIONAL JOURNAL OF MATERIALS RESEARCH》 *
罗民华等: "梭式窑的码坯方法和烟道设计对温度场及流场影响的探讨", 《中国陶瓷工业》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906315A (zh) * 2020-07-17 2020-11-10 歌尔光学科技有限公司 粉末冶金方法
CN115368143A (zh) * 2022-05-30 2022-11-22 宜兴市拓邦耐火科技有限公司 氮化硅微晶板及其生产工艺
CN114988879A (zh) * 2022-06-30 2022-09-02 中钢集团洛阳耐火材料研究院有限公司 一种大型复相反应烧结碳化硅制品及制备方法
CN115650183A (zh) * 2022-10-28 2023-01-31 福建新航凯材料科技有限公司 一种氮化硅生产工艺及设备
CN115650183B (zh) * 2022-10-28 2023-12-19 福建新航凯材料科技有限公司 一种氮化硅生产工艺及设备
CN116178026A (zh) * 2022-12-05 2023-05-30 山西华钠碳能科技有限责任公司 一种用于电池材料烧结的匣钵及其制备方法和应用
CN117800742A (zh) * 2024-02-29 2024-04-02 泰晟新材料科技有限公司 α相氮化硅粉体的制备方法
CN117800742B (zh) * 2024-02-29 2024-05-31 泰晟新材料科技有限公司 α相氮化硅粉体的制备方法

Also Published As

Publication number Publication date
CN107759238B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN107759238A (zh) 氮化硅结合碳化硅耐火制品的氮化烧成方法
CN102746013B (zh) 一种轻质高强氮化硅结合碳化硅耐火材料及其制备方法
CN104729293B (zh) 一种流动气氛冷热冲击烧结电阻炉
CN101654362B (zh) 一种氧氮化硅结合碳化硅高温陶瓷材料及其制备方法
CN105130468B (zh) 一种耐火保温材料及其制备方法
CN107337462A (zh) 一种烧结耐火砖及其制备方法
CN106242593A (zh) 低蠕变红柱石复合耐火砖及其制备方法和应用
CN101550005A (zh) 一种生产塞隆/氮化硅复相结合碳化硅制品的方法
CN113061021A (zh) 一种用于顶燃式热风炉的高热震砖及其制备方法
CN104844233A (zh) 一种燃烧炉用的特种耐火材料及其制备方法
CN103102160A (zh) 一种用粉煤灰制备β-Sialon粉体的微波烧结方法
CN101100371A (zh) 用于微波加热的陶瓷基透波承载体及生产方法
CN114988879A (zh) 一种大型复相反应烧结碳化硅制品及制备方法
CN101973773B (zh) 氮化硅结合碳化硅大型坩埚的制备方法
CN100488917C (zh) 逆反应烧结制备氮化硅碳化硅复合材料的方法
CN105859297A (zh) 一种碳化硅复合耐火材料及其制备方法
CN104016693A (zh) 氮化硅结合碳化硅耐火材料的制备方法
CN109574640A (zh) 高温刚玉莫来石坩埚的制备方法
CN107324821B (zh) 一种具有高吸收率、高热导率的cfb锅炉水冷壁用碳化硅耐磨浇注料
JPS5913470B2 (ja) 珪石レンガの製造方法
CN103224398A (zh) 一种微波烧结氮化物陶瓷材料的方法
CN109111236A (zh) 一种多孔高强莫来石耐火原料的制备方法
CN113105220A (zh) 玻璃窑用六铝酸钙-镁铝尖晶石复相耐火材料
CN113149702A (zh) 一种高强轻质保温砖
CN106747574A (zh) 一种微波窑用Si2N2O透波‑隔热一体化内衬材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant