CN107732335B - 一种液态金属电池的修复方法 - Google Patents

一种液态金属电池的修复方法 Download PDF

Info

Publication number
CN107732335B
CN107732335B CN201710930475.4A CN201710930475A CN107732335B CN 107732335 B CN107732335 B CN 107732335B CN 201710930475 A CN201710930475 A CN 201710930475A CN 107732335 B CN107732335 B CN 107732335B
Authority
CN
China
Prior art keywords
battery
constant
current
discharge
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710930475.4A
Other languages
English (en)
Other versions
CN107732335A (zh
Inventor
张坤
蒋凯
彭勃
郭姣姣
王康丽
李侠
王玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA XIDIAN ELECTRIC Co Ltd
Original Assignee
CHINA XIDIAN ELECTRIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA XIDIAN ELECTRIC Co Ltd filed Critical CHINA XIDIAN ELECTRIC Co Ltd
Priority to CN201710930475.4A priority Critical patent/CN107732335B/zh
Publication of CN107732335A publication Critical patent/CN107732335A/zh
Application granted granted Critical
Publication of CN107732335B publication Critical patent/CN107732335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种液态金属电池的修复方法,包括:1)当电池出现故障后,停止工作;2)提高电池的工作温度,并搁置;3)对电池进行恒压充电,充电电压为电池正常工作时的截止电压;4)对电池恒流放电;5)放电结束后对电池恒流充电至充满;6)转至步骤4)循环多次;7)对电池恒流放电;8)放电结束后对电池恒流充电至充满;9)转至步骤7)循环多次,待电池单圈库伦效率大于等于90%后,电池修复完成。采用本方法修复后的液态金属电池,性能未有明显衰减,仍然可以继续正常使用。本方法无需其他修复装置,只需直接改变电池温度和工作参数即可完成修复,简单实用,修复成本低廉。

Description

一种液态金属电池的修复方法
技术领域
本发明属于储能技术领域,涉及一种液态金属电池的修复方法。
背景技术
液态金属电池是一种面向电网级储能应用的新兴电池储能技术,因其具有材料成本低廉、制造工艺简单、容量易于放大等诸多优势,得到了储能技术研究及能源投资领域的广泛关注。然而,虽然液态金属电池在单体和电堆成组技术领域取得了不小进展,但仍有许多难题有待解决,其中,没有一种有效合理的电池修复技术便是限制其发展的一大瓶颈。
液态金属电池最常见的失效模式是运行过程中发生短路或微短路。一般来说,除少数电池是因电池密封结构泄露或正负极集流器故障造成短路之外,多数微短路或短路现象是由于负极金属离子与正极金属在正极反应界面处生成难熔物导致的,而这种失效电池通过合理的修复技术,性能可以恢复。但是,由于目前没有有效的修复技术,传统的处理方式只能对所有失效电池进行废弃处理或回收部分材料后废弃。这一方面使得发生可逆性失效的电池没有进行有效修复便直接废弃,无故增加了电池废品率,造成极大浪费。另一方面,更换失效电池须对电池重新接线且新电池工作需要较长的启动时间,造成电堆运行维护难度大,成本高昂。
发明内容
本发明的目的是提供一种液态金属电池的修复方法,解决了液态金属电池浪费严重的问题,降低了电池电堆运行维护难度及成本,采用本方法修复后的液态金属电池,性能未有明显衰减,仍然可以继续正常使用。本方法无需其他修复装置,只需直接改变电池温度和工作参数即可完成修复,简单实用,修复成本低廉。
为达到上述目的,本发明所采用的技术方案是:
一种液态金属电池的修复方法,包括以下步骤:
(1)当电池出现微短路或短路故障后,立即停止工作;
(2)提高电池的工作温度,并搁置使得电池反应界面处热量分布均衡;
(3)对电池进行恒压充电,充电电压为电池正常工作时的截止电压;
(4)对电池恒流放电,放电电流大小为0.5C-1C;
(5)放电结束后对电池恒流充电至充满,充电电流大小为0.5C-1C;
(6)转至步骤(4)循环多次;
(7)对电池恒流放电,放电电流大小为0.05C-0.1C;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.05C-0.1C;
(9)转至步骤(7)循环多次,待电池单圈库伦效率大于等于90%后,电池修复完成,将温度降至电池正常工作温度。
步骤(2)中,电池工作温度比正常工作温度升高100-300℃,搁置6-8h。
步骤(3)中,恒压充电直至电池电流密度低于100mA/cm2
步骤(4)中,放电深度10%-30%DOD。
步骤(6)中,循环次数为10-30。
步骤(7)中,放电深度小于50%DOD。
步骤(9)中,循环次数为15-25。
与传统方法相比,本发明至少具有以下技术效果:
本发明的修复方法,首先通过提高失效电池工作温度,将电池停止工作后搁置特定时间,以促进电池反应界面处热量分布均衡,使电池内部可能形成的难熔物熔融,提高电极材料的反应活性,利用电池液态电极独有的界面自恢复特性重建反应界面。其次,对电池进行恒压充电,在电压场的作用下,缓慢消除电池内部的各种极化,进一步激活离子反应活性,使恒流充电时难以迁移的负极金属离子逐步从合金中分离,返回至负极端。最后,对电池进行低电流密度恒流充放,此时电池内部电流分布逐渐趋于平衡,大电流脉冲对电池反应界面带来的扰动影响得以消除,反应界面逐步扩展,最终达到稳定。通过以上步骤,电池内部难熔、难分解合金基本得到清除,微短路或短路现象不再出现,电池性能恢复。本方法可以完全修复因正极反应界面形成富锂难熔物而导致失效的电池,相较直接丢弃的传统处理方法,本方法减少了电池浪费,节约了电池成本。本方法属于原位电池修复方法,修复过程无需将电池降温后从电堆中取出,因此无需重新接线及启动加热,从而大幅降低了电池电堆的运维难度及成本。采用本方法修复后的液态金属电池,性能未有明显衰减,仍然可以继续正常使用。本方法无需其他修复装置,只需直接改变电池温度和工作参数即可完成修复,简单实用,修复成本低廉。
进一步,当恒压充电至电流密度降至100mA/cm2以下后,电池内部的微短路或短路现象基本得到修复,但是由于恒压充电后期电池内部电流密度很低,离子迁移速率大幅下降,因此需对电池进行大电流短时脉冲充放电,以消除因缓慢的离子扩散运动可能导致的浓差极化。
附图说明
图1是本发明较佳实施方式提供的液态金属电池修复方法的逻辑图;
图2是实施例1-4中采用本发明进行修复的液态金属电池结构剖面示意图。
图中,1为电池上盖,2为电池壳体,3为密封绝缘零件,4为负极集流器,5为电池负极,6为电解质,7为电池正极,8为正极集流器。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明公开了一种简单实用,高效低廉的液态金属电池修复方法,其具体包括以下步骤:
(1)当电池出现微短路或短路故障后,立即停止工作;
(2)将电池工作温度升高100-300℃,搁置6-8h;
(3)对电池进行恒压充电至电池电流密度低于100mA/cm2,充电电压为电池正常工作时的截止电压;
(4)对电池恒流放电,放电电流大小为0.5C-1C,放电深度10%-30%DOD;
(5)放电结束后对电池恒流充电至充满,充电电流大小为0.5C-1C;
(6)转至步骤(4)循环10-30圈;
(7)对电池恒流放电,放电电流大小为0.05C-0.1C,放电深度小于50%DOD;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.05C-0.1C;
(9)转至步骤(7)循环,待电池单圈库伦效率大于等于90%后,电池修复完成,可以将温度降至电池正常工作温度。
液态电池的工作原理为:液态金属电池依靠高温下负极金属离子与正极金属的合金-去合金化来实现电池的充放电。电池放电时,负极金属失去电子变成金属离子,金属离子通过电解质熔盐迁移至正极端,正极金属则得到电子并与负极金属离子发生合金化反应形成金属合金。充电则执行相反的去合金化过程。在上述合金-去合金化的过程中,如果出现电池反应界面受热不均、电流密度分布不均、电池极化严重等情况,会导致负极金属离子无法从合金中分离,返回至负极,而是富集在正极界面处形成难熔且难以分解的导电合金,造成电池微短路或短路,这也是液态金属电池最常见的失效模式。
本发明的液态金属电池修复方法,可以有效修复上述原因导致的电池失效。具体修复原理为:
首先,提高失效电池工作温度,将电池停止工作后搁置特定时间,以促进电池反应界面处热量分布均衡,使电池内部可能形成的难熔物熔融,此外,提高电极材料的反应活性,利用电池液态电极独有的界面自恢复特性重建反应界面。
其次,对电池进行恒压充电,在电压场的作用下,缓慢消除电池内部的各种极化,进一步激活离子反应活性,使恒流充电时难以迁移的负极金属离子逐步从合金中分离,返回至负极端。
当恒压充电至电流密度降至100mA/cm2以下后,电池内部的微短路或短路现象基本得到修复,但是由于恒压充电后期电池内部电流密度很低,离子迁移速率大幅下降,可能会因离子浓度分布不均出现浓差极化,影响电池性能,因此需对电池进行大电流短时脉冲充放电,使电池内部的离子浓度分布趋于均匀。
最后,对电池进行低电流密度恒流充放消除大电流脉冲对电池反应界面带来的扰动,使反应界面逐步扩展,最终达到稳定。
通过以上步骤,电池内部难熔、难分解合金基本得到清除,微短路或短路现象不再出现,电池性能恢复。
以下通过几个实施例来具体说明本发明。各实施例所使用的电池如图2所示。图中,1为电池上盖,2为电池壳体,3为密封绝缘零件,4为负极集流器,5为电池负极,6为电解质,7为电池正极,8为正极集流器。
实施例1
采用本发明对短路的Li/Pb液态金属电池(工作温度350℃,截止电压0.9V)进行修复,修复方法主要包括以下步骤:
(1)将电池停止工作,将电池工作温度升至450℃;
(2)将电池在450℃下搁置6h;
(3)对电池进行0.9V恒压充电;
(4)待电池电流密度低于100mA/cm2后转为恒流放电,放电电流大小为0.5C,放电深度10%DOD;
(5)放电结束后对电池恒流充电至充满,充电电流大小为0.5C;
(6)转至步骤(4),如此循环10圈;
(7)对电池恒流放电,放电电流大小为0.05C,放电深度10%DOD;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.05C;
(9)转至步骤(7)循环15圈后,电池单圈库伦效率92%,电池修复完成,将电池工作温度降至350℃。
修复完成后,该电池可以正常工作,库伦效率可达96%,能量效率70%,平均放电电压0.6V,各项性能参数较失效前没有任何衰减。
实施例2
采用本发明对微短路的Li-Sn/Sb液态金属电池(工作温度450℃,截止电压1.2V)进行修复,修复方法主要包括以下步骤:
(1)将电池停止工作,将电池工作温度升至650℃;
(2)将电池在650℃下搁置7h;
(3)对电池进行1.2V恒压充电;
(4)待电池电流密度低于100mA/cm2后转为恒流放电,放电电流大小为0.75C,放电深度20%DOD;
(5)放电结束后对电池恒流充电至充满,充电电流大小为0.75C;
(6)转至步骤(4),如此循环15圈;
(7)对电池恒流放电,放电电流大小为0.075C,放电深度30%DOD;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.075C;
(9)转至步骤(7)循环20圈后,电池单圈库伦效率95%,电池修复完成,将电池工作温度降至450℃。
修复完成后,该电池可以正常工作,库伦效率可达98%,能量效率80%,平均放电电压0.75V,各项性能参数较失效前没有任何衰减。
实施例3
采用本发明对微短路的Li-Pb/Sb液态金属电池(工作温度500℃,截止电压1.1V)进行修复,修复方法主要包括以下步骤:
(1)将电池停止工作,将电池工作温度升至800℃;
(2)将电池在800℃下搁置8h;
(3)对电池进行1.1V恒压充电;
(4)待电池电流密度低于100mA/cm2后转为恒流放电,放电电流大小为0.75C,放电深度25%DOD;
(5)放电结束后对电池恒流充电至充满,充电电流大小为0.75C;
(6)转至步骤(4),如此循环20圈;
(7)对电池恒流放电,放电电流大小为0.075C,放电深度35%DOD;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.075C;
(9)转至步骤(7)循环25圈后,电池单圈库伦效率91%,电池修复完成,将电池工作温度降至500℃。
修复完成后,该电池可以正常工作,库伦效率可达97%,能量效率72%,平均放电电压0.71V,各项性能参数较失效前没有任何衰减。
实施例4
采用本发明对微短路的Li-Sn液态金属电池(工作温度530℃,截止电压1.2V)进行修复,修复方法主要包括以下步骤:
(1)将电池停止工作,将电池工作温度升至730℃;
(2)将电池在730℃下搁置8h;
(3)对电池进行1.2V恒压充电;
(4)待电池电流密度低于100mA/cm2后转为恒流放电,放电电流大小为1C,放电深度30%DOD;
(5)放电结束后对电池恒流充电至充满,充电电流大小为1C;
(6)转至步骤(4),如此循环30圈;
(7)对电池恒流放电,放电电流大小为0.1C,放电深度40%DOD;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.1C;
(9)转至步骤(7)循环25圈后,电池单圈库伦效率92%,电池修复完成,将电池工作温度降至530℃。
修复完成后,该电池可以正常工作,库伦效率可达95%,能量效率75%,平均放电电压0.65V,各项性能参数较失效前没有任何衰减。
从上述实施例可以看出,本发明提供的液态金属电池修复方法简单易行,效果可靠。采用本方法修复后的液态金属电池,性能没有任何衰减,仍然可以继续正常使用。因此,本发明可以避免电池在使用过程中的浪费,降低电池运行维护难度及成本。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种液态金属电池的修复方法,其特征在于,包括以下步骤:
(1)当电池出现微短路或短路故障后,立即停止工作;
(2)提高电池的工作温度,并搁置使得电池反应界面处热量分布均衡;
(3)对电池进行恒压充电,充电电压为电池正常工作时的截止电压;
(4)对电池恒流放电,放电电流大小为0.5C-1C;放电深度10%-30%DOD;
(5)放电结束后对电池恒流充电至充满,充电电流大小为0.5C-1C;
(6)转至步骤(4)循环多次;
(7)对电池恒流放电,放电电流大小为0.05C-0.1C;放电深度小于50%DOD;
(8)放电结束后对电池恒流充电至充满,充电电流大小为0.05C-0.1C;
(9)转至步骤(7)循环多次,待电池单圈库伦效率大于等于90%后,电池修复完成,将温度降至电池正常工作温度。
2.根据权利要求1所述的液态金属电池的修复方法,其特征在于,步骤(2)中,电池工作温度比正常工作温度升高100-300℃,搁置6-8h。
3.根据权利要求1所述的液态金属电池的修复方法,其特征在于,步骤(3)中,恒压充电直至电池电流密度低于100mA/cm2
4.根据权利要求1所述的液态金属电池的修复方法,其特征在于,步骤(6)中,循环次数为10-30。
5.根据权利要求1所述的液态金属电池的修复方法,其特征在于,步骤(9)中,循环次数为15-25。
CN201710930475.4A 2017-10-09 2017-10-09 一种液态金属电池的修复方法 Active CN107732335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710930475.4A CN107732335B (zh) 2017-10-09 2017-10-09 一种液态金属电池的修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710930475.4A CN107732335B (zh) 2017-10-09 2017-10-09 一种液态金属电池的修复方法

Publications (2)

Publication Number Publication Date
CN107732335A CN107732335A (zh) 2018-02-23
CN107732335B true CN107732335B (zh) 2019-10-29

Family

ID=61209731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710930475.4A Active CN107732335B (zh) 2017-10-09 2017-10-09 一种液态金属电池的修复方法

Country Status (1)

Country Link
CN (1) CN107732335B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429356A (zh) * 2019-07-15 2019-11-08 华中科技大学 一种液态金属电池的回收方法及装置
CN111146520B (zh) * 2019-12-16 2021-01-19 西安交通大学 一种废旧液态金属电池的回收方法
CN113611930A (zh) * 2021-08-05 2021-11-05 森克创能(天津)新能源科技有限公司 一种锌镍电池的修复方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482096B2 (en) * 2003-06-04 2009-01-27 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
WO2014092654A1 (en) * 2012-12-14 2014-06-19 Nanyang Technological University Liquid metal battery
CN106981691B (zh) * 2017-04-05 2018-12-28 华中科技大学 一种大容量液态金属电池界面化成方法

Also Published As

Publication number Publication date
CN107732335A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
KR101873329B1 (ko) 리튬 이온 전지의 충전 방법
CN107732335B (zh) 一种液态金属电池的修复方法
CN108470882A (zh) 氧化锡改性碳布基锂及钠金属负极及其制备方法
CN109167112A (zh) 一种钛酸锂电池的高温夹具化成方法
CN102664294A (zh) 废旧磷酸铁锂电池的回收方法
CN109037815A (zh) 一种磷酸铁锂电池的化成方法
CN109524621A (zh) 一种预锂化程度可控的锂离子电池负极极片的预锂化方法及装置
CN107331902A (zh) 一种铅酸蓄电池脉冲内化成工艺
CN108134141B (zh) 一种无隔膜静态锌溴电池
CN103794756A (zh) 预嵌锂的石墨烯极片及其制备方法与应用
CN111384456A (zh) 一种锂离子电池的预充化成方法及其锂离子电池
CN107230799A (zh) 一种钛酸锂电池的化成方法
CN111244489A (zh) 一种电极材料在锌溴单液流电池中的应用
CN104064824A (zh) 一种水系可充放电池
CN105406063A (zh) 一种添加导电玻璃纤维的铅炭电池正极铅膏
CN103633390A (zh) 锂离子动力电池快速充电方法
CN203839459U (zh) 一种对称电极钠离子电池
CN109616705A (zh) 提高锂离子电池容量的方法
CN207504101U (zh) 一种石墨烯方形锂离子电池
CN108832207A (zh) 一种铅酸蓄电池正极板强化剂及其使用方法
CN113745011B (zh) 一种红磷/碳纳米管复合材料在钠离子电容器中的应用
CN105070881A (zh) 一种锂离子电池用高容量V2O5·nH2O薄膜电极材料
CN106252760B (zh) 一种钛酸锂负极锂电池的化成浮充方法
CN109546233A (zh) 一种锌镍电池充放电化成工艺
CN114243019A (zh) 表面具有双修饰层的锌负极材料及其制备方法和在水系锌离子电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant