CN107694589B - 一种用于光电催化产氢的薄膜复合材料的制备方法 - Google Patents

一种用于光电催化产氢的薄膜复合材料的制备方法 Download PDF

Info

Publication number
CN107694589B
CN107694589B CN201710635723.2A CN201710635723A CN107694589B CN 107694589 B CN107694589 B CN 107694589B CN 201710635723 A CN201710635723 A CN 201710635723A CN 107694589 B CN107694589 B CN 107694589B
Authority
CN
China
Prior art keywords
solution
film
preparation
deionized water
sbcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710635723.2A
Other languages
English (en)
Other versions
CN107694589A (zh
Inventor
刘志锋
鲁雪
王新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN201710635723.2A priority Critical patent/CN107694589B/zh
Publication of CN107694589A publication Critical patent/CN107694589A/zh
Application granted granted Critical
Publication of CN107694589B publication Critical patent/CN107694589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种用于光电催化产氢的薄膜复合材料的制备方法,首先通过热蒸气液聚法制备g‑C3N4薄膜;然后采用水浴法将Sb2S3纳米球负载到g‑C3N4薄膜上;最后通过光电化学沉积法将Co‑Pi纳米颗粒沉积到g‑C3N4/Sb2S3上最终得到g‑C3N4/Sb2S3/Co‑Pi薄膜复合材料。本发明提升了g‑C3N4的可见光吸收,促进了光生电子‑空穴对的分离;制备方法简单易操作,整体成本低廉。

Description

一种用于光电催化产氢的薄膜复合材料的制备方法
技术领域
本发明属于材料制备技术领域,具体为一种用于光电催化产氢的g-C3N4/Sb2S3/Co-Pi薄膜复合材料的制备方法。
背景技术
氢能作为理想高效的绿色能源,具有高能量密度、易储存等优点,可以作为解决能源危机和保持社会可持续发展的关键推动力。自20世纪70年代起,日本学者Fujishima和Honda报道了将TiO2半导体用作光电化学分解水的光阳极材料后,由于其优异的稳定性,可用性,无毒性和低价格,TiO2已经成为传统的光电阳极材料用于光电化学分解水产生氢气。然而,由于其较宽的带隙3.2eV,使其仅吸收占太阳光百分之四的紫外光,导致太阳光利用率低。因此,吸收可见光的新型光电极材料引起人们的广泛研究兴趣,特别是价格低廉的非金属光电极材料。
类石墨碳氮化物g-C3N4作为非金属有机光催化剂,禁带宽度约为2.7eV,由于其可见光反应、无毒、低成本、高化学热力学稳定性等优点,使得人们对其的研究兴趣日益增加。其优异的化学热力学稳定性归因于g-C3N4结构中的三均三嗪单元。架状结构的g-C3N4薄膜具有较大的比表面积,提供了较多的反应位点,且架状结构促进了光的反射捕获。此外架状结构的g-C3N4薄膜应用于光电化学分解水产氢时,将不会像粉末或块体那样分散在水中不易回收循环利用。较宽的可见光吸收范围和较好的光生电子-空穴对分离是衡量半导体光电催化性能好的关键性因素。而Sb2S3等硫化物半导体禁带宽度普遍较窄以至于可以大幅度提高可见光响应范围,Co-Pi等共催化剂在分离光生电子-空穴对方面显示出了优异的性能。因此将Sb2S3和Co-Pi共同负载在g-C3N4薄膜表面,以达到g-C3N4基薄膜复合材料较佳的光电催化性能。
发明内容
本发明的目的在于提出一种用于光电催化产氢的g-C3N4/Sb2S3/Co-Pi薄膜复合材料的制备方法,能够提升g-C3N4的光电催化性能。
本发明技术方案为:一种用于光电催化产氢的薄膜复合材料的制备方法,包括如下步骤:
步骤一:通过热蒸气液聚法制备g-C3N4薄膜
将尿素或者硫脲放入坩埚或者方舟中,转移到马弗炉中处理,即可得到附在FTO导电玻璃上的架状结构的g-C3N4薄膜。
步骤二:采用水浴法将Sb2S3纳米球负载到g-C3N4薄膜上
将所述步骤一中制备的样品置于生长溶液中水浴反应,取出后经过去离子水清洗,烘干得到g-C3N4/Sb2S3薄膜。
步骤三:通过光电化学沉积法将Co-Pi纳米颗粒沉积到g-C3N4/Sb2S3薄膜上,最终得到g-C3N4/Sb2S3/Co-Pi薄膜复合材料。
进一步的,所述步骤一具体为:将5-10g的尿素或者硫脲研磨成细粉末,然后取1.5-8g细粉末装满到坩埚或者方舟中,将FTO导电玻璃以导电面朝下的方式盖压在坩埚或者方舟上,转移到马弗炉中处理,即可得到附在FTO导电玻璃上的架状结构的g-C3N4薄膜。
进一步的,所述马弗炉中处理的工艺参数为:以2℃/min的升温速率加热200℃后保温1h然后继续以2℃/min升温到500℃后保温2h,冷却至室温;
或者以2℃/min的升温速率加热500℃后保温2h,冷却至室温。
进一步的,所述步骤二的制备工艺参数为:将所述步骤一中制备的样品置于60-70℃的生长溶液中水浴反应0.5-1.5h取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3薄膜。
进一步的,所述生长溶液的制备工艺参数为:将0.64-0.96gSbCl3溶解在1体积的丙酮中,然后加入29体积的去离子水,得到SbCl3溶液;将6.2-9.3gNa2S2O3·5H2O溶解在25mL的去离子水中,得到Na2S2O3·5H2O溶液;将Na2S2O3·5H2O溶液加入到SbCl3溶液中,磁力搅拌至变成橘红色即为生长溶液。
进一步的,所述Na2S2O3·5H2O溶液与所述SbCl3溶液的体积比为1:3。
进一步的,所述步骤三的制备工艺参数为:将所述步骤二制得的g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,光源为100mW·cm-2的氙灯,应用电压为0.35-0.45V,沉积时间为60~600s;沉积薄膜后经过去离子水清洗,80℃烘干,最终得到g-C3N4/Sb2S3/Co-Pi薄膜。
进一步的,所述Co-Pi生长溶液的制备工艺参数为:Co(NO3)2溶液与磷酸钾溶液以浓度比1:200的比例混合即为Co-Pi生长溶液。
进一步的,所述磷酸钾溶液的制备工艺参数为:K2HPO4和KH2PO4溶液以体积比为8:5混合,即为磷酸钾溶液,此时磷酸钾溶液的pH为7。
与现有技术相比,本发明的有益效果为:
(1)本发明能够有效加强可见光吸收,促进光生电子-空穴对的分离。
(2)本发明的制备方法简单易操作,整体成本低廉。
(3)本发明所制得的g-C3N4/Sb2S3/Co-Pi薄膜复合材料可见光吸收优异,光电催化性能较高。
附图说明
图1为实施例中所得的g-C3N4/Sb2S3/Co-Pi薄膜复合材料的扫描电镜图像。
具体实施方式
下面的实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
一种用于光电催化产氢的薄膜复合材料的制备方法,包括如下步骤:
步骤一:将10g硫脲研磨成粉末,取7g的粉末填装到60×90mm的方舟中,将FTO导电玻璃以导电面朝下的方式完全盖亚在方舟上,转移到马弗炉中,以2℃/min的升温速率加热200℃后保温1h,然后继续以2℃/min升温到500℃后保温2h,冷却至室温,即可得到附在FTO导电玻璃上的架状结构的g-C3N4薄膜。
步骤二:将0.64gSbCl3溶解到2.5ml的丙酮中后加入72.5ml的去离子水,将6.2g的Na2S2O3·5H2O加入到25ml的去离子水中,将Na2S2O3·5H2O溶液倒入到SbCl3溶液中,磁力搅拌至溶液变成橘红色,即为生长溶液,然后将步骤一制得的样品置于70℃的生长溶液中水浴1h,取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3薄膜。
步骤三:称取2.8g的K2HPO4和1.1g的KH2PO4加到100ml的去离子水中,pH为7,然后加入0.03g Co(NO3)2磁力搅拌充分溶解后作为Co-Pi生长溶液备用。
g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在100mW·cm-2的氙灯照射下,应用0.4V的电压沉积200s,最后取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3/Co-Pi薄膜。
实施例2
一种用于光电催化产氢的薄膜复合材料的制备方法,包括如下步骤:
步骤一:将5g硫脲研磨成粉末,取1.5g的粉末填装到5ml坩埚中,将FTO导电玻璃以导电面朝下的方式完全盖亚在方舟上,转移到马弗炉中,以2℃/min的升温速率加热500℃后保温2h,冷却至室温,即可得到附在FTO导电玻璃上的架状结构的g-C3N4薄膜。
步骤二:将0.96g SbCl3溶解到2.5ml的丙酮中后加入72.5ml的去离子水,将9.3g的Na2S2O3·5H2O加入到25ml的去离子水中,将Na2S2O3·5H2O溶液倒入到SbCl3溶液中,磁力搅拌至溶液变成橘红色,即为生长溶液,然后将步骤一制得的样品置于65℃的生长溶液中水浴45min,取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3薄膜。
步骤三:称取2.8g的K2HPO4和1.1g的KH2PO4加到100ml的去离子水中,pH为7,然后加入0.06g Co(NO3)2磁力搅拌充分溶解后作为Co-Pi生长溶液备用。
g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在100mW·cm-2的氙灯照射下,应用0.45V的电压沉积600s,最后取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3/Co-Pi薄膜。
实施例3
一种用于光电催化产氢的薄膜复合材料的制备方法,包括如下步骤:
步骤一:将10g尿素研磨成粉末,取8g的粉末填装到到25ml坩埚中,将FTO导电玻璃以导电面朝下的方式完全盖亚在方舟上,转移到马弗炉中,以2℃/min的升温速率加热500℃后保温2h,冷却至室温,即可得到附在FTO导电玻璃上的架状结构的g-C3N4薄膜。
步骤二:将0.96gSbCl3溶解到1.5ml的丙酮中后加入72.5ml的去离子水,将9.3g的Na2S2O3·5H2O加入到25ml的去离子水中,将Na2S2O3·5H2O溶液倒入到SbCl3溶液中,磁力搅拌至溶液变成橘红色,即为生长溶液,然后将步骤一制得的样品置于60℃的生长溶液中水浴1.5h,取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3薄膜。
步骤三:称取1.4g的K2HPO4和0.55g的KH2PO4加到50ml的去离子水中,pH为7,然后加入0.06g Co(NO3)2磁力搅拌充分溶解后作为Co-Pi生长溶液备用。
g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在100mW·cm-2的氙灯照射下,应用0.35V的电压沉积60s,最后取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3/Co-Pi薄膜。
本发明的作用机理是:半导体材料作为光电阳极被光照射后,吸收获得不小于其禁带宽度的光子能量,使得半导体价带上的电子被激发成为光生电子跃迁至半导体的导带位置,价带位置上留下光生空穴,从而在半导体内产生光生电子-空穴对。光生电子具有强还原性,通过外部导线到达对电极表面与水反应产生氢气。
如图1所示,本发明所获得的g-C3N4/Sb2S3/Co-Pi薄膜复合材料,因架状结构具有较大的比表面积,Sb2S3和Co-Pi分布情况良好。本发明所制得的g-C3N4/Sb2S3/Co-Pi薄膜复合材料可见光吸收优异,光电催化性能较高。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (2)

1.一种用于光电催化产氢的薄膜复合材料的制备方法,其特征在于,包括如下步骤:
步骤一:通过热蒸气液聚法制备g-C3N4薄膜,将5-10g的尿素或者硫脲研磨成细粉末,然后取1.5-8g细粉末装满到坩埚或者方舟中,将FTO导电玻璃以导电面朝下的方式盖压在坩埚或者方舟上,转移到马弗炉中处理,以2℃/min的升温速率加热到200℃后保温1h然后继续以2℃/min升温到500℃后保温2h,冷却至室温;或者以2℃/min的升温速率加热500℃后保温2h,冷却至室温,即可得到附在FTO导电玻璃上的架状结构的g-C3N4薄膜;
步骤二:采用水浴法将Sb2S3纳米球负载到g-C3N4薄膜上,将步骤一中制备的样品置于60-70℃的生长溶液中水浴反应0.5-1.5h,所述生长溶液的制备工艺参数为:将0.64-0.96gSbCl3溶解在1体积的丙酮中,然后加入29体积的去离子水,得到SbCl3溶液;将6.2-9.3gNa2S2O3·5H2O溶解在25mL的去离子水中,得到Na2S2O3·5H2O溶液;将Na2S2O3·5H2O溶液加入到SbCl3溶液中,磁力搅拌至变成橘红色即为生长溶液,其中Na2S2O3·5H2O溶液与SbCl3溶液的体积比为1:3,样品取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3薄膜;
步骤三:通过光电化学沉积法将Co-Pi纳米颗粒沉积到g-C3N4/Sb2S3薄膜上,将制得的g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,其制备工艺参数为:Co(NO3)2溶液与磷酸钾溶液以浓度比1:200的比例混合,光源为100mW cm-2的氙灯,应用电压为0.35-0.45V,沉积时间为60~600s;沉积薄膜后经过去离子水清洗,80℃烘干,最终得到g-C3N4/Sb2S3/Co-Pi薄膜复合材料。
2.如权利要求1所述的一种用于光电催化产氢的薄膜复合材料的制备方法,其特征在于,所述磷酸钾溶液的制备工艺参数为:K2HPO4和KH2PO4溶液以体积比为8:5混合,即为磷酸钾溶液,此时磷酸钾溶液的pH为7。
CN201710635723.2A 2017-07-31 2017-07-31 一种用于光电催化产氢的薄膜复合材料的制备方法 Active CN107694589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710635723.2A CN107694589B (zh) 2017-07-31 2017-07-31 一种用于光电催化产氢的薄膜复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710635723.2A CN107694589B (zh) 2017-07-31 2017-07-31 一种用于光电催化产氢的薄膜复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107694589A CN107694589A (zh) 2018-02-16
CN107694589B true CN107694589B (zh) 2020-04-28

Family

ID=61170103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710635723.2A Active CN107694589B (zh) 2017-07-31 2017-07-31 一种用于光电催化产氢的薄膜复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107694589B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099557B (zh) * 2018-10-25 2023-02-21 中国科学院金属研究所 利用液态金属集流体构筑集成式光催化分解水系统的方法
CN109569658B (zh) * 2019-01-09 2021-04-02 中南大学 一种提高硫化锑薄膜光电性能的方法
CN109987856A (zh) * 2019-03-21 2019-07-09 天津城建大学 一种具有亲水性的TiO2/FeOOH复合薄膜的制备方法
CN111841603A (zh) * 2020-07-08 2020-10-30 天津城建大学 一种用于光电催化的g-C3N4复合薄膜材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582527B2 (ja) * 2010-03-23 2014-09-03 独立行政法人産業技術総合研究所 グラファイト状窒化炭素の製造方法
CN105251522B (zh) * 2015-11-13 2017-07-04 福州大学 同时负载双助催化剂的复合可见光光催化剂及其应用
CN106967979B (zh) * 2017-04-14 2019-04-09 中国计量大学 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法

Also Published As

Publication number Publication date
CN107694589A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Meng et al. Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism
Yuan et al. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation
Zhang et al. Au nanoparticles sensitized ZnO nanorod@ nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting
CN107694589B (zh) 一种用于光电催化产氢的薄膜复合材料的制备方法
Zhou et al. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting
CN105040025B (zh) 双金属氢氧化物复合多孔钒酸铋光电极及其制备方法
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
Wu et al. Self-supported Bi2MoO6 nanowall for photoelectrochemical water splitting
CN104941614B (zh) 接触式还原法制备黑色二氧化钛的方法
Bonomo et al. Electrochemical and photoelectrochemical properties of nickel oxide (NiO) with nanostructured morphology for photoconversion applications
CN110344029B (zh) 一种表面羟基化氧化铁薄膜光阳极材料的制备方法
Zhang et al. Cu (OH) 2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production
He et al. Highly efficient AgBr/BiVO4 photoanode for photocatalytic fuel cell
CN104128184A (zh) 一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法
Zhang et al. Type II cuprous oxide/graphitic carbon nitride pn heterojunctions for enhanced photocatalytic nitrogen fixation
CN101279275A (zh) 纳米银/氯化银可见光光催化材料及其制备方法
CN105214689A (zh) 一种TiO2/CdS/石墨烯复合光催化材料及其制备方法
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
Bashiri et al. Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell
CN107935103A (zh) 一种银基复合光催化剂降解印染废水的处理工艺
CN108842168A (zh) 一种两步电化学法制备g-C3N4/MMO复合薄膜光电极
CN111841603A (zh) 一种用于光电催化的g-C3N4复合薄膜材料的制备方法
CN108511198A (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
Wang et al. Application of ZIF-67 based nitrogen-rich carbon frame with embedded Cu and Co bimetallic particles in QDSSCs
CN108144599A (zh) 一种铋基复合光催化剂降解印染废水的处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant