CN107694595B - 一种氧掺杂氮化硼催化剂载体的制备方法 - Google Patents

一种氧掺杂氮化硼催化剂载体的制备方法 Download PDF

Info

Publication number
CN107694595B
CN107694595B CN201710962733.7A CN201710962733A CN107694595B CN 107694595 B CN107694595 B CN 107694595B CN 201710962733 A CN201710962733 A CN 201710962733A CN 107694595 B CN107694595 B CN 107694595B
Authority
CN
China
Prior art keywords
catalyst carrier
catalyst
acid
preparation
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710962733.7A
Other languages
English (en)
Other versions
CN107694595A (zh
Inventor
韩波
姜心蕊
苏小路
王洪权
周成冈
夏开胜
高强
吴金平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201710962733.7A priority Critical patent/CN107694595B/zh
Publication of CN107694595A publication Critical patent/CN107694595A/zh
Application granted granted Critical
Publication of CN107694595B publication Critical patent/CN107694595B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds

Abstract

本发明公开了一种氧掺杂氮化硼催化剂载体的制备方法:将三聚氰胺烧结得到C3N4中间体;以硼酸为硼源和氧源,以C3N4为氮源,混合得到前驱物;前驱物在N2氛围下烧结,得到预处理材料;酸洗、过滤、水洗、干燥、研磨,烧结,即得到d‑BN催化剂载体。本发明合成的d‑BN新型催化剂载体具有优异的热稳定性和化学稳定性,O掺杂在BN晶格以及C=O基团中,部分替代了N位,从而增强了载体与金属的相互作用,大大延长了催化剂的循环使用寿命。

Description

一种氧掺杂氮化硼催化剂载体的制备方法
技术领域
本发明涉及催化剂载体材料制备技术领域,尤其涉及一种氧掺杂氮化硼(d-BN)催化剂载体的制备方法。
背景技术
六方氮化硼(h-BN)是一种重要的硼族化合物,是六方晶系,其具有类似石墨的层状结构,因此也常被称为“白石墨”。单层的h-BN中B-N相互间隔排列为平面六角环状结构,并且层内的B-N键以sp2杂化共价键的方式结合在一起,层与层之间则是以范德华力结合,所以h-BN每层的结构较为稳定,而层与层之间较易于剥离。由于h-BN具有独特的结构,优异的机械强度,良好的热稳定性,抗氧化、耐酸碱以及化学惰性,使其在催化、航空、陶瓷、光致发光等领域有着极大的发展前景。
2005年,Wu等人采用浸渍法制备了一系列的Pt-Sn负载的h-BN催化剂,对巴豆醛的选择性加氢表现出良好的催化效果。此后,以BN为催化剂载体的研究与开发工作就呈现逐年上升的趋势,已经成为催化领域的研究热点之一。
h-BN作为催化剂载体,在实际的应用过程中,催化剂的循环稳定性往往较差,多次使用后催化活性明显降低。最近,研究者利用理论模拟手段,证明了完美的h-BN与金属之间的相互作用很弱,使得负载到h-BN载体表面的金属颗粒非常容易脱落,从而导致了催化活性的降低。因此,如何增强金属与h-BN之间的相互作用,提升金属在h-BN载体表面的稳定性,是延长BN基催化剂的循环使用寿命的关键。
目前,提高BN基催化剂的循环稳定性的方法主要有表面修饰和表面改性等。其中,表面修饰是将多巴胺等具有高粘度的有机物附着在h-BN表面,然后使金属粒子沉积在多巴胺上,利用金属与多巴胺等有机物之间的强相互作用来提高金属粒子在h-BN载体表面的稳定性。然而,这种采用有机物修饰h-BN的方法工艺较为复杂,不利于工业化大规模生产,限制了该方法的实际使用。表面改性方法则是使用强酸、强碱或强氧化性物质来活化h-BN,使其具有-OH或-COOH等官能团,利用这些官能团对金属的强吸附作用来稳定金属粒子,从而提升催化剂的循环稳定性。但是,这种方法的活化过程难以准确控制,且活化程度与h-BN基材本身的缺陷程度有较大关系,同样不利工业生产。
发明内容
有鉴于此,本发明的实施例提供了一种简单易控的氧掺杂BN催化剂载体的制备方法,所制备的催化剂载体具有优异的热稳定性和化学稳定性,载体中掺杂的氧原子能显著增强载体与金属的相互作用,大大提升了催化剂的循环稳定性。
本发明的实施例提供一种氧掺杂氮化硼催化剂载体的制备方法,包括以下步骤:
S1.将三聚氰胺烧结,自然冷却,得到C3N4中间体;
S2.以硼酸为硼源和氧源,以步骤S1得到的C3N4为氮源,将二者机械混合均匀得到前驱物;
S3.将步骤S2得到的前驱物在N2氛围下烧结,自然冷却,得到预处理材料;
S4.将步骤S3的预处理材料酸洗、过滤、水洗;
S5.将水洗得到的产物干燥,充分研磨;
S6.将步骤S5充分研磨后的产物烧结,自然冷却,即得到d-BN催化剂载体。
进一步,所述步骤S1中,三聚氰胺以1~10℃/min的升温速率升温至400℃~600℃,并在400~600℃烧结2~4h。
进一步,所述步骤S2中,硼酸与C3N4的摩尔比在16:1~2:1之间。
进一步,所述步骤S3中,前驱物在N2氛围下以1~10℃/min的升温速率升温至800~1200℃,并在800~1200℃烧结4~8h。
进一步,所述步骤S4中,酸洗的酸为无机酸,酸洗的酸为盐酸、硝酸和硫酸中的一种,酸洗的酸的水溶液浓度为1~20wt%;水洗采用真空抽滤,真空抽滤时使用多层定性滤纸过滤;水洗至洗涤液的pH值等于7。
进一步,所述步骤S5中,干燥温度为65℃,干燥时间为4~6h。
进一步,所述步骤S6中,将步骤S5充分研磨后的产物以1~10℃/min的升温速率升温至400~600℃,并在400~600℃烧结0.5~2h。
进一步,所述d-BN催化剂载体中掺杂的氧含量范围为1.0~20.0at%。
与现有技术相比,本发明具有以下有益效果:方法新颖,制备工艺简单,合成温度低,可在较温和条件下制备具有高比表面积、丰富活性位点的氧掺杂型BN载体,原料廉价易得,适合大规模工业化生产及应用,并且合成的氧掺杂BN催化剂载体具有优异的热稳定性和化学稳定性;本发明采用两步法,将三聚氰胺高温煅烧得到具有二维平面结构的C3N4中间体,以硼酸为硼源和氧源,以C3N4为氮源和生长模板,将两者研磨混合均匀,在N2氛围下,高温煅烧,使得O原子在高温煅烧的过程中掺杂在BN晶格以及C=O基团中,部分替代了N位,从而增强了金属与载体的相互作用,将活性金属负载于该载体后,催化剂的循环寿命有较大提升,催化活性也明显优于目前已报到的其他类似催化体系,有较强的商业化潜力。
附图说明
图1是本发明一种氧掺杂氮化硼催化剂载体的制备方法的一流程图。
图2是本发明一种氧掺杂氮化硼催化剂载体进行金属负载的一流程图。
图3是本发明一实施例中d-BN催化剂载体的XRD图。
图4是本发明一实施例中d-BN催化剂载体的SEM图。
图5是本发明制备CuNPs/d-BN催化剂催化还原4-NP的UV-Vis图谱。
图6是本发明制备CuNPs/d-BN催化剂催化还原4-NP的循环使用转化率图。
图7是CuNPs/h-BN催化剂催化还原4-NP的UV-Vis图谱。
图8是CuNPs/h-BN催化剂催化还原4-NP的循环使用转化率图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参考图1,本发明的实施例提供了一种氧掺杂氮化硼催化剂载体的制备方法,包括以下步骤:
S1.将三聚氰胺烧结,在一实施例中,三聚氰胺以1~10℃/min的升温速率升温至400℃~600℃,并在400~600℃烧结2~4h,自然冷却,得到黄色固体C3N4中间体;
S2.以硼酸为硼源和氧源,以步骤S1得到的C3N4为氮源,硼酸与C3N4的摩尔比在16:1~2:1之间,将二者机械混合均匀得到淡黄色固体混合物,即前驱物;
S3.将步骤S2得到的前驱物在N2氛围下烧结,在一实施例中,前驱物在N2氛围下以1~10℃/min的升温速率升温至800~1200℃,并在800~1200℃烧结4~8h,自然冷却,得到预处理材料;
S4.将步骤S3的预处理材料酸洗、过滤、水洗;
酸洗的酸为无机酸,酸洗的酸优选为盐酸、硝酸和硫酸中的一种,酸洗的酸的水溶液浓度为1~20wt%;水洗采用真空抽滤,真空抽滤时使用多层定性滤纸过滤;水洗至洗涤液的pH值等于7;
S5.将水洗得到的产物干燥,干燥温度优选为65℃,干燥时间为4~6h,充分研磨,得到白色固体产物;
S6.将步骤S5充分研磨后的白色固体产物烧结,在一实施例中,以1~10℃/min的升温速率升温至400~600℃,并在400~600℃烧结0.5~2h,自然冷却,即得到d-BN催化剂载体(如图3和图4所示),d-BN催化剂载体中掺杂的氧含量范围为1.0~20.0at%。
请参考图2,本发明氧掺杂氮化硼催化剂载体进行金属负载的方法,包括以下步骤:
S1.制备d-BN催化剂载体(如图1所示);
S2.称取步骤S1制备的d-BN催化剂载体,加入去离子水,搅拌,加入金属化合物,在一实施例中,金属化合物为氯金酸、氯化铜、氯化铁、氯钯酸和硝酸银;
S3.滴加氨水调节pH,搅拌12h;
S4.过滤,洗涤;
S5.将步骤S4洗涤得到的产物重新分散到去离子水中,搅拌;
S6.缓慢加入4mL NaBH4溶液,并不断搅拌1h;
S7.过滤,洗涤,在一实施例中,用去离子水洗涤5次,干燥,在一实施例中,在65℃下干燥4~6h,即得到氧掺杂BN催化剂载体负载金属。
应用例1
按照本发明方法制备d-BN催化剂载体,并负载金属Au制备AuNPs/d-BN催化剂,其制备方法为:
称取d-BN粉末0.196g于烧杯中,加入40mL去离子水,不断搅拌下,加入一定浓度的氯金酸,滴加氨水调节pH,搅拌12h,过滤,洗涤,将产物重新分散到去离子水中,缓慢加入4mL NaBH4溶液并不断搅拌1h,过滤,用去离子水洗涤5次,所得紫色固体产物在65℃下干燥4~6h,获得AuNPs/d-BN催化剂,Au的负载量为0.5~2.5wt%。
催化性能评价:
取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mg上述AuNPs/d-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔30s对反应器中的液体进行监测,检测在400nm处的吸光度变化,按下式对转化率进行计算:
式中:η为转化率,C0为反应初始时4-NP的浓度,Ct为反应t时刻后4-NP的浓度。
反应3min后,4-NP的转化率达到100%。
AuNPs/d-BN催化剂循环使用6次后,仍可在3min内使得4-NP的转化率达到98.5%。
对比项:取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mgAuNPs/h-BN催化剂置于反应器中,d-BN和h-BN的原子数百分含量和比表面积对比见表1,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应。
表1 d-BN和h-BN的原子数百分含量和比表面积
样本 B/at% C/at% N/at% O/at% 比表面积
h-BN 44.25 19.04 35.36 3.15 16
d-BN 44.4 3.0 36.9 15.7 216
使用紫外可见吸收光谱仪(UV-Vis)每隔30s对对反应器中的液体进行监测,检测在400nm处的吸光度变化。
反应12min,4-NP的转化率达到90%。
AuNPs/h-BN催化剂循环使用6次后,12min时,4-NP的转化率降为50.3%。
应用例2
按照本发明方法制备d-BN催化剂载体,并负载金属Cu制备CuNPs/d-BN催化剂,其制备方法为:
称取d-BN粉末0.196g于烧杯中,加入40mL去离子水,不断搅拌下,加入一定浓度的氯化铜,滴加氨水调节pH,搅拌12h,过滤,洗涤,将产物重新分散到去离子水中,缓慢加入4mL NaBH4溶液并不断搅拌1h,过滤,用去离子水洗涤5次,所得棕色固体产物在65℃下干燥4~6h,获得CuNPs/d-BN催化剂,Cu的负载量为0.5~2.5wt%。
催化性能评价:
取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mg上述CuNPs/d-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔1min对反应器中的液体进行监测,检测在400nm处的吸光度变化(如图5所示),按下式对转化率进行计算:
式中:η为转化率,C0为反应初始时4-NP的浓度,Ct为反应t时刻后4-NP的浓度。
反应5min后,4-NP的转化率达到99.5%。
CuNPs/d-BN催化剂循环使用6次后,仍可在5min内使得4-NP的转化率达到98.5%(如图6所示)。
对比项:取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mgCuNPs/h-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔2min对反应器中的液体进行监测,检测在400nm处的吸光度变化(如图7所示)。
反应11min,4-NP的转化率达到95.45%。
CuNPs/h-BN催化剂循环使用6次后,11min时,4-NP的转化率降为48.3%(如图8所示)。
应用例3
按照本发明方法制备d-BN催化剂载体,并负载金属Fe制备FeNPs/d-BN催化剂,其制备方法为:
称取d-BN粉末0.196g于烧杯中,加入40mL去离子水,不断搅拌下,加入一定浓度的氯化铁,滴加氨水调节pH,搅拌12h,过滤,洗涤,将产物重新分散到去离子水中,缓慢加入4mL NaBH4溶液并不断搅拌1h,过滤,用去离子水洗涤5次,所得黑色固体产物在65℃下干燥4~6h,获得FeNPs/d-BN催化剂,Fe的负载量为0.5~2.5wt%。
催化性能评价:
取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mg上述FeNPs/d-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔30s对反应器中的液体进行监测,检测在400nm处的吸光度变化,按下式对转化率进行计算:
式中:η为转化率,C0为反应初始时4-NP的浓度,Ct为反应t时刻后4-NP的浓度。
反应4min后,4-NP的转化率达到99.5%。
FeNPs/d-BN催化剂循环使用6次后,仍可在4min内使得4-NP的转化率达到97.8%。
对比项:取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mgCuNPs/h-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔2min对反应器中的液体进行监测,检测在400nm处的吸光度变化。
反应15min后,4-NP的转化率达到93.4%。
FeNPs/h-BN催化剂循环使用6次后,15min时,4-NP的转化率降为45.2%。
应用例4
按照本发明方法制备d-BN催化剂载体,并负载金属Pd制备PdNPs/d-BN催化剂,其制备方法为:
称取d-BN粉末0.196g于烧杯中,加入40mL去离子水,不断搅拌下,加入一定浓度的氯化钯,滴加氨水调节pH,搅拌12h,过滤,洗涤,将产物重新分散到去离子水中,缓慢加入4mL NaBH4溶液并不断搅拌1h,过滤,用去离子水洗涤5次,所得灰色固体产物在65℃下干燥4~6h,获得PdNPs/d-BN催化剂,Pd的负载量为0.5~2.5wt%。
催化性能评价:
取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mg上述PdNPs/d-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔2min对反应器中的液体进行监测,检测在400nm处的吸光度变化,按下式对转化率进行计算:
式中:η为转化率,C0为反应初始时4-NP的浓度,Ct为反应t时刻后4-NP的浓度。
反应10min后,4-NP的转化率达到98.7%。
PdNPs/d-BN催化剂循环使用6次后,仍可在10min内使得4-NP的转化率达到98.5%。
对比项:取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mgPdNPs/h-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔2min对反应器中的液体进行监测,检测在400nm处的吸光度变化。
反应25min后,4-NP的转化率达到92.3%。
PdNPs/h-BN催化剂循环使用6次后,25min时,4-NP的转化率降为44.6%。
应用例5
按照本发明方法制备d-BN催化剂载体,并负载金属Ag制备AgNPs/d-BN催化剂,其制备方法为:
称取d-BN粉末0.196g于烧杯中,加入40mL去离子水,不断搅拌下,加入一定浓度的硝酸银,滴加氨水调节pH,搅拌12h,过滤,洗涤,将产物重新分散到去离子水中,缓慢加入4mL NaBH4溶液并不断搅拌1h,过滤,用去离子水洗涤5次,所得黄色固体产物在65℃下干燥4~6h,获得AgNPs/d-BN催化剂,Ag的负载量为0.5~2.5wt%。
催化效能评价:
取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mg上述AgNPs/d-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔2min对反应器中的液体进行监测,检测在400nm处的吸光度变化,按下式对转化率进行计算:
式中:η为转化率,C0为反应初始时4-NP的浓度,Ct为反应t时刻后4-NP的浓度。
反应10min后,4-NP的转化率达到98.7%。
AgNPs/d-BN催化剂循环使用6次后,仍可在10min内使得4-NP的转化率达到98.5%。
对比项:取10mL去离子水于反应器中,加入0.5mL浓度为5mM的4-NP,称取5mgAgNPs/h-BN催化剂置于反应器中,充分搅拌使催化剂分散均匀,量取5mL NaBH4溶液,快速转移至反应器中开始催化反应,使用紫外可见吸收光谱仪(UV-Vis)每隔2min对反应器中的液体进行监测,检测在400nm处的吸光度变化。
反应14min后,4-NP的转化率达到91.7%。
AgNPs/h-BN催化剂循环使用6次后,14min时,4-NP的转化率降为44.8%。
本发明方法新颖,制备工艺简单,合成温度低,可在较温和条件下制备具有高比表面积、丰富活性位点的氧掺杂型BN载体,原料廉价易得,适合大规模工业化生产及应用,并且合成的氧掺杂BN催化剂载体具有优异的热稳定性和化学稳定性;本发明采用两步法,将三聚氰胺高温煅烧得到具有二维平面结构的C3N4中间体,以硼酸为硼源和氧源,以C3N4为氮源和生长模板,将两者研磨混合均匀,在N2氛围下,高温煅烧,使得O原子在高温煅烧的过程中掺杂在BN晶格以及C=O基团中,部分替代了N位,增强了金属与载体的相互作用,将活性金属负载于该载体后,催化剂的循环寿命有较大提升,催化活性也明显优于目前已报到的其他类似催化体系,有较强的商业化潜力。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种氧掺杂氮化硼催化剂载体的制备方法,其特征在于,包括以下步骤:
S1.将三聚氰胺以1~10℃/min的升温速率升温至400~600℃,并在400~600℃烧结2~4h,自然冷却,得到C3N4中间体;
S2.以硼酸为硼源和氧源,以步骤S1得到的C3N4为氮源,将二者机械混合均匀得到前驱物;
S3.将步骤S2得到的前驱物在N2氛围下以1~10℃/min的升温速率升温至800~1200℃,并在800~1200℃烧结4~8h,自然冷却,得到预处理材料;
S4.将步骤S3的预处理材料酸洗、过滤、水洗;
S5.将水洗得到的产物干燥,充分研磨;
S6.将步骤S5充分研磨后的产物以1~10℃/min的升温速率升温至400~600℃,并在400~600℃烧结0.5~2h,自然冷却,即得到d-BN催化剂载体。
2.根据权利要求1所述的氧掺杂氮化硼催化剂载体的制备方法,其特征在于,所述步骤S2中,硼酸与C3N4的摩尔比在16∶1~2∶1之间。
3.根据权利要求1所述的氧掺杂氮化硼催化剂载体的制备方法,其特征在于,所述步骤S4中,酸洗的酸为无机酸,酸洗的酸为盐酸、硝酸和硫酸中的一种,酸洗的酸的水溶液浓度为1~20wt%;水洗采用真空抽滤,真空抽滤时使用多层定性滤纸过滤;水洗至洗涤液的pH值等于7。
4.根据权利要求1所述的氧掺杂氮化硼催化剂载体的制备方法,其特征在于,所述步骤S5中,干燥温度为65℃,干燥时间为4~6h。
5.根据权利要求1所述的氧掺杂氮化硼催化剂载体的制备方法,其特征在于,所述d-BN催化剂载体中掺杂的氧含量范围为1.0~20.0at%。
CN201710962733.7A 2017-10-11 2017-10-11 一种氧掺杂氮化硼催化剂载体的制备方法 Expired - Fee Related CN107694595B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710962733.7A CN107694595B (zh) 2017-10-11 2017-10-11 一种氧掺杂氮化硼催化剂载体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710962733.7A CN107694595B (zh) 2017-10-11 2017-10-11 一种氧掺杂氮化硼催化剂载体的制备方法

Publications (2)

Publication Number Publication Date
CN107694595A CN107694595A (zh) 2018-02-16
CN107694595B true CN107694595B (zh) 2019-11-15

Family

ID=61184304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710962733.7A Expired - Fee Related CN107694595B (zh) 2017-10-11 2017-10-11 一种氧掺杂氮化硼催化剂载体的制备方法

Country Status (1)

Country Link
CN (1) CN107694595B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295887B (zh) * 2018-04-10 2020-10-02 中南大学 一种磷掺杂氮化硼酸碱催化剂及其制备方法和应用
CN110433844B (zh) * 2019-08-08 2022-04-08 盐城工学院 一种用于高效处理含Cr6+废水的(B,O)共掺杂g-C3N4光催化剂的制备方法
CN115475596A (zh) * 2022-09-07 2022-12-16 沈阳航空航天大学 一种有效协同脱除so2和重金属的双氧掺杂氮化硼催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891165A (zh) * 2010-07-15 2010-11-24 丹东市化工研究所有限责任公司 大结晶六方氮化硼生产方法
CN105293453A (zh) * 2015-11-20 2016-02-03 汕头大学 一种掺杂六方氮化硼纳米片及其制备方法和以其为载体的催化剂及应用
CN106744736A (zh) * 2016-12-26 2017-05-31 湖北第二师范学院 一种用于水处理的活性多孔氮化硼纳米片的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891165A (zh) * 2010-07-15 2010-11-24 丹东市化工研究所有限责任公司 大结晶六方氮化硼生产方法
CN105293453A (zh) * 2015-11-20 2016-02-03 汕头大学 一种掺杂六方氮化硼纳米片及其制备方法和以其为载体的催化剂及应用
CN106744736A (zh) * 2016-12-26 2017-05-31 湖北第二师范学院 一种用于水处理的活性多孔氮化硼纳米片的合成方法

Also Published As

Publication number Publication date
CN107694595A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Shi et al. Au sub‐nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions
Jiang et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process
CN107008484A (zh) 一种二元金属硫化物/氮化碳复合光催化材料及其制备方法
CN107694595B (zh) 一种氧掺杂氮化硼催化剂载体的制备方法
CN104888832B (zh) 一种金属/金属氧化物/g‑C3N4复合光催化材料及其制备方法
CN104028293A (zh) 一种低温氮掺杂石墨烯负载纳米Pd加氢催化剂的制备方法
CN103145108A (zh) 一种c3n4有机异质结的制备方法
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
Jiang et al. Cu nanoparticles supported on oxygen-rich boron nitride for the reduction of 4-nitrophenol
CN102942219A (zh) 一种室温下制备碳酸氧铋纳米片的方法
CN108404987B (zh) 一种提高纳米颗粒@MOFs材料催化效率的方法
CN106861736A (zh) 一种纳米钯基催化剂及制备和应用
CN103263921A (zh) 一种金属/石墨烯催化剂及制备方法
Debnath et al. Recent Developments in the Design of CdxZn1− xS‐Based Photocatalysts for Sustainable Production of Hydrogen
CN109092296A (zh) 一种碳负载氧化钯纳米团簇催化剂及其制备方法与应用
CN114751388A (zh) 多孔氮化硼及其制备方法、纳米金氮化硼复合光催化剂及其制备方法和应用
CN108620096A (zh) 一种可见光响应Ag/Bi3O4Cl复合材料及制备方法和用途
Feng et al. Facile synthesis of Cu2O nanoparticle-loaded carbon nanotubes composite catalysts for reduction of 4-nitrophenol
CN111437856A (zh) 一种卤氧化铋/g-C3N4异质结光催化剂的制备
CN101049562A (zh) 用卤代硝基苯催化加氢制卤代苯胺的催化剂及其制备方法
CN102909034B (zh) 一种担载型金镍合金纳米催化剂的制备
CN109453762A (zh) 一种改性黏土矿负载钯催化剂的制备方法和应用
CN108525675A (zh) 一种用于催化还原胺化制备胺类化合物的磁性碳/钯-钴多元复合催化剂、制备方法和应用
Kumar et al. Metallic and bimetallic phosphides-based nanomaterials for photocatalytic hydrogen production and water detoxification: a review
Zheng et al. Synthesis of CoFe 2 O 4-modified gC 3 N 4 with enhanced photocatalytic performance for nitrogen fixation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191115

Termination date: 20201011