CN107706312A - 一种铜纳米纤维及其制备方法、显示面板 - Google Patents

一种铜纳米纤维及其制备方法、显示面板 Download PDF

Info

Publication number
CN107706312A
CN107706312A CN201710916001.4A CN201710916001A CN107706312A CN 107706312 A CN107706312 A CN 107706312A CN 201710916001 A CN201710916001 A CN 201710916001A CN 107706312 A CN107706312 A CN 107706312A
Authority
CN
China
Prior art keywords
aluminium
copper nanofiber
layer
copper
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710916001.4A
Other languages
English (en)
Inventor
邵继峰
袁广才
苏同上
张扬
王庆贺
胡迎宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Hefei Xinsheng Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Hefei Xinsheng Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Hefei Xinsheng Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201710916001.4A priority Critical patent/CN107706312A/zh
Publication of CN107706312A publication Critical patent/CN107706312A/zh
Priority to US16/119,012 priority patent/US20190100838A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种铜纳米纤维及其制备方法、显示面板,该铜纳米纤维包括铜纳米纤维本体,所述铜纳米纤维本体的外表面设有铝掺杂氧化锌层以及在所述铝掺杂氧化锌层远离所述铜纳米纤维本体的一侧设有钝化层;该显示面板包括电极,所述电极包括至少一个如上所述的铜纳米纤维;该铜纳米纤维在保证电导率的同时,实现了具有耐腐蚀和抗氧化的特性。

Description

一种铜纳米纤维及其制备方法、显示面板
技术领域
本发明涉及显示领域,尤指一种铜纳米纤维及其制备方法、显示面板。
背景技术
ITO是现代光电器件常用的透明电极,但是由于铟是稀有金属元素,导致ITO的价格高居不下;另外,由于ITO很脆,外界张力或应力引起的变形扭曲往往会使其断裂,从而使其电阻率迅速飙升至绝缘体;因此,ITO不适合作为未来主流的柔性AMOLED透明电极。因此,寻找新型的具有良好的柔韧性、导电率的电极在光电领域的应用至关重要。
发明内容
为了解决上述技术问题,本发明提供了一种铜纳米纤维及其制备方法、显示面板,该铜纳米纤维在保证电导率的同时,实现了具有耐腐蚀和抗氧化的特性。
为了达到本发明目的,本发明采用如下技术方案:一种铜纳米纤维,包括铜纳米纤维本体,所述铜纳米纤维本体的外表面设有铝掺杂氧化锌层以及在所述铝掺杂氧化锌层远离所述铜纳米纤维本体的一侧设有钝化层。
可选地,所述钝化层为氧化铝层。
可选地,所述钝化层为金金属层、银金属层或铂金属层。
可选地,所述氧化铝层的厚度为0.5nm-5nm。
可选地,所述氧化铝层的厚度为1nm-2nm。
可选地,所述铝掺杂氧化锌层的厚度为5nm-30nm。
一种显示面板,包括电极,所述电极包括至少一个如权利要求1-6之一所述的铜纳米纤维。
一种如上所述的铜纳米纤维的制备方法,其特征在于,所述制备方法包括:
通过原子层沉积法在所述铜纳米纤维本体外表面形成所述铝掺杂氧化锌层;
然后再通过原子层沉积法在所述铜纳米纤维本体的铝掺杂氧化锌层上形成所述钝化层。
可选地,在所述铜纳米纤维本体外表面形成铝掺杂氧化锌层的方法为:
以二乙基锌和去离子水作为前驱体源,在100-200℃温度下,对铜纳米纤维本体进行锌循环10-35次;
然后以三甲基铝和去离子水作为前驱体源,在100-200℃温度下,对铜纳米纤维本体进行铝循环1-5次。
可选地,所述钝化层为氧化铝层,在所述铜纳米纤维本体的铝掺杂氧化锌层上形成氧化铝层的方法为:
以三甲基铝和去离子水作为前驱体源,在100-200℃温度下,对所述铝掺杂氧化锌层进行铝循环3-15次。
与现有技术相比,本发明的有益效果是:
本发明实施例提供的铜纳米纤维,其外表面上设有铝掺杂氧化锌层和钝化层,铝掺杂氧化锌层是一种透明导电氧化物,可以保护铜纳米纤维减少氧化;钝化层具有耐腐蚀和抗氧化的特性,从而保证铜纳米纤维电导率的同时,实现了铜纳米纤维具有耐腐蚀和抗氧化的特性。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例提供的铜纳米纤维的剖视图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
一种铜纳米纤维,包括铜纳米纤维本体1,铜纳米纤维本体1的外表面设有铝掺杂氧化锌层3以及在铝掺杂氧化锌层3远离铜纳米纤维本体1的一侧设有钝化层2。
本实施例提供的铜纳米纤维,其外表面上设有铝掺杂氧化锌层和钝化层,铝掺杂氧化锌层是一种透明导电氧化物,可以保护铜纳米纤维减少氧化;钝化层具有耐腐蚀和抗氧化的特性,从而保证铜纳米纤维电导率的同时,实现了铜纳米纤维具有耐腐蚀和抗氧化的特性。
实施例1
如图1所示,一种铜纳米纤维,包括铜纳米纤维本体1,铜纳米纤维本体1的外表面设有铝掺杂氧化锌层3以及在铝掺杂氧化锌层3远离铜纳米纤维本体1的一侧设有钝化层2,铝掺杂氧化锌层3是一种透明导电氧化物,可以保护铜纳米纤维本体1减少氧化,为了保证铝掺杂氧化锌层3不影响铜纳米纤维本体1的电导率。进而该复合结构的铜纳米纤维可以应用至显示领域,如透明显示、柔性透明显示、柔性AMOLED显示等领域中作为良好的透明导电电极材料。铝掺杂氧化锌层3的厚度为5nm-30nm,如此还能进一步保证铜纳米纤维作为显示用电极,尤其是透明电极时的透明特性。在本实施例中,铝掺杂氧化锌层3的厚度可以为例如8nm、10nm、15nm、20nm或25nm。
如图1所示,由于铜纳米纤维本体1表面活泼,容易被空气中的水汽和氧气氧化成氧化铜,在铜纳米纤维本体1的铝掺杂氧化锌层3上设置钝化层2,该钝化层2具有耐腐蚀和抗氧化的特性,从而使铜纳米纤维具有良好的电导率的同时,实现了铜纳米纤维具有耐腐蚀和抗氧化的特性,使得该复合结构的铜纳米纤维成为柔性AMOLED透明显示的理想透明导电电极材料;在本实施例中的钝化层2为氧化铝层,进一步的,为了保证载流子能够隧穿钝化层2,使钝化层2不会影响铜纳米纤维本体1优异的光电特性,本实施例中的氧化铝层的厚度为0.5nm-5nm,优选为1nm-2nm,即在本实施例中,氧化铝层的厚度可以为1.5nm、3nm或4nm;在本实施例中,当氧化铝层的厚度小于0.5nm时,一方面不便于氧化铝层的镀设,另一方面氧化铝层的厚度过薄,无法保证铜纳米纤维耐腐蚀和抗氧化的特性;当氧化铝层的厚度大于5nm时,氧化铝层的厚度过厚,会导致载流子无法隧穿氧化铝层,影响铜纳米纤维的光电特性。
本实施例中的铜纳米纤维本体1经过原子层沉积法在其外表面分别镀设形成铝掺杂氧化锌层3和氧化铝层,原子层沉积法是通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附并反应并形成沉积膜的一种方法,通过该方法,铝掺杂氧化锌和氧化铝会在铜纳米纤维本体1表面化学吸附并发生表面反应,形成纳米级厚度的铝掺杂氧化锌层3和氧化铝层。
本实施例中铜纳米纤维的制备方法为:
通过原子层沉积法在铜纳米纤维本体1外表面形成铝掺杂氧化锌层3,具体方法为:以二乙基锌和去离子水作为前驱体源,在100-200℃温度下,对铜纳米纤维本体1进行锌循环10-35次;然后以三甲基铝和去离子水作为前驱体源,在100-200℃温度下,对铜纳米纤维本体进行铝循环1-5次,完成铝掺杂氧化锌层3的设置;然后再通过原子层沉积法在铜纳米纤维本体1的铝掺杂氧化锌层3上形成氧化铝层,具体方法为:以三甲基铝和去离子水作为前驱体源,在100-200℃温度下,对铝掺杂氧化锌层3进行铝循环3-15次,完成氧化铝层的设置。
本实施例中铜纳米纤维的制备方法的优选方案为,以二乙基锌和去离子水作为前驱体源,在150℃温度下,对铜纳米纤维本体1进行锌循环25次;然后以三甲基铝和去离子水作为前驱体源,在150℃温度下,对铜纳米纤维本体进行铝循环1次,完成铝掺杂氧化锌层3的设置;然后再以三甲基铝和去离子水作为前驱体源,在150℃温度下,对铝掺杂氧化锌层3进行铝循环5次,完成氧化铝层的设置。
本实施例中的铜纳米纤维可以用于作为柔性AMOLED透明显示的透明导电的电极材料,铜纳米纤维中铜纳米纤维本体1具有良好电导率,同时其可以制作为有一定透过率的显示用电极,其外层的氧化铝层具有耐腐蚀和抗氧化的特性,又由于氧化铝层的厚度为纳米级厚度,使氧化铝层本身也具有光电特性,进而该复合结构的铜纳米纤维可以应用至显示领域,如透明显示、柔性透明显示、柔性AMOLED显示等领域中作为良好的透明导电电极材料。
实施例2
实施例2与实施例1的区别在于,钝化层2为惰性金属层,惰性金属层的厚度为0.5nm-5nm,优选为1nm-2nm,惰性金属层可以为金金属层、银金属层或铂金属层。惰性金属层具有耐腐蚀和抗氧化的特性,并且同时具有透明导电的光电特性,实现了本实施例中的铜纳米纤维既具有良好电导率的同时,又具有耐腐蚀和抗氧化的特性。
本实施例中的铝掺杂氧化锌层3和惰性金属层分别通过原子层沉积法设置在铜纳米纤维本体1上。
本发明还提供了一种显示面板,该显示面板包括电极,该电极包括至少一个如实施例1或实施例2所述的铜纳米纤维。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

1.一种铜纳米纤维,包括铜纳米纤维本体,其特征在于,所述铜纳米纤维本体的外表面设有铝掺杂氧化锌层以及在所述铝掺杂氧化锌层远离所述铜纳米纤维本体的一侧设有钝化层。
2.根据权利要求1所述的铜纳米纤维,其特征在于,所述钝化层为氧化铝层。
3.根据权利要求1所述的铜纳米纤维,其特征在于,所述钝化层为金金属层、银金属层或铂金属层。
4.根据权利要求1-3之一所述的铜纳米纤维,其特征在于,所述钝化层的厚度为0.5nm-5nm。
5.根据权利要求4所述的铜纳米纤维,其特征在于,所述钝化层的厚度为1nm-2nm。
6.根据权利要求1-3之一所述的铜纳米纤维,其特征在于,所述铝掺杂氧化锌层的厚度为5nm-30nm。
7.一种显示面板,其特征在于,包括电极,所述电极包括如权利要求1-6中任一项所述的铜纳米纤维。
8.一种如权利要求1所述的铜纳米纤维的制备方法,其特征在于,所述制备方法包括:
通过原子层沉积法在所述铜纳米纤维本体外表面形成所述铝掺杂氧化锌层;
然后再通过原子层沉积法在所述铜纳米纤维本体的铝掺杂氧化锌层上形成所述钝化层。
9.一种如权利要求8所述的铜纳米纤维的制备方法,其特征在于,在所述铜纳米纤维本体外表面形成铝掺杂氧化锌层的方法为:
以二乙基锌和去离子水作为前驱体源,在100-200℃温度下,对铜纳米纤维本体进行锌循环10-35次;
然后以三甲基铝和去离子水作为前驱体源,在100-200℃温度下,对铜纳米纤维本体进行铝循环1-5次。
10.一种如权利要求8所述的铜纳米纤维的制备方法,其特征在于,所述钝化层为氧化铝层,在所述铜纳米纤维本体的铝掺杂氧化锌层上形成氧化铝层的方法为:
以三甲基铝和去离子水作为前驱体源,在100-200℃温度下,对所述铝掺杂氧化锌层进行铝循环3-15次。
CN201710916001.4A 2017-09-30 2017-09-30 一种铜纳米纤维及其制备方法、显示面板 Pending CN107706312A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710916001.4A CN107706312A (zh) 2017-09-30 2017-09-30 一种铜纳米纤维及其制备方法、显示面板
US16/119,012 US20190100838A1 (en) 2017-09-30 2018-08-31 Copper nanofiber, its preparation method and display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710916001.4A CN107706312A (zh) 2017-09-30 2017-09-30 一种铜纳米纤维及其制备方法、显示面板

Publications (1)

Publication Number Publication Date
CN107706312A true CN107706312A (zh) 2018-02-16

Family

ID=61184000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710916001.4A Pending CN107706312A (zh) 2017-09-30 2017-09-30 一种铜纳米纤维及其制备方法、显示面板

Country Status (2)

Country Link
US (1) US20190100838A1 (zh)
CN (1) CN107706312A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191794B (zh) * 2007-08-27 2012-03-28 中国科学院理化技术研究所 一维纳米结构的荧光化学生物传感器及其制备方法和用途
CN106910551A (zh) * 2017-02-14 2017-06-30 哈尔滨工业大学深圳研究生院 一种电镀金属增强透明导电膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191794B (zh) * 2007-08-27 2012-03-28 中国科学院理化技术研究所 一维纳米结构的荧光化学生物传感器及其制备方法和用途
CN106910551A (zh) * 2017-02-14 2017-06-30 哈尔滨工业大学深圳研究生院 一种电镀金属增强透明导电膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PO-CHUN HSU等: ""Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes"", 《ACS NANO》 *

Also Published As

Publication number Publication date
US20190100838A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
Nguyen et al. Advances in flexible metallic transparent electrodes
US20120161192A1 (en) Nitrogen-doped transparent graphene film and manufacturing method thereof
CN104269414B (zh) 一种阵列基板及其制作方法、显示装置
CN104919540B (zh) 导电体及其制造方法
CN107093500A (zh) 一种银纳米线柔性透明导电薄膜的图形化方法
CN104934330A (zh) 一种薄膜晶体管及其制备方法、阵列基板和显示面板
TW201303905A (zh) 透明導電膜、加熱器、觸控面板、太陽電池、有機el裝置、液晶裝置及電子紙
CN104934551B (zh) 一种柔性电极层及其制备方法、显示基板、显示装置
TW201540137A (zh) 導電性基板、導電性基板之製造方法
US9134567B2 (en) Method for manufacturing transparent conductive film and method for manufacturing CF substrate having conductive film
CN103730194A (zh) 一种银纳米线基多层结构的复合透明导电薄膜及其制备方法
CN104979406B (zh) 薄膜晶体管、阵列基板及其制备方法和显示装置
CN108780259A (zh) 电致变色装置
Chang et al. Highly foldable transparent conductive films composed of silver nanowire junctions prepared by chemical metal reduction
US10780494B2 (en) Method for manufacturing metallic nanowire transparent electrode
TW201503243A (zh) 導電結構及其製造方法和以導電結構作爲電極的元件
US11374192B2 (en) Flexible transparent electrode, flexible display panel, manufacture method, and display device
KR101500192B1 (ko) 그래핀층을 포함하는 투명전극 및 이의 제조방법
KR20240060767A (ko) 도전체, 그 제조 방법, 및 이를 포함하는 전자 소자
Kang et al. Electroplated silver–nickel core–shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes
CN103545221A (zh) 金属氧化物薄膜晶体管及其制备方法
EP2669773A2 (en) Touch panel
CN105529275A (zh) 薄膜晶体管及其制造方法
Sim et al. Highly flexible Ag nanowire network covered by a graphene oxide nanosheet for high-performance flexible electronics and anti-bacterial applications
CN107680707A (zh) 一种核壳结构的复合金属纳米线及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication