CN111841603A - 一种用于光电催化的g-C3N4复合薄膜材料的制备方法 - Google Patents

一种用于光电催化的g-C3N4复合薄膜材料的制备方法 Download PDF

Info

Publication number
CN111841603A
CN111841603A CN202010650087.2A CN202010650087A CN111841603A CN 111841603 A CN111841603 A CN 111841603A CN 202010650087 A CN202010650087 A CN 202010650087A CN 111841603 A CN111841603 A CN 111841603A
Authority
CN
China
Prior art keywords
solution
preparation
composite film
film material
photoelectrocatalysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010650087.2A
Other languages
English (en)
Inventor
刘志锋
钱红霞
贾小丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN202010650087.2A priority Critical patent/CN111841603A/zh
Publication of CN111841603A publication Critical patent/CN111841603A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种用于光电催化的g‑C3N4复合薄膜材料的制备方法,该方法首先采用水热法和热蒸气液聚法制备g‑C3N4薄膜;然后采用连续的离子层吸附法(SILAR)将Bi2S3纳米颗粒负载到g‑C3N4薄膜上;最后利用光电化学沉积法将Co‑Pi纳米颗粒沉积到g‑C3N4/Bi2S3上最终得到g‑C3N4/Bi2S3/Co‑Pi薄膜复合材料。所制备的复合薄膜材料提升了g‑C3N4的可见光吸收,促进了光电催化性能的提高;制备方法简单易操作,整体成本低廉。

Description

一种用于光电催化的g-C3N4复合薄膜材料的制备方法
技术领域
本发明属于光电催化薄膜材料制备技术领域,具体为一种用于光电催化的g-C3N4复合薄膜料的制备方法。
背景技术
自1972年日本学者Fujishima和Honda报告了TiO2光电极用作光电催化材料以来,基于半导体光电极的光电催化(PEC)是将太阳能直接转化为可以储存的化学能的关键技术并有望缓解不断增长的能源危机和相关的环境问题,引起了全世界的研究兴趣。TiO2由于其优异的稳定性,可用性,无毒性和低价格的特点,TiO2已经成为传统的光电阳极材料用于光电催化。然而,由于其较宽的带隙3.2eV,使其仅吸收占太阳光百分之四的紫外光,导致太阳光的利用效率较低。因此,吸收可见光的新型光电极材料引起人们的广泛研究兴趣,特别是价格低廉的非金属光电极材料。
与传统的二氧化钛(TiO2)光电催化剂相比(带隙(Eg):3.2eV),g-C3N4具有更窄的带隙(2.7eV)和更宽的光吸收区域。此外,g-C3N4也有具有无毒,性质稳定,耐酸碱腐蚀,成本低的优点。使得人们对其的研究兴趣日益增加。具有高比表面积的g-C3N4纳米片是通过化学剥落在危险试剂中制备的。但是,量子约束效应(QCE)的减小和共轭长度会导致2D g-C3N4纳米片的Eg大大增加且易于团聚,这限制了它们的应用。一维(1D)的g-C3N4纳米管结构具有较大的比表面积,避免了结块,并且可以提高载流子的迁移率。较宽的可见光吸收范围和较好的光生电子-空穴对分离是衡量半导体光电催化性能好的关键性因素。而Bi2S3等硫化物半导体禁带宽度普遍较窄以至于可以大幅度提高可见光响应范围,Co-Pi等助催化剂在分离光生电子-空穴对方面显示出了优异的性能。因此将Bi2S3和Co-Pi共同负载在g-C3N4薄膜表面,以提高g-C3N4薄膜复合材料的光电催化性能。
发明内容
为了解决2D g-C3N4纳米片在光电催化方面的上述问题,本发明的目的在于提供一种光电催化复合薄膜材料的制备方法,能够提升g-C3N4的光电催化性能。
为了达到上述目的,本发明提供光电催化的g-C3N4复合薄膜材料的制备方法包括按顺序进行的下列步骤:
(1)将双氰胺溶于去离子水中,制备g-C3N4前驱体反应液,在一定温度下水热反应一定时间后,将反应后的样品进行干燥处理。取适量的样品装满到坩埚或者方舟中,将FTO导电玻璃以导电面朝下的方式盖压在坩埚或者方舟上,转移到马弗炉中处理,制得附在FTO导电玻璃上的棒状结构的g-C3N4薄膜。
(2)将五水硝酸铋溶于乙二醇中,制备硝酸铋溶液,将九水硫化钠溶于去离子水中,制备硫化钠溶液作为连续离子层吸附(SILAR)的反应液。将制得的生长了一维g-C3N4纳米管薄膜的玻璃经过数次的SILAR循环,制得了g-C3N4/Bi2S3薄膜。
(3)将制得的g-C3N4/Bi2S3复合薄膜通过光电化学沉积法沉积Co-Pi纳米颗粒,将步骤(2)中制得的g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在一定沉积条件下制得g-C3N4/Bi2S3/Co-Pi 光电催化复合薄膜材料。
在步骤(1)中,所述的双氰胺的溶度为0.600~1.200M,水热反应的温度和时间分别为175~185℃和2~6h,冷冻机中干燥18~24h,取5-8g粉末装满到坩埚或者方舟中热处理温度为500~600℃。
在步骤(2)中,所述的硝酸铋和硫化钠溶度分别为0.040~0.060M和0.080~0.120M,SILAR循环次数为3~5次。
在步骤(3)中,所述的沉积条件是光源为100mW·cm-2的氙灯,应用电压为 0.35-0.45V,沉积时间为60~600s。
本发明提供的一种用于光电催化的g-C3N4复合薄膜料的制备方法具有如下有益效果:
(1)本发明能够有效加强可见光吸收,促进光生电子-空穴对的分离。
(2)本发明的制备方法简单易操作,整体成本低廉。
(3)本发明所制得的g-C3N4/Bi2S3/Co-Pi复合薄膜材料可见光吸收优异,光电催化性能较高。
附图说明
图1为实施例中所得的g-C3N4/Bi2S3/Co-Pi薄膜复合材料的线性扫描伏安图。
具体实施方式
下面的实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
一种用于光电催化的g-C3N4复合薄膜材料的制备方法,包括如下步骤:
(1)在恒定搅拌下将8g双氰胺添加到100mL水中,然后在180℃下通过水热反应保持4h。将所制备的溶液冷却至室温,离心得到白色粉末,在冷冻机中干燥20 h,取6g粉末填装到60×90mm的方舟中,将FTO导电玻璃以导电面朝下的方式盖压在方舟上,转移到马弗炉中处理,以2℃/min的升温速率加热到600℃后保温4h,将其冷却至室温。即可得到附在FTO导电玻璃上的棒状结构的g-C3N4薄膜。
(2)将0.48g Bi(NO3)3·5H2O溶解到20mL的乙二醇中,将0.48g的Na2S·9H2O 溶解到20mL的的去离子水中,分别磁力搅拌两种溶液0.5h。然后将步骤一制得的样品浸入到五水硝酸铋乙二醇溶液中30s,然后用去离子水冲洗。此后,将基板浸入九水硫化钠水溶液中30s,然后再用去离子水洗涤。SILAR循环3次,80℃烘干得到g-C3N4/Bi2S3薄膜。
(3)称取2.8g的K2HPO4和1.1g的KH2PO4加到100ml的去离子水中,pH为7,然后加入0.03g Co(NO3)2磁力搅拌充分溶解后作为Co-Pi生长溶液备用。 g-C3N4/Bi2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在100mW·cm-2的氙灯照射下,应用0.4V的电压沉积600s,最后取出后经过去离子水清洗,80℃烘干得到g-C3N4/Bi2S3/Co-Pi薄膜。
实施例2
一种用于光电催化的g-C3N4复合薄膜材料的制备方法,包括如下步骤:
(1)在恒定搅拌下将5g双氰胺添加到100mL水中,然后在180℃下通过水热反应保持4h。将所制备的溶液冷却至室温,离心得到白色粉末,在冷冻机中干燥24 h,取3g粉末填装到5ml坩埚中,将FTO导电玻璃以导电面朝下的方式盖压在坩埚上,转移到马弗炉中处理,以2℃/min的升温速率加热到550℃后保温4h,将其冷却至室温。即可得到附在FTO导电玻璃上的棒状结构的g-C3N4薄膜。
(2)将0.48g Bi(NO3)3·5H2O溶解到20mL的乙二醇中,将0.48g的Na2S·9H2O 溶解到20mL的的去离子水中,分别磁力搅拌两种溶液0.5h。然后将步骤一制得的样品浸入到五水硝酸铋乙二醇溶液中30s,然后用去离子水冲洗。此后,将基板浸入九水硫化钠水溶液中30s,然后再用去离子水洗涤。SILAR循环5次,80℃烘干得到g-C3N4/Bi2S3薄膜。
(3)称取1.4g的K2HPO4和0.55g的KH2PO4加到50ml的去离子水中,pH为 7,然后加入0.06g Co(NO3)2磁力搅拌充分溶解后作为Co-Pi生长溶液备用。 g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在100mW·cm-2的氙灯照射下,应用0.45V的电压沉积300s,最后取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3/Co-Pi薄膜。
实施例3
一种用于光电催化的g-C3N4复合薄膜材料的制备方法,包括如下步骤:
(1)在恒定搅拌下将6g双氰胺添加到100mL水中,然后在180℃下通过水热反应保持4h。将所制备的溶液冷却至室温,离心得到白色粉末,在冷冻机中干燥18 h,取4g粉末填装到5ml坩埚中,将FTO导电玻璃以导电面朝下的方式盖压在坩埚上,转移到马弗炉中处理,以2℃/min的升温速率加热到600℃后保温4h,将其冷却至室温。即可得到附在FTO导电玻璃上的棒状结构的g-C3N4薄膜。
(2)将0.48g Bi(NO3)3·5H2O溶解到20mL的乙二醇中,将0.48g的Na2S·9H2O 溶解到20mL的的去离子水中,分别磁力搅拌两种溶液0.5h。然后将步骤一制得的样品浸入到五水硝酸铋乙二醇溶液中30s,然后用去离子水冲洗。此后,将基板浸入九水硫化钠水溶液中30s,然后再用去离子水洗涤。SILAR循环3次,80℃烘干得到g-C3N4/Bi2S3薄膜。
(3)称取1.4g的K2HPO4和0.55g的KH2PO4加到50ml的去离子水中,pH为 7,然后加入0.06g Co(NO3)2磁力搅拌充分溶解后作为Co-Pi生长溶液备用。 g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在100mW·cm-2的氙灯照射下,应用0.40V的电压沉积500s,最后取出后经过去离子水清洗,80℃烘干得到g-C3N4/Sb2S3/Co-Pi薄膜。
以上通过实施例对本发明进行了详细说明,但所述内容仅为本发明的示例性实施例,不能被认为用于限定本发明的实施范围。本发明的保护范围由权利要求书限定。凡利用本发明所述的技术方案,或本领域的技术人员在本发明技术方案的启发下,在本发明的实质和保护范围内,设计出类似的技术方案而达到上述技术效果的,或者对申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖保护范围之内。应当注意,为了清楚的进行表述,本发明的说明中省略了部分与本发明的保护范围无直接明显的关联但本领域技术人员已知的部件和处理的表述。

Claims (4)

1.一种用于光电催化的g-C3N4复合薄膜材料的制备方法,其特征在于:所述的制备方法包括按顺序进行的下列步骤:
(1)将双氰胺溶于去离子水中,制备g-C3N4前驱体反应液,在一定温度下水热反应一定时间后,将反应后的样品进行干燥处理。取适量的样品装满到坩埚或者方舟中,将FTO导电玻璃以导电面朝下的方式盖压在坩埚或者方舟上,转移到马弗炉中处理,制得附在FTO导电玻璃上的棒状结构的g-C3N4薄膜。
(2)将五水硝酸铋溶于乙二醇中,制备硝酸铋溶液,将九水硫化钠溶于去离子水中,制备硫化钠溶液作为连续离子层吸附(SILAR)的反应液。将制得的生长了一维g-C3N4纳米管薄膜的玻璃经过数次的SILAR循环,制得了g-C3N4/Bi2S3薄膜。
(3)将制得的g-C3N4/Bi2S3复合薄膜通过光电化学沉积法沉积Co-Pi纳米颗粒,将步骤(2)中制得的g-C3N4/Sb2S3薄膜作为工作电极,Ag/AgCl作为参比电极,Pt片作为对电极,电解液为Co-Pi生长溶液,在一定沉积条件下制得g-C3N4/Bi2S3/Co-Pi光电催化复合薄膜材料。
2.根据权利要求1所述的用于光电催化的g-C3N4复合薄膜材料的制备方法,其特征在于:在步骤(1)中,所述的双氰胺的溶度为0.600~1.200M,水热反应的温度和时间分别为175~185℃和2~6h,冷冻机中干燥18~24h,取5~8g粉末装满到坩埚或者方舟中热处理温度为500~600℃。
3.根据权利要求1所述的用于光电催化的g-C3N4复合薄膜材料的制备方法,其特征在于:在步骤(2)中,所述的硝酸铋和硫化钠溶度分别为0.040~0.060M和0.080~0.120M,将样品浸入到五水硝酸铋乙二醇溶液中30s,以将Bi3+离子吸附到基板表面上,然后用去离子水冲洗基板以去除过量的Bi3+。此后,将基板浸入九水硫化钠水溶液中30s,以使S2-与Bi3+反应,然后再用去离子水洗涤。上述的步骤称为一个SILAR循环。循环次数为3~5次。
4.根据权利要求1所述的用于光电催化的g-C3N4复合薄膜材料的制备方法,其特征在于:在步骤(3)中,所述的Co-Pi生长溶液是Co(NO3)2溶液与磷酸钾溶液以浓度比1∶200的比例混合,其中磷酸钾溶液的制备工艺参数为:K2HPO4和KH2PO4溶液以体积比为8∶5混合,即为磷酸钾溶液,此时磷酸钾溶液的pH为7。沉积条件是光源为100mW·cm-2的氙灯,应用电压为0.35-0.45V,沉积时间为60~600s。
CN202010650087.2A 2020-07-08 2020-07-08 一种用于光电催化的g-C3N4复合薄膜材料的制备方法 Pending CN111841603A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010650087.2A CN111841603A (zh) 2020-07-08 2020-07-08 一种用于光电催化的g-C3N4复合薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010650087.2A CN111841603A (zh) 2020-07-08 2020-07-08 一种用于光电催化的g-C3N4复合薄膜材料的制备方法

Publications (1)

Publication Number Publication Date
CN111841603A true CN111841603A (zh) 2020-10-30

Family

ID=73152602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010650087.2A Pending CN111841603A (zh) 2020-07-08 2020-07-08 一种用于光电催化的g-C3N4复合薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN111841603A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376235A (zh) * 2021-06-30 2021-09-10 江苏大学 一种四环素光电化学适配体传感器的制备方法及其检测装置
CN113791129A (zh) * 2021-08-23 2021-12-14 广州大学 铜离子电化学发光检测电极、检测器及其制备方法与应用
CN115254150A (zh) * 2022-06-28 2022-11-01 天津城建大学 一种用于光电催化的Bi2WO6/BiOBr-Ag2O复合薄膜材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694589A (zh) * 2017-07-31 2018-02-16 天津城建大学 一种用于光电催化产氢的薄膜复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694589A (zh) * 2017-07-31 2018-02-16 天津城建大学 一种用于光电催化产氢的薄膜复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NA TIAN等: "Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution", 《NANO ENERGY》 *
云斯宁主编: "《新型能源材料与器件》", 31 May 2019, 中国建筑工业出版社 *
李玉佩等: "零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能", 《材料导报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376235A (zh) * 2021-06-30 2021-09-10 江苏大学 一种四环素光电化学适配体传感器的制备方法及其检测装置
CN113791129A (zh) * 2021-08-23 2021-12-14 广州大学 铜离子电化学发光检测电极、检测器及其制备方法与应用
CN115254150A (zh) * 2022-06-28 2022-11-01 天津城建大学 一种用于光电催化的Bi2WO6/BiOBr-Ag2O复合薄膜材料的制备方法

Similar Documents

Publication Publication Date Title
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
CN111841603A (zh) 一种用于光电催化的g-C3N4复合薄膜材料的制备方法
CN108103525B (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN109913898B (zh) 一种WO3/CuWO4/NiFe LDH三元复合光电极薄膜的制备方法
CN110344029B (zh) 一种表面羟基化氧化铁薄膜光阳极材料的制备方法
Tang et al. Fabrication of MOFs’ derivatives assisted perovskite nanocrystal on TiO2 photoanode for photoelectrochemical glycerol oxidation with simultaneous hydrogen production
Yang et al. Engineered tungsten oxide-based photocatalysts for CO 2 reduction: Categories and roles
CN110252352B (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
Ma et al. Hydrothermal synthesis of WO 3/CoS 2 n–n heterojunction for Z-scheme photocatalytic H 2 evolution
Zheng et al. A visible-light active pn heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue
CN111774058A (zh) 一种异质结复合光催化剂及其制备方法和应用
CN108355688B (zh) 一种光电催化水分解用BiVO4/Ag3PO4薄膜的制备方法
CN111774057A (zh) 一种高性能异质结材料Fe2O3/CuO光电极薄膜及其制备方法和应用
CN107694589B (zh) 一种用于光电催化产氢的薄膜复合材料的制备方法
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
Peng et al. Recent progress on post-synthetic treatments of photoelectrodes for photoelectrochemical water splitting
CN110026207B (zh) CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
CN114768881A (zh) 一种Z型Bi4O5Br2/MIL-88B(Fe)异质结光催化剂的制备方法
CN111172559A (zh) 一种超薄水滑石基复合光电极及其光电分解水耦合有机物氧化反应的应用
Wang et al. Application of ZIF-67 based nitrogen-rich carbon frame with embedded Cu and Co bimetallic particles in QDSSCs
Waghmare et al. Zirconium oxide films: deposition techniques and their applications in dye-sensitized solar cells
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN111525142A (zh) 一种用于光催化燃料电池的CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极
CN109518213B (zh) 一种NiB助剂改性的钒酸铋纳米多孔薄膜电极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201030