CN106967979B - 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法 - Google Patents

一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法 Download PDF

Info

Publication number
CN106967979B
CN106967979B CN201710255042.3A CN201710255042A CN106967979B CN 106967979 B CN106967979 B CN 106967979B CN 201710255042 A CN201710255042 A CN 201710255042A CN 106967979 B CN106967979 B CN 106967979B
Authority
CN
China
Prior art keywords
bfo
electrode
film photoelectric
film
photoelectric electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710255042.3A
Other languages
English (en)
Other versions
CN106967979A (zh
Inventor
陈达
王森
黄岳祥
秦来顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201710255042.3A priority Critical patent/CN106967979B/zh
Publication of CN106967979A publication Critical patent/CN106967979A/zh
Application granted granted Critical
Publication of CN106967979B publication Critical patent/CN106967979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于半导体薄膜领域,具体涉及一种磷酸钴改性BiFeO3(BFO)薄膜光电极及其制备方法。本发明提供了一种磷酸钴(Co‑Pi)改性BFO薄膜光电极及其制备方法,其特点在于,通过光辅助电化学沉积法在溶胶凝胶法制备的BFO薄膜表面上沉积负载一层Co‑Pi助催化剂。通过磷酸钴助催化剂改性后,可以有效降低BFO薄膜光电极的反应过电势,提高表面反应活性,在一定程度上解决目前BFO薄膜光电极存在的光生载流子迁移率较差以及载流子复合率高等问题,从而可以大幅提高BFO薄膜光电极的光电化学性能,促进BFO薄膜光电极在光电化学领域的应用。

Description

一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法
技术领域
本发明属于半导体薄膜领域,具体涉及一种磷酸钴改性BiFeO3薄膜光电极及其制备方法。
背景技术
近年来,BiFeO3(简称BFO)因其较大的自发极化特性、合适的禁带宽度(2.1~2.7eV)、良好的化学稳定性以及成本低廉等优点,已经被证实为一种新型可见光响应光催化剂,能够在可见光照射下光催化降解有机污染物,而且采用BFO薄膜光电极实现了光催化分解水制氧,因此,BFO薄膜光电极在光催化、光伏器件等领域受到了广泛关注。尽管BFO薄膜具有上述优点,然而,BFO薄膜光催化活性一般、光电转化效率不高,主要是由于BFO本身较差的电荷传输性能和较高的光生电子空穴复合率。由此可见,为了提高BFO薄膜的光电化学活性,需要对BFO薄膜进行适当的修饰改性。
研究发现,通过负载助催化剂是提高半导体薄膜光电化学性能的有效途径,主要是因为助催化剂能够有效改变半导体薄膜光电化学的反应机理、降低反应能量势垒,从而加速薄膜电极表面化学反应的进行,提高光电化学反应活性。在报道的众多助催化剂中,磷酸钴(Co-Pi) 与其他助催化剂相比,具有低成本、高效率和能够自修复等特点,已经用于许多半导体薄膜 (如:Fe2O3、ZnO、WO3、TiO2、ZnFe2O4等)的表面修饰,提高半导体光电化学性能。因此,利用Co-Pi助催化剂对BFO薄膜光电极进行表面修饰,有望降低BFO薄膜光电极的起始过电势,提高表面化学反应活性,从而大大提高BFO薄膜光电极的光电化学性能。
发明内容
本发明的目的是提供一种磷酸钴(Co-Pi)改性BiFeO3薄膜光电极及其制备方法。本发明通过负载磷酸钴助催化剂的方式可以有效降低BFO薄膜光电极的反应过电势,提高表面反应活性,在一定程度上解决目前BFO薄膜光电极存在的光生载流子迁移率较差以及载流子复合率高等问题,从而大幅提高BFO薄膜光电极的光电化学性能。
本发明的Co-Pi助催化剂改性BFO薄膜光电极,是在溶胶凝胶法制备的BFO薄膜表面沉积一层Co-Pi助催化剂,其中,BFO薄膜是由颗粒尺寸约100nm的纳米颗粒堆叠而成,而沉积的Co-Pi助催化剂呈絮状结构完全覆盖在BFO薄膜表面,表现出良好的光电化学性能。
本发明提供了一种磷酸钴(Co-Pi)改性BiFeO3薄膜光电极的制备方法,其特征在于,是通过光辅助电化学沉积法在溶胶凝胶法制备的BFO薄膜表面上沉积负载一层Co-Pi助催化剂,具体技术方案如下:
(1)将一定量(4~10mmol)的五水硝酸铋溶于10~30ml乙二醇,超声10分钟,然后加入5~15ml冰醋酸继续超声10分钟,随后加入与五水硝酸铋相同摩尔量的九水硝酸铁,超声10分钟,最后在溶液中加入适量(0.5~1.5g)的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO,商业名称P123)作为模板剂,超声30分钟后放在室温下陈化24小时,获得下一步制备BFO薄膜用的前驱体溶胶;
(2)将上述配制的前驱体溶胶通过匀胶机在一定的转速下均匀旋涂在清洗后的FTO导电玻璃表面,旋转速度为1000~2000r/min,旋涂时间为40s~60s,然后在150度热台上烘干,随后将烘干后样品放入马弗炉内煅烧,煅烧温度为500度~600度,煅烧时间为30~60分钟,自然冷却到室温后,即可制备得到BFO薄膜;
(3)将步骤(2)制备的BFO薄膜作为工作电极浸渍在含0.5mM硝酸钴的磷酸二氢钾电解质溶液(浓度为0.1M)中,电解液pH用NaOH调节为7,采用三电极体系在300W氙灯光源照射下进行光辅助电化学沉积,其中铂丝为对电极,Ag/AgCl为参比电极,BFO薄膜电极为工作电极,沉积电压为0.5~1.5V(vs.Ag/AgCl),沉积时间为0.5~2小时,沉积结束后用去离子水冲洗2~3遍,自然干燥后制备获得了Co-Pi改性BFO薄膜光电极。
本发明具有的优点和积极效果是:
本发明提供的Co-Pi助催化剂改性BFO薄膜光电极的制备方法简单易行,Co-Pi助催化剂的沉积量可以通过沉积时间进行调控,便于BFO光电极的结构调制和光电化学性能的调控;相对于BFO薄膜光电极而言,Co-Pi助催化剂改性BFO薄膜光电极表现出了更好的光电化学性能,可以有效促进BFO薄膜光电极在光电化学领域的应用。
附图说明
图1是FTO玻璃、实施例1所制备的BFO以及Co-Pi/BFO样品的XRD图谱;
图2是实施例1所制备的(a)BFO,(b)Co-Pi/BFO薄膜光电极的SEM图,以及Co-Pi/BFO 薄膜光电极对应的(c)Co元素和(d)P元素面扫描分布图;
图3是实施例1所制备的Co-Pi/BFO薄膜光电极的(a)Co 2p和(b)P 2p的XPS图;
图4是实施例1所制备的BFO薄膜光电极、Co-Pi/BFO薄膜光电极(样品Co-Pi/BFO-2),实施例2所制备的Co-Pi/BFO薄膜光电极(样品Co-Pi/BFO-1)以及实施例3所制备的 Co-Pi/BFO薄膜光电极(样品Co-Pi/BFO-0.5)在300W氙灯照射下在0.5M Na2SO4溶液中测得的瞬态光电流响应。
具体实施方式
下面通过具体的实施例对本发明作进一步的详细描述,以下实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1:
称取6mmol的五水硝酸铋溶于20ml乙二醇,超声10分钟后加入10ml冰醋酸进行脱水并继续超声10分钟,随后加入6mmol的九水硝酸铁,超声10分钟,最后在溶液中加入 1.0g的P123作为模板剂,超声30分钟后置于室温下陈化24h,获得下一步制备BFO薄膜光电极的前驱体溶胶;将上述配制的前驱体溶胶通过匀胶机在1500r/min转速下均匀旋涂在清洗后的FTO导电玻璃表面,旋涂时间为40s,然后在150度热台上烘干,随后将烘干后样品放入马弗炉内550度下煅烧,煅烧时间为30分钟,自然冷却到室温后,即可制备得到BFO 薄膜;将上述制备的BFO薄膜浸渍在含0.5mM硝酸钴的磷酸二氢钾电解质溶液(浓度为0.1 M)中,电解液pH值用NaOH调节为7,采用三电极体系在300W氙灯光源照射下进行光辅助电化学沉积,其中铂丝为对电极,Ag/AgCl为参比电极,BFO薄膜电极为工作电极,沉积电压为1.0V(vs.Ag/AgCl),沉积时间为2小时,沉积结束后用去离子水冲洗3遍,自然干燥后制备获得了Co-Pi改性BFO薄膜光电极(样品名称缩写为:Co-Pi/BFO-2)。
将上述制备获得的BFO和Co-Pi/BFO薄膜作为光阳极,与铂丝对电极、Ag/AgCl参比电极以及电解液为0.5mol/L硫酸钠溶液所构建的三电极体系电化学反应槽,在300W氙灯照射下进行斩波光电流响应测试。
实施例2:
称取5mmol的五水硝酸铋溶于15ml乙二醇,超声10分钟后加入10ml冰醋酸进行脱水并继续超声10分钟,随后加入5mmol的九水硝酸铁,超声10分钟,最后在溶液中加入 0.8g的P123作为模板剂,超声30分钟后置于室温下陈化24h,获得下一步制备BFO薄膜光电极的前驱体溶胶;将上述配制的前驱体溶胶通过匀胶机在1500r/min转速下均匀旋涂在清洗后的FTO导电玻璃表面,旋涂时间为40s,然后在150度热台上烘干,随后将烘干后样品放入马弗炉内550度下煅烧,煅烧时间为30分钟,自然冷却到室温后,即可制备得到BFO 薄膜;将上述制备的BFO薄膜浸渍在含0.5mM硝酸钴的磷酸二氢钾电解质溶液(浓度为0.1 M)中,电解液pH值用NaOH调节为7,采用三电极体系在300W氙灯光源照射下进行光辅助电化学沉积,其中铂丝为对电极,Ag/AgCl为参比电极,BFO薄膜电极为工作电极,沉积电压为1.0V(vs.Ag/AgCl),沉积时间为1小时,沉积结束后用去离子水冲洗3遍,自然干燥后制备获得了Co-Pi改性BFO薄膜光电极(样品名称缩写为:Co-Pi/BFO-1);在相同测试条件下,光电流测试的具体实施过程如同实施例1。
实施例3:
称取10mmol的五水硝酸铋溶于30ml乙二醇,超声10分钟后加入10ml冰醋酸进行脱水并继续超声10分钟,随后加入10mmol的九水硝酸铁,超声10分钟,最后在溶液中加入1.5g的P123作为模板剂,超声30分钟后置于室温下陈化24h,获得下一步制备BFO薄膜光电极的前驱体溶胶;将上述配制的前驱体溶胶通过匀胶机在1500r/min转速下均匀旋涂在清洗后的FTO导电玻璃表面,旋涂时间为40s,然后在150度热台上烘干,随后将烘干后样品放入马弗炉内550度下煅烧,煅烧时间为30分钟,自然冷却到室温后,即可制备得到BFO 薄膜;将上述制备的BFO薄膜浸渍在含0.5mM硝酸钴的磷酸二氢钾电解质溶液(浓度为0.1 M)中,电解液pH值用NaOH调节为7,采用三电极体系在300W氙灯光源照射下进行光辅助电化学沉积,其中铂丝为对电极,Ag/AgCl为参比电极,BFO薄膜电极为工作电极,沉积电压为1.0V(vs.Ag/AgCl),沉积时间为0.5小时,沉积结束后用去离子水冲洗3遍,自然干燥后制备获得了Co-Pi改性BFO薄膜光电极(样品名称缩写为:Co-Pi/BFO-0.5);在相同测试条件下,光电流测试的具体实施过程如同实施例1。
图1为FTO导电玻璃、实施例1所制备的BFO薄膜光电极和Co-Pi/BFO薄膜光电极的XRD谱图,可以看出Co-Pi改性BFO薄膜的XRD谱图与纯BFO薄膜基本保持一致,均为菱形晶系的BiFeO3晶相(JCPDS No.36-1415);而且也未发现Co-Pi的衍射峰,这很可能是因为Co-Pi为非晶态结构。
图2为实施例1所制备的BFO薄膜光电极和Co-Pi/BFO薄膜光电极的SEM图,可以观察到BFO薄膜是由颗粒尺寸约为100nm的纳米颗粒堆叠而成,而Co-Pi/BFO薄膜样品则具有不一样的表面形貌,有一层絮状Co-Pi物质在BFO薄膜表面完全覆盖,这种絮状物质是由非晶态Co-Pi膜层所造成的;而样品Co-Pi/BFO薄膜光电极相应的Co元素和P元素面扫描测试结果则清晰地证实了Co和P元素在薄膜表面的均匀分布,说明Co-Pi助催化剂在BFO薄膜表面的良好负载。
图3为实施例1所制备的样品Co-Pi/BFO的Co元素和P元素的高分辨X射线光电子能谱(XPS)谱图,可以看出位于781.58和797.38eV结合能附近位置分别对应着Co 3p3/2和 Co3p1/2特征峰,代表的是典型的Co2+和Co3+价态,表明Co元素是以Co2+和Co3+两种价态存在于Co-Pi助催化剂膜层;而P 2p的结合能约133.2eV,是P在磷酸根中的特征峰,证明了 P是以磷酸根离子(PO4 3-)存在于Co-Pi助催化剂膜层;上述XPS测试结果进一步证实了Co-Pi 助催化剂在BFO膜层表面上的沉积。
图4为实施例1所制备的BFO薄膜光电极和Co-Pi/BFO薄膜(样品Co-Pi/BFO-2)光电极、实施例2所制备的Co-Pi/BFO薄膜(样品Co-Pi/BFO-1)光电极以及实施例3所制备的 Co-Pi/BFO薄膜(样品Co-Pi/BFO-0.5)光电极在光照条件下的斩波光电流响应谱图,可以看出经过Co-Pi助催化剂改性后,BFO薄膜光电极的光电流大小显著增加,而且随着Co-Pi光辅助电化学沉积时间的增加,Co-Pi/BFO薄膜光电极的光电流大小也相应增大,表明Co-Pi 助催化剂在BFO薄膜光电极表面沉积后,能够促进BFO薄膜光生载流子的迁移和分离效率,从而大大改善了BFO薄膜光电极的光电化学性能。

Claims (5)

1.一种磷酸钴(Co-Pi)改性BiFeO3(BFO)薄膜光电极,其特征在于:BFO薄膜是由颗粒尺寸约100nm的纳米颗粒堆叠而成,而Co-Pi助催化剂呈絮状结构完全覆盖在BFO薄膜表面。
2.一种磷酸钴(Co-Pi)改性BFO薄膜光电极的制备方法,其特征在于:通过光辅助电化学沉积法在溶胶凝胶法制备的BFO薄膜表面上沉积负载一层Co-Pi助催化剂,具体包括如下步骤:
(1)将一定量的五水硝酸铋溶于一定体积的乙二醇,超声10分钟,然后加入适量冰醋酸继续超声10分钟,随后加入与五水硝酸铋相同摩尔量的九水硝酸铁,超声10分钟,最后在溶液中加入适量的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO,商业名称P123)作为模板剂,超声30分钟后放在室温下陈化24小时,获得下一步制备BFO薄膜用的前驱体溶胶;
(2)将上述步骤(1)配制的前驱体溶胶通过匀胶机在一定的转速和一定旋涂时间下均匀旋涂在清洗后的FTO导电玻璃表面,然后在150度热台上烘干,随后将烘干后样品放入马弗炉内在一定温度下煅烧一段时间,自然冷却到室温后,即可制备得到BFO薄膜;
(3)将步骤(2)制备的BFO薄膜浸渍在含0.5mM硝酸钴的磷酸二氢钾电解质溶液(浓度为0.1M)中,电解液pH用NaOH调节为7,采用三电极体系在300W氙灯光源照射下在一定沉积电压下进行光辅助电化学沉积一段时间,其中铂丝为对电极,Ag/AgCl为参比电极,BFO薄膜电极为工作电极,沉积结束后用去离子水冲洗2~3遍,自然干燥后制备获得了Co-Pi改性BFO薄膜光电极。
3.根据权利要求2所述的磷酸钴改性BFO薄膜光电极的制备方法,其特征在于:步骤(1)中五水硝酸铋加入量为4~10mmol,溶剂乙二醇为10~30ml,冰醋酸加入量为5~15ml,模板剂P123加入量为0.5~1.5g。
4.根据权利要求2所述的磷酸钴改性BFO薄膜光电极的制备方法,其特征在于:步骤(2)中匀胶机转速为1000~2000r/min,旋涂时间为40~60s,煅烧温度为500~600度,煅烧时间为30~60分钟。
5.根据权利要求2所述的磷酸钴改性BFO薄膜光电极的制备方法,其特征在于:步骤(3)中电化学沉积电压为0.5~1.5V(vs.Ag/AgCl),沉积时间为0.5~2小时。
CN201710255042.3A 2017-04-14 2017-04-14 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法 Active CN106967979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710255042.3A CN106967979B (zh) 2017-04-14 2017-04-14 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710255042.3A CN106967979B (zh) 2017-04-14 2017-04-14 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法

Publications (2)

Publication Number Publication Date
CN106967979A CN106967979A (zh) 2017-07-21
CN106967979B true CN106967979B (zh) 2019-04-09

Family

ID=59332906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710255042.3A Active CN106967979B (zh) 2017-04-14 2017-04-14 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法

Country Status (1)

Country Link
CN (1) CN106967979B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694589B (zh) * 2017-07-31 2020-04-28 天津城建大学 一种用于光电催化产氢的薄膜复合材料的制备方法
CN110911623B (zh) * 2019-11-06 2021-09-24 电子科技大学 一种锂硫电池隔膜用铁酸铋@二氧化钛复合材料及制备方法
CN110923747A (zh) * 2019-12-09 2020-03-27 中国石油大学(华东) 一种铁酸铋光催化薄膜电沉积的制备方法
CN113308702B (zh) * 2020-10-23 2022-03-11 台州学院 一种用于co2还原制甲酸的光阴极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073064A (zh) * 2013-01-25 2013-05-01 陕西科技大学 溶胶凝胶法制备Gd和Co共掺杂的高剩余极化强度的BiFeO3薄膜的方法
CN103951410A (zh) * 2014-04-30 2014-07-30 山东女子学院 一种BiFeO3薄膜的制备方法
CN103966623A (zh) * 2013-02-01 2014-08-06 南京大学 一种Ta3N5光阳极及制备方法和应用
CN104876279A (zh) * 2015-05-18 2015-09-02 新疆大学 一种制备Co掺杂BiFeO3的方法
CN104988533A (zh) * 2015-06-26 2015-10-21 湖北大学 TiO2/BiVO4光阳极材料及其制备方法
CN105251522A (zh) * 2015-11-13 2016-01-20 福州大学 同时负载双助催化剂的复合可见光光催化剂及其应用
CN105803476A (zh) * 2016-03-15 2016-07-27 西南大学 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073064A (zh) * 2013-01-25 2013-05-01 陕西科技大学 溶胶凝胶法制备Gd和Co共掺杂的高剩余极化强度的BiFeO3薄膜的方法
CN103966623A (zh) * 2013-02-01 2014-08-06 南京大学 一种Ta3N5光阳极及制备方法和应用
CN103951410A (zh) * 2014-04-30 2014-07-30 山东女子学院 一种BiFeO3薄膜的制备方法
CN104876279A (zh) * 2015-05-18 2015-09-02 新疆大学 一种制备Co掺杂BiFeO3的方法
CN104988533A (zh) * 2015-06-26 2015-10-21 湖北大学 TiO2/BiVO4光阳极材料及其制备方法
CN105251522A (zh) * 2015-11-13 2016-01-20 福州大学 同时负载双助催化剂的复合可见光光催化剂及其应用
CN105803476A (zh) * 2016-03-15 2016-07-27 西南大学 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BiFeO3薄膜光催化剂的制备及其掺杂改性的研究;荣南楠;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑(月刊)》;20170315(第03期);第3-5、15、25、41页
Efficient Water Splitting via a Heteroepitaxial BiVO4 Photoelectrode Decorated with Co-Pi Catalysts;Min Zhou et al.;《ChemSusChem》;20120730;第5卷(第8期);第1420-1425页

Also Published As

Publication number Publication date
CN106967979A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
Baek et al. BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell
CN106967979B (zh) 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法
CN105040025B (zh) 双金属氢氧化物复合多孔钒酸铋光电极及其制备方法
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
Song et al. Enhanced photoelectrochemical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates
CN108796532B (zh) 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用
Chandiran et al. Quantum-confined ZnO nanoshell photoanodes for mesoscopic solar cells
CN105803476A (zh) 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用
CN103400878B (zh) 一种氧化锌纳米铅笔阵列电极及其制备方法和应用
CN109569630A (zh) 一种负载镍钴水滑石纳米粒子的钒酸铋复合材料制备及在光电水氧化中的应用
CN110042407B (zh) 磷酸钴-聚多巴胺-钒酸铋三元复合光电极的制备方法及应用
CN105780087B (zh) 电氧化合成一维纳米氧化物结构的制备方法
Ding et al. Substrate–electrode interface engineering by an electron-transport layer in hematite photoanode
CN108579765A (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
CN109589993A (zh) 电化学改性的钒酸铋-硫化钼-四氧化三钴催化电极及其制备方法和应用
CN110227478A (zh) 通过旋涂煅烧制备钴氧化物/钒酸铋复合材料的方法
CN107020103B (zh) 一种氧化铁-硫化钼-氧化亚铜光催化薄膜及其制备方法和应用
CN102534718B (zh) 一种制备PbO2修饰TiO2纳米管电极的方法
CN113293404B (zh) 一种异质结光阳极材料及其制备方法和应用
Shi et al. BiOI/WO 3 photoanode with enhanced photoelectrochemical water splitting activity
CN111564325A (zh) 一种复合型二氧化钛介孔薄膜电极材料及其制备方法
CN107020140A (zh) 一种氧化铁‑硫化钼‑硫化镉可见光催化薄膜及其制备方法和应用
CN110176542A (zh) 钙钛矿电池用有机-无机复合空穴传输薄膜及其制备方法
CN110004456A (zh) 一种集成碳基平面钙钛矿太阳电池的光电催化全解水装置
CN109865525A (zh) 一种CoPi/Ag/钒酸铋复合光电阳极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant