CN107754837A - 单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用 - Google Patents

单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用 Download PDF

Info

Publication number
CN107754837A
CN107754837A CN201710859949.0A CN201710859949A CN107754837A CN 107754837 A CN107754837 A CN 107754837A CN 201710859949 A CN201710859949 A CN 201710859949A CN 107754837 A CN107754837 A CN 107754837A
Authority
CN
China
Prior art keywords
solution
film
preparation
bioi
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710859949.0A
Other languages
English (en)
Other versions
CN107754837B (zh
Inventor
黄思伟
刘恩秦
邹紫莹
程梦珂
王齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201710859949.0A priority Critical patent/CN107754837B/zh
Publication of CN107754837A publication Critical patent/CN107754837A/zh
Application granted granted Critical
Publication of CN107754837B publication Critical patent/CN107754837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/33
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用,包括:将五水硝酸铋溶于含HNO3的乙二醇中,得溶液A;将C3N4固体置于乙醇溶液中,超声剥离得含单层C3N4的乙醇悬浊液,离心后取上清液为溶液B;然后将溶液B加入溶液A中,分散均匀后滴涂在导电玻璃上,真空干燥后煅烧得Bi2O3‑C3N4薄膜;然后置于酸性KI溶液中进行离子交换,洗涤后自然风干后得到Bi2O3‑BiOI‑C3N4;再置于甲醇溶液中,氙灯照射后将薄膜取出,自然风干即得。本发明构建分散性好,稳定性强,光催化效果好的可见光催化薄膜。有效解决光催化剂回收难题的同时使得催化剂在可见光作用下降解污染物的效果得到更大的提升。

Description

单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及 其制备和应用
技术领域
本发明涉及光电催化材料技术领域,主要涉及单层C3N4纳米片和Bi 等离子体联合修饰型Bi2O3基电极的制备及应用。
背景技术
光催化技术是高级氧化技术的一种,是一种绿色技术,只需要利用太阳光的照射,光催化剂表面即会产生光生电子和空穴。电子可以用于还原反应,空穴可以用来氧化有机污染物。而光催化剂多为粉体催化剂,回收再利用是一大难题。同时,以大多数光催化剂只对短波长的紫外光有响应,催化效果也比较差。
而光电催化,由于催化剂为薄膜电极的形式,在回收上相对于光催化更胜一筹,同时,由于外加偏压的存在,电子转移效果更好,催化效果较光催化更优。目前,等离子体共振原理已经在光电催化领域被广泛应用,我们利用等离子体效应,在Bi2O3-BiOI的表面进行原位还原反应,产生的单质Bi等离子体对于催化薄膜的电子产生和转移等光电催化性能及可见光的吸收都具有极大的促进作用。进一步引入了单层的C3N4纳米片对电极进行修饰后光催化薄膜电极的光电性能显著增加。
石墨相氮化碳(g-C3N4)作为一种新型高分子基半导体材料,具有廉价、不含金属元素、可调控的能带结构、优异的热和化学稳定性等优点,在光电催化、有机污染物的降解和光致发光等领域展示出广阔的应用前景。传统直接热聚合方法获得的石墨相氮化碳往往表面积较小、催化反应活性位点较少、光响应性能较差,这些问题一定程度上制约了石墨相氮化碳的规模化应用。因此,制备出单层的C3N4纳米片用于修饰光催化薄膜电极是十分有前景的。已经有研究表明剥离后的g-C3N4光电性能显著增加。但是该研究是应用于降解染料,这一点依然是十分有局限性的。
随着各类工业技术的飞速发展,产生的污染物也越来越发杂多样,其中有机高毒性污染物治理的难题也越来越受到广泛发关注。具有代表性的有机污染物为苯酚。苯酚不仅有毒性,且具有强烈的腐蚀性。而具有代表性的重金属污染物为铬(Cr(VI)),Cr(VI)具有毒性且可致畸、致癌、致突变。
作为有机污染物的代表,苯酚是一种重要的有机合成原料,来源广泛可用于化工生产或制造业,包括橡胶、涂料、石棉品、木材防腐剂、树脂、纺织物、药品、香水、塑料等。也可在石油、制革、造纸、香料、墨水、肥皂、农药、染料等行业中使用。在医药上,被广泛使用作为消毒剂、杀虫剂等。在实验室中用作溶剂、试剂。
而重金属Cr(VI)的来源也十分广泛,包括制革、鞣革、电镀等许多工业产业。且Cr(VI)很强,易溶于水,容易迁移,将其还原转化为Cr(III)是最常见的处理方法,Cr(III)的毒性只有Cr(VI)的1%,并且易沉淀,容易分离。
公开号为CN104383950A的专利文献中公开了一种氧化铋/碘氧化铋异质结可见光响应催化剂及其制备方法。该光催化剂为膜结构,包括导电基底和位于导电基底上的Bi2O3-BiOI异质结薄膜。制备时首先在导电基底上制备Bi2O3薄膜,然后将所述的Bi2O3薄膜置于碘离子溶液中进行离子交换,即得到所述的Bi2O3-BiOI异质结可见光响应型光催化电极。
该Bi2O3-BiOI异质结可见光响应仍有待提高,单独应用于降解苯酚的效果也一般,同时稳定性不强。
因此在氧化铋/碘氧化铋催化电极的基础上对催化剂做进一步的改良,使其具有更高的可见光响应和更强的污染物处理效果是必要的。
发明内容
本发明提供一种单层C3N4纳米片和Bi等离子体联合修饰型Bi2O3基电极(Bi@Bi2O3-BiOI-C3N4可见光催化薄膜)的制备及应用,在氧化铋/ 碘氧化铋催化电极的基础上对催化剂做进一步的改良,使其具有更高的可见光响应和更强的污染物处理效果。
一种单层C3N4纳米片和Bi等离子体联合修饰型Bi2O3基电极的制备方法,包括如下步骤:
(1)将五水硝酸铋溶于含HNO3的乙二醇中,室温下搅拌溶解,得到澄清的溶液A;将三聚氰胺固体在空气氛围下煅烧得到C3N4固体,并将C3N4固体置于乙醇溶液中,超声剥离获得含单层C3N4的乙醇悬浊液,高速离心后取上清液为溶液B;然后将溶液B加入溶液A中,分散均匀得溶液C;
(2)将溶液C滴涂在导电玻璃(FTO)上,真空干燥后煅烧得Bi2O3-C3N4薄膜;
(3)将Bi2O3-C3N4薄膜放置于酸性KI溶液中进行离子交换,离子交换后,用蒸馏水冲洗薄膜,自然风干后得到Bi2O3-BiOI-C3N4
(4)将Bi2O3-BiOI-C3N4薄膜放置于甲醇溶液中,氙灯照射后将薄膜取出,自然风干得到Bi@Bi2O3-BiOI-C3N4薄膜电极。
氮化碳(C3N4)指的是一种硬度可以和金刚石相媲美而在自然界中尚未发现的新的共价化合物,廉价易得,其性质极稳定,耐酸碱,且具有光催化活性,但是对可见光的响应不强,形态多样,通过超声剥离获得单层的C3N4极薄,通过负载在Bi2O3-BiOI薄膜表面,其可见光响应增强了很多。
由于Bi2O3和BiOI的禁带宽度能产生异质结结构,增强电子的转移效率,催化剂的带隙变窄,对可见光的响应能力增强,更加容易产生光生电子。而原位还原产生的Bi单质,具有plasma效应,使得Bi2O3-BiOI经过简单的一步处理后对可见光的吸收进一步增强,同时光催化效果得到极大的提升。引入等离子体效应的同时,将单层C3N4优秀的光电催化修饰效果引入我们的Bi2O3基薄膜中,其光催化性能得到了进一步的提升。
本发明催化剂的制备方法简单,在Bi2O3-BiOI-C3N4的基础上仅需要进行一步原位还原反应,所得的光催化剂不仅可见光响应得到了很大的提升,对含Cr(VI)和苯酚废水的处理效果好,在实际应用中无二次污染,无需考虑回收使用的问题。
优选地,五水硝酸铋在含HNO3的乙二醇中的浓度为0.1~0.3M,,含 HNO3的乙二醇中HNO3的浓度为0.5~15M;C3N4固体在乙醇溶液中的浓度为3~8g/mL;溶液B与溶液A混合体积比为1:8~10。
进一步优选地,五水硝酸铋在含HNO3的乙二醇中的浓度为0.2M,,含HNO3的乙二醇中HNO3的浓度为1M;C3N4固体在乙醇溶液中的浓度为5g/mL;溶液B与溶液A混合体积比为1:10。
优选地,步骤(2)滴涂时控制每1cm2滴涂面积内滴涂15~25uL溶液 C。进一步优选地,步骤(2)滴涂时控制每1cm2滴涂面积内滴涂20uL 溶液C。
优选地,步骤(2)中的煅烧在马弗炉中进行,煅烧温度为300~600℃,煅烧时间为1~3小时。煅烧温度进一步优选为450~550℃,最优选为 520℃。进一步地,步骤(2)中以5℃/min升温至520℃后恒温退火处理2h,以10℃/min的速率冷却,冷却后用蒸馏水洗净,烘干,进一步研磨得C3N4固体粉末。
优选地,超声剥离时间为1h~15h;进一步优选为3~12h,最优选为 12h。超声功率为100~120W,工作频率为30~50kHz;进一步优选地,超声功率为100W,工作频率为40kHz;
优选地,步骤(2)中真空干燥条件为真空干燥箱60~80℃干燥1~3h,进一步优选,80℃干燥2h.
优选地,步骤(2)中的煅烧在马弗炉中进行,煅烧温度为300~600℃,煅烧时间为1~3小时。煅烧温度进一步优选为450~550℃,最优选为 500℃。进一步地,步骤(2)中以5℃/min升温至500℃后恒温退火处理2h,以10℃/min的速率冷却,冷却后用蒸馏水洗净,
优选地,酸性KI水溶液中KI的浓度为0.1mol/L~0.5mol/L;进一步优选为0.2mol/L~0.3mol/L,最优选为0.2mol/L。用1mol/L的H2SO4调节 pH至1~3,最优选为3。因此,最优选地,酸性KI溶液为0.2mol/L、pH 为3的KI溶液。优选地,离子交换时间为30~180min,进一步优选为150 min。
步骤(4)中的甲醇溶液采用100%甲醇。步骤(3)和(4)中导电玻璃涂覆有溶液C的部分全部浸没于对应的酸性KI溶液或甲醇溶液中。
优选地,步骤(4)中氙灯照射的时间为1~60min;进一步优选为3~35 min;最优选为35min;氙灯功率为500W。
氙灯能产生紫外光照,激发Bi2O3-BiOI产生电子和空穴的分离,同时我们提供的具有空穴捕获效果的甲醇溶液中,电子就会将Bi2O3-BiOI进行原位还原生成金属单质Bi,进一步是催化剂产生plasma效应。氙灯照射的时间越长提供的能量越多就会有更多的单质Bi产生,但是这个单质Bi 并不一定是越多越好,所以本发明考察了照射时间对催化剂最终降解效果的影响,发现35min的照射时间产生的催化剂性能最好,继续延长时间催化剂性能不增反降,所以选择了35min作为最优时间。
本发明核心为构建分散性好,稳定性强,光催化效果好的可见光催化薄膜。有效解决光催化剂回收难题的同时使得催化剂在可见光作用下降解污染物的效果得到更大的提升。
一种最优选的制备方法,
(1)将五水硝酸铋溶于含HNO3(1M)的乙二醇中,形成0.2M的五水硝酸铋溶液,室温下搅拌溶解,得到澄清的溶液A;
(2)取5g三聚氰胺固体,放置于坩埚中在空气氛围下520℃煅烧2h,得到C3N4固体;
(3)称取0.5g的C3N4固体放置于100ml的乙醇溶液中,超声剥离12h 获得含单层C3N4的乙醇悬浊液,离心后取上清液为溶液B;取1ml 的B浊液加入10ml的A溶液中,搅拌分散均匀得到混合溶液C;
(4)取0.02ml的溶液C滴涂在导电玻璃(FTO)上,真空干燥箱80℃干燥2h;
(5)取出干燥后的FTO,放入马弗炉中500℃煅烧2h后获得 Bi2O3-C3N4薄膜;
(6)配置酸性KI溶液,将Bi2O3-C3N4薄膜放置于在50ml的0.2mol/L 的pH为3的KI溶液中,进行离子交换。离子交换后,用蒸馏水冲洗薄膜,自然风干后得到Bi2O3-BiOI-C3N4
(7)将Bi2O3-BiOI-C3N4薄膜放置于50ml甲醇溶液中,用氙灯照射35 min后将薄膜取出,自然风干得到Bi@Bi2O3-BiOI-C3N4薄膜。
本发明还提供一种如所述制备方法制备得到的Bi@Bi2O3-BiOI-C3N4薄膜电极。
本发明还提供一种利用所述单层C3N4纳米片和Bi等离子体联合修饰型Bi2O3基电极(Bi@Bi2O3-BiOI-C3N4可见光催化薄膜)处理含铬苯酚废水的方法,包括如下步骤,包括如下步骤:
将所述Bi@Bi2O3-BiOI-C3N4薄膜作为阳极,钛片作为阴极,放入含 0.2M电解质Na2SO4的含铬苯酚废水中,于暗处搅拌吸附平衡,然后打开光源和电源(2.5V外加偏压),进行反应。
优选地,所述含铬废水中的苯酚浓度为5~20mg/L。
优选地,所述含铬废水中的铬浓度为40~120μmol/L。
优选地,所述光源为利用滤光片滤去波长λ<420nm部分的氙灯。
与现有技术相比,本发明具有如下有益效果:
(1)本发明解决了光催化粉体催化剂回收难,二次污染重的问题,附在导电玻璃上的的光催化薄膜可以多次循环利用,效果明显。
(2)本发明显著提升了光催化薄膜对复合污染的处理效果,对可见光的响应明显提升。
(3)本发明在提升催化剂性能的基础上,也将其应用于重金属Cr(VI) 和有机污染物苯酚的协同降解,使其能够应用于重金属和有机物复合污染的治理,应用广泛且效果良好。
附图说明
图1和图2为不同催化剂处理含铬苯酚废水的效果对比图。
图3为一系列不同光催化薄膜在可见光照射下的光电流对比图。
图4和图5为不同剥离还原时间所得催化薄膜处理含铬苯酚废水的效果对比图。
图6和图7为多次循环后光催化薄膜对复合废水的处理效果稳定性对比图。
具体实施方式
现结合说明书附图和具体实施例,对本发明进一步说明:
以最优的制备方法为例,包括如下步骤:
(1)将五水硝酸铋溶于含HNO3(1M)的乙二醇中,形成0.2M的五水硝酸铋溶液,室温下搅拌溶解,得到澄清的溶液A;
(2)取5g三聚氰胺固体,放置于坩埚中在空气氛围下520℃煅烧2h,得到C3N4固体;
(3)称取0.5g的C3N4固体放置于100ml的乙醇溶液中,超声剥离12h 获得含单层C3N4的乙醇悬浊液,离心后取上清液为溶液B;取1ml 的B浊液加入10ml的A溶液中,搅拌分散均匀得到混合溶液C;
(4)取0.02ml的溶液C滴涂在导电玻璃(FTO)上,真空干燥箱80℃干燥2h;
(5)取出干燥后的FTO,放入马弗炉中500℃煅烧2h后获得Bi2O3 -C3N4薄膜;
(6)配置酸性KI溶液,将Bi2O3-C3N4薄膜放置于在50ml的0.2mol/L 的pH为3的KI溶液中,进行离子交换。离子交换后,用蒸馏水冲洗薄膜,自然风干后得到Bi2O3-BiOI-C3N4
(7)将Bi2O3-BiOI-C3N4薄膜放置于50ml甲醇溶液中,用氙灯照射35 min后将薄膜取出,自然风干得到Bi@Bi2O3-BiOI-C3N4薄膜。
实施例1
分别对Bi2O3,Bi2O3-C3N4,Bi2O3-BiOI,Bi2O3-BiOI-C3N4, Bi@Bi2O3-BiOI,Bi2O3-BiOI-C3N4,Bi@Bi2O3-BiOI-C3N4系列催化薄膜进行了含铬苯酚废水降解动力学的测试。苯酚的浓度为5mg/L,铬的浓度为 80μmol/L,处于暗处搅拌吸附平衡后,打开光源和电源(2.5V外加偏压),进行反应,反应进行3h。
不同催化薄膜在可见光条件下的光催化降解效果如图1和图2所示。为了验证Bi@Bi2O3-BiOI-C3N4对比于基底及任一二元复合催化剂的光催化性能有了明显的提升效果,从图1的数据可以看出五种催化薄膜均显示出了光催化活性,其中Bi@Bi2O3-BiOI-C3N4的光催化活性最高。可见,通过逐步负载后,能够有效地提高催化剂的可见光光催化活性。
实施例2
通过电化学工作站来测定Bi@Bi2O3-BiOI-C3N4的光化学性能测试, Bi@Bi2O3-BiOI-C3N4薄膜电极为工作电极,Pt片为对电极,Ag/AgCl为参比电极,Na2SO4(0.1mol/L)和Na2SO3(0.1mol/L)溶液为电解液。通过对 Bi@Bi2O3-BiOI电极进行扫描得到伏安曲线,本实验的光源为氙灯(500W),在保证电极距离光源的位置一致的条件下,分别进行了可见光的扫描。并与Bi2O3,Bi2O3-C3N4,Bi2O3-BiOI,Bi2O3-BiOI-C3N4电极的可见光下的光电流做了对比。
从图3可以看出,Bi@Bi2O3-BiOI-C3N4电极的光电流是明显高于其他任一电极的。
实施例3
改变制备步骤(3)中超声剥离的时间,以获得C3N4含量不同的 Bi@Bi2O3-BiOI-C3N4薄膜,将控制不同剥离时间的Bi@Bi2O3-BiOI-C3N4进行含铬苯酚废水降解动力学的测试。苯酚的浓度为5mg/L,铬的浓度为 80μmol/L,处于暗处搅拌吸附平衡后,打开光源和电源(2.5V外加偏压),进行反应,反应进行3h。
结果如图4和图5所示,从图4可知12h为最剥离反应时间。
实施例4
使用Bi@Bi2O3-BiOI-C3N4光催化薄膜对含铬苯酚废水进行降解动力学测试,对其稳定性进行考察,每次降解反应过后对反应溶液进行后将薄膜洗涤干燥后进行循环多次降解反应,结果如图6和图7所示,多次循环后效果仍旧稳定。无论是在稳定性上和降解效果上都比Bi2O3-BiOI-C3N4高很多。
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。

Claims (10)

1.一种单层C3N4纳米片和Bi等离子体联合修饰型Bi2O3基电极的制备方法,其特征在于,包括如下步骤:
(1)将五水硝酸铋溶于含HNO3的乙二醇中,室温下搅拌溶解,得到澄清的溶液A;将三聚氰胺固体在空气氛围下煅烧得到C3N4固体,并将C3N4固体置于乙醇溶液中,超声剥离获得含单层C3N4的乙醇悬浊液,离心后取上清液为溶液B;然后将溶液B加入溶液A中,分散均匀得溶液C;
(2)将溶液C滴涂在导电玻璃上,真空干燥后煅烧得Bi2O3-C3N4薄膜;
(3)将Bi2O3-C3N4薄膜置于酸性KI溶液中进行离子交换,离子交换后,用蒸馏水冲洗薄膜,自然风干后得到Bi2O3-BiOI-C3N4薄膜;
(4)将Bi2O3-BiOI-C3N4薄膜置于甲醇溶液中,氙灯照射后将薄膜取出,自然风干得到Bi@Bi2O3-BiOI-C3N4薄膜电极。
2.根据权利要求1所述制备方法,其特征在于,含HNO3的乙二醇中HNO3的浓度为0.5~1.5M,五水硝酸铋在含HNO3的乙二醇中的浓度为0.1~0.3M;C3N4固体在乙醇溶液中的浓度为3~8g/mL;溶液B与溶液A混合体积比为1:8~10。
3.根据权利要求1所述制备方法,其特征在于,步骤(1)中超声功率为100~120W,工作频率为30~50kHz,超声剥离时间为1h~15h。
4.根据权利要求1所述制备方法,其特征在于,步骤(1)中三聚氰胺固体煅烧温度为300~600℃,煅烧时间为1~3小时。
5.根据权利要求1所述制备方法,其特征在于,步骤(2)滴涂时控制每1cm2滴涂面积内滴涂15~25uL溶液C。
6.根据权利要求1所述制备方法,其特征在于,步骤(2)中真空干燥条件为真空干燥箱60~80℃干燥1~3h;煅烧条件为:马弗炉中300~600℃煅烧1~3h。
7.根据权利要求1所述制备方法,其特征在于,步骤(3)中酸性KI溶液为0.1mol/L~0.5mol/L、pH为1~3的KI溶液;离子交换时间为30~180min。
8.根据权利要求1所述制备方法,其特征在于,步骤(4)中氙灯照射1~60min。
9.一种如权利要求1~8任一权利要求所述制备方法制备得到的Bi@Bi2O3-BiOI-C3N4薄膜电极。
10.一种利用如权利要求9所述Bi@Bi2O3-BiOI-C3N4薄膜电极处理含铬苯酚废水的方法,其特征在于,包括如下步骤:
将所述Bi@Bi2O3-BiOI-C3N4薄膜作为阳极,钛片作为阴极,放入含电解质Na2SO4的含铬苯酚废水中,于暗处搅拌吸附平衡,然后打开光源和电源,进行反应。
CN201710859949.0A 2017-09-21 2017-09-21 单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用 Active CN107754837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710859949.0A CN107754837B (zh) 2017-09-21 2017-09-21 单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710859949.0A CN107754837B (zh) 2017-09-21 2017-09-21 单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用

Publications (2)

Publication Number Publication Date
CN107754837A true CN107754837A (zh) 2018-03-06
CN107754837B CN107754837B (zh) 2020-10-13

Family

ID=61266552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710859949.0A Active CN107754837B (zh) 2017-09-21 2017-09-21 单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用

Country Status (1)

Country Link
CN (1) CN107754837B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362712A (zh) * 2020-11-13 2021-02-12 福州大学 一种可同时检测粮食中重金属铅和镉离子的电化学传感器电极
CN115475632A (zh) * 2022-09-13 2022-12-16 东南大学 一种CN/Mn2O3/FTOp-n异质结材料的制备方法及其产品和应用
CN115818590A (zh) * 2022-09-30 2023-03-21 江苏理工学院 氧化氮化碳/氧化铋复合电极及其制备方法和在Cl-检测中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383950A (zh) * 2014-10-28 2015-03-04 浙江工商大学 一种Bi2O3-BiOI异质结可见光响应型光催化剂及其制备方法
CN104549406A (zh) * 2014-12-19 2015-04-29 华南理工大学 一种g-C3N4/铋系氧化物复合可见光催化剂及其制备方法与应用
CN104741153A (zh) * 2015-02-12 2015-07-01 浙江工商大学 一种制备可见光响应的光催化剂的装置及制备方法
CN106179171A (zh) * 2016-08-08 2016-12-07 湖北工业大学 高效吸附降解木素的双功能多孔材料及其制备方法
CN106348383A (zh) * 2016-09-22 2017-01-25 浙江工商大学 一种C3N4‑Bi2O3‑BiOI‑TiO2NTs可见光响应光催化电极及其制备和应用
CN106694016A (zh) * 2016-11-24 2017-05-24 陕西科技大学 一种g‑C3N4/Bi2O3复合粉体及其制备方法和应用
CN106732715A (zh) * 2016-11-24 2017-05-31 陕西科技大学 一种BiOCl/g‑C3N4/Bi2O3复合粉体及其制备方法和应用
CN106799251A (zh) * 2017-03-03 2017-06-06 盐城工学院 一种复合光催化剂及其制备方法
CN107955523A (zh) * 2017-09-21 2018-04-24 浙江工商大学 一种环保自净可见光催化涂料及其制备和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383950A (zh) * 2014-10-28 2015-03-04 浙江工商大学 一种Bi2O3-BiOI异质结可见光响应型光催化剂及其制备方法
CN104549406A (zh) * 2014-12-19 2015-04-29 华南理工大学 一种g-C3N4/铋系氧化物复合可见光催化剂及其制备方法与应用
CN104741153A (zh) * 2015-02-12 2015-07-01 浙江工商大学 一种制备可见光响应的光催化剂的装置及制备方法
CN106179171A (zh) * 2016-08-08 2016-12-07 湖北工业大学 高效吸附降解木素的双功能多孔材料及其制备方法
CN106348383A (zh) * 2016-09-22 2017-01-25 浙江工商大学 一种C3N4‑Bi2O3‑BiOI‑TiO2NTs可见光响应光催化电极及其制备和应用
CN106694016A (zh) * 2016-11-24 2017-05-24 陕西科技大学 一种g‑C3N4/Bi2O3复合粉体及其制备方法和应用
CN106732715A (zh) * 2016-11-24 2017-05-31 陕西科技大学 一种BiOCl/g‑C3N4/Bi2O3复合粉体及其制备方法和应用
CN106799251A (zh) * 2017-03-03 2017-06-06 盐城工学院 一种复合光催化剂及其制备方法
CN107955523A (zh) * 2017-09-21 2018-04-24 浙江工商大学 一种环保自净可见光催化涂料及其制备和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOU WANG ET.AL: ""Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst depositedon perovskite-type ZnSn(OH)6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
WENDONG ZHANG ET AL.: ""Facile synthesis of organic–inorganic layered nanojunctions of g-C3N4/(BiO)2CO3 as efficient visible light photocatalyst"", 《DALTON TRANSACTIONS》 *
刘恩秦: "" 新型铋系可见光催化剂的制备及其环境催化性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
张喜: ""新型卤化氧铋BiOX(X=Cl、Br、I)光催化剂的合成、表征及催化性能研究"", 《中国博士学位论文全文数据 工程科技I辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362712A (zh) * 2020-11-13 2021-02-12 福州大学 一种可同时检测粮食中重金属铅和镉离子的电化学传感器电极
CN115475632A (zh) * 2022-09-13 2022-12-16 东南大学 一种CN/Mn2O3/FTOp-n异质结材料的制备方法及其产品和应用
CN115475632B (zh) * 2022-09-13 2024-04-05 东南大学 一种CN/Mn2O3/FTOp-n异质结材料的制备方法及其产品和应用
CN115818590A (zh) * 2022-09-30 2023-03-21 江苏理工学院 氧化氮化碳/氧化铋复合电极及其制备方法和在Cl-检测中的应用
CN115818590B (zh) * 2022-09-30 2024-02-23 江苏理工学院 氧化氮化碳/氧化铋复合电极及其制备方法和在Cl-检测中的应用

Also Published As

Publication number Publication date
CN107754837B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN110180548A (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
CN105597784B (zh) MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用
CN101020143A (zh) 一种卤氧化铋材料的用途
CN109589993A (zh) 电化学改性的钒酸铋-硫化钼-四氧化三钴催化电极及其制备方法和应用
CN107754837A (zh) 单层氮化碳纳米片和铋等离子体联合修饰型氧化铋基电极及其制备和应用
CN101024188A (zh) 卤氧化物光催化材料及其制备方法
CN104971720A (zh) 一种钨酸铋纳米复合材料及其制备方法和应用
CN104667951B (zh) 一种溴氧铋薄膜光催化剂的制备方法
CN106179418B (zh) 一种负载型双金属共掺杂纳米光催化剂的制备方法
CN109225273B (zh) 一种硫化铜/硫化钨复合光催化剂及其制备方法
CN102794186B (zh) 卤氧化物光催化材料及其制备方法
CN108686665A (zh) 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
CN109317184A (zh) 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
Zhao et al. Bi4O5Br2 nanoflower and CdWO4 nanorod heterojunctions for photocatalytic synthesis of ammonia
CN109529892A (zh) 一种纳米带状moa复合光催化剂制备方法
CN106044842A (zh) 一种扇形羟基氟化锌的制备方法及其应用
CN106179419B (zh) 一种二维磁性纳米光催化剂的制备方法
CN108144599A (zh) 一种铋基复合光催化剂降解印染废水的处理工艺
CN105618103B (zh) 一种二维磁性光催化剂的制备方法
CN102424466B (zh) 一种染料废水的处理方法
CN107955523B (zh) 一种环保自净可见光催化涂料及其制备和应用
CN107020140B (zh) 一种氧化铁-硫化钼-硫化镉可见光催化薄膜及其制备方法和应用
CN107744823A (zh) 一种多金属氧酸盐基复合可见光催化剂的制备方法
CN108514886A (zh) 一种用于光热协同催化甲苯降解的银基催化剂
CN108479812A (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant