CN107658433A - 氮掺杂镍钴氧纳米线阵列及其制备方法 - Google Patents

氮掺杂镍钴氧纳米线阵列及其制备方法 Download PDF

Info

Publication number
CN107658433A
CN107658433A CN201710249852.8A CN201710249852A CN107658433A CN 107658433 A CN107658433 A CN 107658433A CN 201710249852 A CN201710249852 A CN 201710249852A CN 107658433 A CN107658433 A CN 107658433A
Authority
CN
China
Prior art keywords
nano
wire array
nickel
nico
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710249852.8A
Other languages
English (en)
Inventor
郑鹏
曹金花
郭守武
刘毅
张利锋
原晓艳
王晓飞
霍京浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710249852.8A priority Critical patent/CN107658433A/zh
Publication of CN107658433A publication Critical patent/CN107658433A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

氮掺杂镍钴氧纳米线阵列及其制备方法,首先,在水热条件下,将硝酸钴、硝酸镍、氟化铵、尿素混合反应,于泡沫镍上生长镍钴氧前驱体纳米线阵列,其次,将镍钴氧前驱体纳米线阵列高温煅烧,合成NiCo2O4纳米线阵列,最后,将NiCo2O4纳米线阵列高温煅烧,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂,能够制备出生长在泡沫镍上的氮掺杂NiCo2O4纳米线阵列,提高NiCo2O4的导电率,从而提高其电池性能,具有操作简单、成本低廉、环保无污染的特点。

Description

氮掺杂镍钴氧纳米线阵列及其制备方法
技术领域
本发明涉及锂离子电池负极材料技术领域,特别涉及一种氮掺杂镍钴氧纳米线阵列及其制备方法。
背景技术
锂离子电池因其具有高能量密度和高输出电压,已经被广泛应用于便携式设备。为了满足动力汽车等大器件的储能需求,需要进一步提高其能量密度和比容量。多元金属氧化物具有这方面的潜力,因为多金属中心可以提供更多的氧化还原电位对,有利于提高电池容量。另外,当多元金属氧化物直接生长在泡沫镍上可以节约粘结剂和导电剂等材料,降低电池生产成本。
目前有多种方法制备NiCo2O4纳米线阵列,但是其锂电循环稳定性能差,经过几十个循环测试后,容量衰减严重。这是由于锂离子在多次嵌入脱出引起的应力积累导致结构被破坏,所以后期有效锂离子不能嵌入,从而出现容量减小现象。非金属掺杂能够缓解应力,改善循环稳定性,这种策略已经在其它材料上广泛应用,但是对于NiCo2O4没有报道。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种氮掺杂镍钴氧纳米线阵列及其制备方法,能够制备出生长在泡沫镍上的氮掺杂NiCo2O4纳米线阵列,提高NiCo2O4的导电率,从而提高其电池性能,具有操作简单、成本低廉、环保无污染的特点。
为了达到上述目的,本发明采取的技术方案为:
氮掺杂NiCo2O4纳米线阵列的制备方法,其步骤如下:
步骤一:在水热条件下,将硝酸钴、硝酸镍、氟化铵、尿素混合反应,于泡沫镍上生长镍钴氧前驱体纳米线阵列;
步骤二:将镍钴氧前驱体纳米线阵列在空气气氛下煅烧,合成NiCo2O4纳米线阵列;
步骤三:将NiCo2O4纳米线阵列在氨气气氛下煅烧,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂。
所述氮掺杂NiCo2O4纳米线阵列长度为4-6μm,直径为15-25nm,在100mAg-1电流密度下,放电比容量达到1100-1300mAh g-1
所述硝酸钴、硝酸镍、氟化铵、尿素的质量比为1:1:0.3:0.2。
所述步骤一水热温度为90-140℃,反应时间为8-10h。
所述步骤二煅烧温度为200-500℃,时间为3-5h。
所述步骤三煅烧温度为200-500℃,时间为1-3h。
本发明的有益效果为:
本发明采用尿素诱导生长镍钴氧前驱体纳米线阵列,再使其高温分解成为NiCo2O4纳米线,最后高温掺氮,利用本方法制备的氮掺杂NiCo2O4纳米线阵列可以显著提高NiCo2O4的电导率,从而提高其锂电性能,本发明制备方法具有可重复性强、成本低、对环境无污染的特点,易于规模化生产。
附图说明
图1为实施例一~四中制备的生长在泡沫镍上的氮掺杂NiCo2O4纳米线阵列的XRD图。其中,横坐标为角度;纵坐标为相对强度。
图2为实施例一~四中制备的生长在泡沫镍上的氮掺杂NiCo2O4纳米线阵列的SEM图。
图3为实施例一~四中制备的生长在泡沫镍上的氮掺杂NiCo2O4纳米线阵列的XPS氮精细谱图。
图4为实施例1中制备的生长在泡沫镍上的氮掺杂NiCo2O4纳米线阵列的充放电曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例一
步骤一:在90℃水热条件下,将0.5g硝酸钴、0.5g硝酸镍、0.15g氟化铵、0.1g尿素混合反应10h,于2g泡沫镍上生长镍钴氧前驱体纳米线阵列;
步骤二:将镍钴氧前驱体纳米线阵列在200℃、空气气氛下煅烧4h,合成NiCo2O4纳米线阵列;
步骤三:将NiCo2O4纳米线阵列在200℃、氨气气氛下煅烧3h,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂。
图4为实施例一中制备的泡沫镍上生长镍钴氧前驱体纳米线阵列的充放电曲线图图,由图4可知,在100mAg-1电流密度下,放电比容量达到1300mAh g-1
实施例二
步骤一:在110℃水热条件下,将0.3g硝酸钴、0.3g硝酸镍、0.09g氟化铵、0.06g尿素混合反应9h,于2g泡沫镍上生长镍钴氧前驱体纳米线阵列;
步骤二:将镍钴氧前驱体纳米线阵列在300℃、空气气氛下煅烧3h,合成NiCo2O4纳米线阵列;
步骤三:将NiCo2O4纳米线阵列在300℃、氨气气氛下煅烧2h,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂。
实施例三
步骤一:在120℃水热条件下,将0.4g硝酸钴、0.4g硝酸镍、0.12g氟化铵、0.08g尿素混合反应9.5h,于2g泡沫镍上生长镍钴氧前驱体纳米线阵列;
步骤二:将镍钴氧前驱体纳米线阵列在400℃、空气气氛下煅烧5h,合成NiCo2O4纳米线阵列;
步骤三:将NiCo2O4纳米线阵列在400℃、氨气气氛下煅烧1.5h,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂。
实施例四
步骤一:在140℃水热条件下,将0.3g硝酸钴、0.3g硝酸镍、0.09g氟化铵、0.06g尿素按照质量比1:1:0.3:0.2混合反应8h,于2g泡沫镍上生长镍钴氧前驱体纳米线阵列;
步骤二:将镍钴氧前驱体纳米线阵列在500℃、空气气氛下煅烧4.5h,合成NiCo2O4纳米线阵列;
步骤三:将NiCo2O4纳米线阵列在500℃、氨气气氛下煅烧1h,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂。
参见附图,图1为实施例一~四中制备的泡沫镍上生长镍钴氧前驱体纳米线阵列的XRD图。从图中看出镍的特征峰和NiCo2O4的特征峰。
图2为实施例一~四中制备的泡沫镍上生长镍钴氧前驱体纳米线阵列的SEM图。从图中可以看到尺寸均一的纳米线阵列。
图3为实施例一~四中制备的泡沫镍上生长镍钴氧前驱体纳米线阵列的XPS图,掺杂氮元素的精细谱。

Claims (6)

1.氮掺杂镍钴氧纳米线阵列,其特征在于,所述氮掺杂NiCo2O4纳米线阵列长度为4-6μm,直径为15-25nm,在100mAg-1电流密度下,放电比容量达到1100-1300mAh g-1
2.氮掺杂镍钴氧纳米线阵列的制备方法,其特征在于,步骤如下:
步骤一:在水热条件下,将硝酸钴、硝酸镍、氟化铵、尿素混合反应,于泡沫镍上生长镍钴氧前驱体纳米线阵列;
步骤二:将镍钴氧前驱体纳米线阵列在空气气氛下煅烧,合成NiCo2O4纳米线阵列;
步骤三:将NiCo2O4纳米线阵列在氨气气氛下煅烧,对生长在泡沫镍上的NiCo2O4纳米线阵列进行氮掺杂。
3.根据权利要求2所述的氮掺杂镍钴氧纳米线阵列的制备方法,其特征在于,所述硝酸钴、硝酸镍、氟化铵、尿素的质量比为1:1:0.3:0.2。
4.根据权利要求2所述的氮掺杂镍钴氧纳米线阵列的制备方法,其特征在于,所述步骤一水热温度为90-140℃,反应时间为8-10h。
5.根据权利要求2所述的氮掺杂镍钴氧纳米线阵列的制备方法,其特征在于,所述步骤二煅烧温度为200-500℃,时间为3-5h。
6.根据权利要求2所述的氮掺杂镍钴氧纳米线阵列的制备方法,其特征在于,所述步骤三煅烧温度为200-500℃,时间为1-3h。
CN201710249852.8A 2017-04-17 2017-04-17 氮掺杂镍钴氧纳米线阵列及其制备方法 Pending CN107658433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710249852.8A CN107658433A (zh) 2017-04-17 2017-04-17 氮掺杂镍钴氧纳米线阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710249852.8A CN107658433A (zh) 2017-04-17 2017-04-17 氮掺杂镍钴氧纳米线阵列及其制备方法

Publications (1)

Publication Number Publication Date
CN107658433A true CN107658433A (zh) 2018-02-02

Family

ID=61127530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710249852.8A Pending CN107658433A (zh) 2017-04-17 2017-04-17 氮掺杂镍钴氧纳米线阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN107658433A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928435A (zh) * 2019-04-22 2019-06-25 广东工业大学 一种三元钴酸盐体系纳米线状负极材料及其制备方法
CN110931769A (zh) * 2019-11-27 2020-03-27 上海纳米技术及应用国家工程研究中心有限公司 泡沫镍原位生长三元正极材料的制备方法及产品和应用
WO2021051896A1 (zh) * 2019-09-20 2021-03-25 中国科学院宁波材料技术与工程研究所 一种掺氮碳包裹四氧化三钴纳米线整体式催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377040A (zh) * 2014-11-19 2015-02-25 江苏合志锂硫电池技术有限公司 应用于电化学储能装置的电极及其制备方法
CN106531988A (zh) * 2016-10-21 2017-03-22 吉林大学 氮全掺杂的碳自包覆半导体金属氧化物与石墨烯复合电极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377040A (zh) * 2014-11-19 2015-02-25 江苏合志锂硫电池技术有限公司 应用于电化学储能装置的电极及其制备方法
CN106531988A (zh) * 2016-10-21 2017-03-22 吉林大学 氮全掺杂的碳自包覆半导体金属氧化物与石墨烯复合电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU-ZHI SU等: ""One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties"", 《ELECTROCHIMICA ACTA》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928435A (zh) * 2019-04-22 2019-06-25 广东工业大学 一种三元钴酸盐体系纳米线状负极材料及其制备方法
WO2021051896A1 (zh) * 2019-09-20 2021-03-25 中国科学院宁波材料技术与工程研究所 一种掺氮碳包裹四氧化三钴纳米线整体式催化剂及其制备方法
CN110931769A (zh) * 2019-11-27 2020-03-27 上海纳米技术及应用国家工程研究中心有限公司 泡沫镍原位生长三元正极材料的制备方法及产品和应用
CN110931769B (zh) * 2019-11-27 2022-09-02 上海纳米技术及应用国家工程研究中心有限公司 泡沫镍原位生长三元正极材料的制备方法及产品和应用

Similar Documents

Publication Publication Date Title
CN105609745B (zh) 一种硒化镍NiSe2/石墨烯钠离子电池复合负极材料及其制备方法与应用
CN103227324B (zh) 一种锂离子电池氧化铁负极材料的制备方法
CN103441241A (zh) 一种普鲁士蓝类配合物/碳复合材料的制备方法及应用
CN104617281A (zh) 一种钠离子电池锑/掺氮碳纳米片负极复合材料的制备方法
CN102956887A (zh) 一种纳米级磷酸锰锂正极材料的制备方法
CN106374099A (zh) 一种锂离子电池用柔性自支撑富锂锰基正极及其制备方法
CN105428622A (zh) 一种钠离子电池硫掺杂硒化钼负极复合材料及其制备方法
CN106876705A (zh) 一种原位合成碳/碳纳米管包覆磷酸铁锂复合材料的制备方法
CN102795666A (zh) 一种锂离子电池五氧化二钒纳米正极材料的制备方法
CN104201353A (zh) 钛系氧化物/碳纳米管的复合负极材料及其制备方法
CN108831755B (zh) 一种电容器电极多元复合材料的制备方法
CN107658433A (zh) 氮掺杂镍钴氧纳米线阵列及其制备方法
CN110957490A (zh) 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法
CN102760880A (zh) 一种高功率磷酸铁锂电池材料及其制备方法
CN107093717A (zh) 泡沫镍上生长碳包覆氧化钴纳米线阵列及其制备方法
CN104037393A (zh) 一种锡/石墨烯/碳纤维复合锂电池负极材料制备方法
Wei et al. Porous micro-spherical LiFePO 4/CNT nanocomposite for high-performance Li-ion battery cathode material
CN110921650B (zh) 二维超薄碳纳米片及大规模制备二维超薄碳纳米片的方法
CN106374086A (zh) 纳米钛酸锂‑石墨烯复合材料及其制备方法
He et al. Prussian blue analogue-derived cobalt sulfide nanoparticles embedded in N/S-codoped carbon frameworks as a high-performance anode material for sodium-ion batteries
CN107611378A (zh) 一种锌基电池用含氮复合材料及其制备方法
Alazmi Nanostructured CoFe2O4 and their nanohybrid with rGO as an efficient electrode for next-generation supercapacitor
CN103326040A (zh) 一种锂空气电池双功能氧电极催化剂
Chen et al. Fe3O4/C composites synthesized from Fe-based xerogels for anode materials of Li-ion batteries
CN108358188A (zh) 一种二次电池碳负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180202

WD01 Invention patent application deemed withdrawn after publication