CN107611144A - 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板 - Google Patents

一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板 Download PDF

Info

Publication number
CN107611144A
CN107611144A CN201710846716.7A CN201710846716A CN107611144A CN 107611144 A CN107611144 A CN 107611144A CN 201710846716 A CN201710846716 A CN 201710846716A CN 107611144 A CN107611144 A CN 107611144A
Authority
CN
China
Prior art keywords
sinx
layer
measured
forming gas
refraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710846716.7A
Other languages
English (en)
Other versions
CN107611144B (zh
Inventor
卢瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Technology Co Ltd
Priority to CN201710846716.7A priority Critical patent/CN107611144B/zh
Priority to US15/735,547 priority patent/US20200035718A1/en
Priority to PCT/CN2017/105830 priority patent/WO2019056417A1/zh
Publication of CN107611144A publication Critical patent/CN107611144A/zh
Application granted granted Critical
Publication of CN107611144B publication Critical patent/CN107611144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板,该方法包括下述步骤:S1、在基板上依次沉积低折射率的第一SiNx层、高折射率的第二SiNx层,其中,低折射率的范围为1.7~1.87,高折射率的范围为1.91~1.93,x≥1;S2、在第二SiNx层上沉积SiOy层,其中,SiOy层的折射率范围为1.4~1.5,y≥1。本发明提供的层间绝缘层具有良好的弹性和稳定性,并且承受的应力较小,不会破坏膜层,不会造成膜层破裂剥落,降低了对低温多晶硅的长距离精度的影响。

Description

一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板
技术领域
本发明涉及液晶显示技术领域,尤其涉及一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板。
背景技术
在低温多晶硅(LTPS)的化学气相沉积(CVD)制程中,ILD层(层间绝缘层)设计为SiN层和SiO层。其中,SiN层和SiO层的厚度均为300nm,现在使用的工艺如下:
(1)在完成前制程的玻璃上沉积600nm厚的ILD层:分为两步成膜,第一步沉积300nm的SIN层,第二步沉积300nm的SIO层,ILD层的总厚度为600nm;
(2)沉积完ILD层后,需对膜层进行植入离子的活化和氢化(RTA)处理,修补多晶硅的悬空键,而后经过曝光、湿蚀刻、光阻剥离过程,完成整个ILD制程;
(3)进行后续制程。
在此低温多晶硅的工艺中,在制备ILD层时,先沉积300nm的SIN层,后沉积300nm的SIO层,并且,SIN层的折射率(N值)在1.90左右,SIO的N值在1.45左右,这样设计存在以下问题:
(1)稳定性问题:N值反映膜层的组成和致密性,进一步反映了膜层的应力。如果N值较高,则相应膜层的补氢能力较强;如果N值较低,则相应膜层的弹性较好,器件稳定性好。N值较高的SIN层与完成前制程的玻璃直接接触,膜层的弹性较差,导致出现SIN层与玻璃之间出现气泡等问题,导致器件不稳定。
(2)膜层问题:N值反映膜层的应力,膜层在承受不同的应力时会造成膜破:膜层受压应力时会破坏膜层,膜层受拉应力时会形成膜破。SIN层N值较高,膜层受应力较大,就会破坏膜层结构,形成膜层剥落。
(3)TTP问题:制备ILD层采用的是高温制程,例如380摄氏度的高温,高温导致ILD层的热胀冷缩效应,也会对玻璃基板造成不同程度的收缩,影响长距离精度(即影响低温多晶硅层上长距离测量标记的精度,长距离测量标记用于在后面制程中,监测ILD层上的阵列电路与滤光片上的手指对位标记进行对位时,手指对位标记对应的形变量,若能够精确测量该形变量,就可以对该形变量进行管控,进而确定阵列电路与滤光片的贴合精度),进而影响阵列电路与手指对位标记的贴合精度,降低了阵列电路与滤光片对位的准确度。另外,ILD层的应力不同,ILD层会呈现不同的收缩性。ILD层的SIN膜层受应力影响,对低温多晶硅的长距离精度影响很大,会影响后段制程。
发明内容
为解决上述技术问题,本发明提供一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板,层间绝缘层具有良好的弹性和稳定性,并且承受的应力较小,不会破坏膜层,不会造成膜层破裂剥落,降低了对低温多晶硅的长距离精度的影响。
本发明提供的一种层间绝缘层的制备方法,包括下述步骤:
S1、在基板上依次沉积低折射率的第一SiNx层、高折射率的第二SiNx层,其中,低折射率的范围为1.7~1.87,高折射率的范围为1.91~1.93,x≥1;
S2、在所述第二SiNx层上沉积SiOy层,其中,所述SiOy层的折射率范围为1.4~1.5,y≥1。
优选地,在步骤S1之前还包括下述步骤:
S10、在基板上沉积高折射率的第三SiNx层,其中,所述第一SiNx层位于所述第三SiNx层上方;
所述第一SiNx层的厚度范围、所述第二SiNx层的厚度范围以及所述第三SiNx层的厚度范围均为800~1200埃米,且所述第一SiNx层、所述第二SiNx层以及所述第三SiNx层的总厚度范围为2700~3300埃米。
优选地,所述第一SiNx层的厚度范围和所述第二SiNx层的厚度范围均为1200~1800埃米,且所述第一SiNx层和所述第二SiNx层的总厚度范围为2700~3300埃米;
所述SiOy层的厚度范围为2700~3300埃米。
优选地,步骤S1包括:
S11、将包含有Si元素和N元素的第一成膜气体进行解离,利用化学气相沉积方法制备得到所述第一SiNx层;
S12、将包含有Si元素和N元素的第二成膜气体进行解离,利用化学气相沉积方法制备得到所述第二SiNx层;
步骤S10具体为:
将包含有Si元素和N元素的第三成膜气体进行解离,利用化学气相沉积方法制备得到所述第三SiNx层。
优选地,所述第一成膜气体包括:NH3和/或N2,以及SiH4
步骤S11具体为:
S111、在化学气相沉积反应器中填充所述第一成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,所述上下电极之间的距离为50nm~150nm;
S112、通过所述交变电场解离所述第一成膜气体,将解离的所述第一成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S113;
S113、检测所述待测SiNx膜层的折射率,判断所述待测SiNx膜层的折射率是否为低折射率,若是,则将所述待测SiNx膜层作为所述第一SiNx层,若否,则执行步骤S114;
S114、若所述待测SiNx膜层的折射率大于低折射率,则降低所述第一成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中所述第一成膜气体的密度,或者增加交变电场值,再执行步骤S112,直至所述待测SiNx膜层的折射率为低折射率,则将待测SiNx膜层作为所述第一SiNx层;
若所述待测SiNx膜层的折射率小于低折射率,则提升所述第一成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中所述第一成膜气体的密度,或者减小交变电场值,再执行步骤S112,直至所述待测SiNx膜层的折射率为低折射率,则将所述待测SiNx膜层作为所述第一SiNx层。
优选地,所述第二成膜气体包括:NH3和/或N2,以及SiH4
步骤S12具体为:
S121、在化学气相沉积反应器中填充所述第二成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,所述上下电极之间的距离为50nm~150nm;
S122、通过所述交变电场解离所述第二成膜气体,将解离的所述第二成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S123;
S123、检测所述待测SiNx膜层的折射率,判断所述待测SiNx膜层的折射率是否为高折射率,若是,则将所述待测SiNx膜层作为所述第二SiNx层,若否,则执行步骤S124;
S124、若所述待测SiNx膜层的折射率大于高折射率,则降低所述第二成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中所述第二成膜气体的密度,或者增加交变电场值,再执行步骤S122,直至所述待测SiNx膜层的折射率为高折射率,则将所述待测SiNx膜层作为所述第二SiNx层;
若所述待测SiNx膜层的折射率小于高折射率,则提升所述第二成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中所述第二成膜气体的密度,或者减小交变电场值,再执行步骤S122,直至所述待测SiNx膜层的折射率为高折射率,则将所述待测SiNx膜层作为所述第二SiNx层。
优选地,所述第三成膜气体包括:NH3和/或N2,以及SiH4
步骤S10具体为:
S101、在化学气相沉积反应器中填充所述第三成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,所述上下电极之间的距离为50nm~150nm;
S102、通过所述交变电场解离所述第三成膜气体,将解离的所述第三成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S103;
S103、检测所述待测SiNx膜层的折射率,判断所述待测SiNx膜层的折射率是否为低折射率,若是,则将所述待测SiNx膜层作为所述第三SiNx层,若否,则执行步骤S104;
S104、若所述待测SiNx膜层的折射率大于低折射率,则降低所述第三成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中所述第三成膜气体的密度,或者增加交变电场值,再执行步骤S102,直至所述待测SiNx膜层的折射率为低折射率,则将所述待测SiNx膜层作为所述第三SiNx层;
若所述待测SiNx膜层的折射率小于低折射率,则提升所述第三成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中所述第三成膜气体的密度,或者减小交变电场值,再执行步骤S102,直至所述待测SiNx膜层的折射率为低折射率,则将所述待测SiNx膜层作为所述第三SiNx层。
本发明还提供一种层间绝缘层,包括:第一SiNx层、第二SiNx层、SiOy层;
所述第二SiNx层位于所述第一SiNx层上方;所述SiOy层位于所述第二SiNx层上方;
其中,所述第一SiNx层的折射率范围为1.7~1.87,所述第二SiNx层的折射率的范围为1.91~1.93,所述SiOy层的折射率范围为1.4~1.5,x≥1,y≥1。
优选地,还包括第三SiNx层,所述第三SiNx层位于所述第一SiNx层的下方,且所述第三SiNx层的折射率范围为1.91~1.93。
本发明还提供一种液晶显示面板,包括基板、低温多晶硅层、上述的层间绝缘层;
所述低温多晶硅位于所述基板上方,所述层间绝缘层位于所述低温多晶硅层上方。
实施本发明,具有如下有益效果:层间绝缘层中包含有低折射率的第一SiNx层,可以保证膜层的弹性较好,稳定性较好。由于低折射率的第一SiNx层的弹性较好,其与相邻膜层之间不容易出现气泡,可以增强器件的稳定性。
并且,第一SiNx层的折射率较低,其承受的应力较小,因此不会破坏膜层,形成膜破,或者造成膜层剥落。还有,第一SiNx层受应力影响较小,降低了层间绝缘层的收缩性,降低了对低温多晶硅的长距离精度(即TTP问题)的影响,在后面制程中,层间绝缘层上的TFT阵列电路与滤光片上的手指对位标记进行对位时,提高了对位的准确度,以及TFT阵列电路与滤光片上的手指对位标记贴合的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的层间绝缘层的制备方法的流程图。
图2是本发明提供的层间绝缘层的结构示意图。
图3是本发明提供的另一实施例中层间绝缘层的结构示意图。
图4是本发明提供的液晶显示面板的结构示意图。
具体实施方式
本发明提供一种层间绝缘层的制备方法,如图1所示,该方法包括下述步骤:
S1、在基板上依次沉积低折射率的第一SiNx层、高折射率的第二SiNx层,其中,低折射率的范围为1.7~1.87,高折射率的范围为1.91~1.93,x≥1。这里的基板是完成了前制程的基板,该基板上有一层低温多晶硅层,这里的SiNx可以是SiN。
S2、在第二SiNx层上沉积SiOy层,其中,SiOy层的折射率范围为1.4~1.5,y≥1。这里的SiOy可以是SiO。
层间绝缘层中包含有低折射率的第一SiNx层,可以保证膜层的弹性较好,稳定性较好。由于低折射率的第一SiNx层的弹性较好,其与相邻膜层之间不容易出现气泡,可以增强器件的稳定性。
并且,第一SiNx层的折射率较低,其承受的应力较小,因此不会破坏膜层,形成膜破,或者造成膜层剥落。还有,第一SiNx层受应力影响较小,降低了层间绝缘层的收缩性,降低了对低温多晶硅的长距离精度的影响(即TTP问题),在后面制程中,层间绝缘层上的阵列电路与滤光片上的手指对位标记进行对位时,提高了对位的准确度,以及TFT阵列电路与滤光片上的手指对位标记贴合的精度。
进一步地,在步骤S1之前还包括下述步骤:
S10、在基板上沉积高折射率的第三SiNx层,其中,第一SiNx层位于第三SiNx层上方。
第一SiNx层的厚度范围、第二SiNx层的厚度范围以及第三SiNx层的厚度范围均为800~1200埃米,优选地,第一SiNx层的厚度、第二SiNx层的厚度以及第三SiNx层的厚度均为1000埃米;且第一SiNx层、第二SiNx层以及第三SiNx层的总厚度范围为2700~3300埃米,优选地,第一SiNx层、第二SiNx层以及第三SiNx层的总厚度为3000埃米。
完成了前制程的基板上制备了低温多晶硅层,将高折射率的第三SiNx层与前制程基板上的低温多晶硅层直接接触,在高温制程中,当第三SiNx层能够高效的释放氢时,低温多晶硅层能够充分利用第三SiNx层释放的氢进行氢化处理,使得低温多晶硅层有较强的补氢效果。
进一步地,当在基板上没有沉积高折射率的第三SiNx层时,第一SiNx层的厚度范围和第二SiNx层的厚度范围均为1200~1800埃米,优选地,第一SiNx层的厚度和第二SiNx层的厚度均为1500埃米,且第一SiNx层和第二SiNx层的总厚度范围为2700~3300埃米,优选地,第一SiNx层和第二SiNx层的总厚度为3000埃米;SiOy层的厚度范围为2700~3300埃米,优选地,SiOy层的厚度为3000埃米。
进一步地,步骤S1包括:
S11、将包含有Si元素和N元素的第一成膜气体进行解离,利用化学气相沉积方法制备得到第一SiNx层;
S12、将包含有Si元素和N元素的第二成膜气体进行解离,利用化学气相沉积方法制备得到第二SiNx层。
步骤S10具体为:
将包含有Si元素和N元素的第三成膜气体进行解离,利用化学气相沉积方法制备得到第三SiNx层。
进一步地,第一成膜气体包括:NH3(即氨气)和/或N2(即氮气),以及SiH4(即硅烷气体)。
步骤S11具体为:
S111、在化学气相沉积反应器中填充第一成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,上下电极之间的距离为50nm~150nm;优选地,输送至上下电极产生交变电场的功率范围为5000W~20000W。
S112、通过交变电场解离第一成膜气体,将解离的第一成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S113。
S113、检测待测SiNx膜层的折射率,判断待测SiNx膜层的折射率是否为低折射率,若是,则将待测SiNx膜层作为第一SiNx层,若否,则执行步骤S114。
S114、若待测SiNx膜层的折射率大于低折射率,则排出化学气相沉积反应器中的剩余气体,重新往化学气相沉积反应器中填充第一成膜气体,降低第一成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中第一成膜气体的密度,或者增加交变电场值,重新选择一块基板后作为步骤S112中的基板,再执行步骤S112,直至待测SiNx膜层的折射率为低折射率,则将待测SiNx膜层作为第一SiNx层;
若待测SiNx膜层的折射率小于低折射率,则排出化学气相沉积反应器中的剩余气体,重新往化学气相沉积反应器中填充第一成膜气体,提升第一成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中第一成膜气体的密度,或者减小交变电场值,重新选择一块基板后作为步骤S112中的基板,再执行步骤S112,直至待测SiNx膜层的折射率为低折射率,则将待测SiNx膜层作为第一SiNx层。
上述的NH3、N2以及SiH4之间进行反应,最后得到包含氢的SiNx膜层。
其中,SiNx膜层的折射率可以根据该膜层的反射和折射光谱来进行分析测定,还可以根据膜厚量测机进行测定。降低化学气相沉积反应器中第一成膜气体的密度可以通过增加上下电极之间的距离来实现,反之,减小上下电极之间的距离,可以增加化学气相沉积反应器中第一成膜气体的密度。上下电极之间的距离成膜机台来调整。
SiNx膜层的折射率值与成膜气体中的NH3所占的比例几乎成正比,因此,降低成膜气体中NH3的比例,也可以减小SiNx膜层的折射率值,反之,提升成膜气体中NH3的比例,则可以增加SiNx膜层的折射率值。
增加交变电场值,即增大交变电场,可以加速成膜气体解离,使得解离后的成膜气体快速成膜形成SiNx层,膜层的各粒子之间没有充足的时间进行紧密排列,因此,导致SiNx膜层的各粒子之间的间隙增大,膜层较松,最终SiNx膜层的折射率降低。反之,减小交变电场值,可以减缓成膜气体解离,进而减缓解离后的成膜气体形成SiNx层,使得膜层的各粒子之间有充足的时间紧密排列,最终得到的SiNx膜层的折射率升高。
进一步地,第二成膜气体包括:NH3和/或N2,以及SiH4
步骤S12具体为:
S121、在化学气相沉积反应器中填充第二成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,上下电极之间的距离为50nm~150nm;优选地,输送至上下电极产生交变电场的功率范围为5000W~20000W。
S122、通过交变电场解离第二成膜气体,将解离的第二成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S123。
S123、检测待测SiNx膜层的折射率,判断待测SiNx膜层的折射率是否为高折射率,若是,则将待测SiNx膜层作为第二SiNx层,若否,则执行步骤S124。
S124、若待测SiNx膜层的折射率大于高折射率,则排出化学气相沉积反应器中的剩余气体,重新往化学气相沉积反应器中填充第二成膜气体,降低第二成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中第二成膜气体的密度,或者增加交变电场值,重新选择一块基板后作为步骤S122中的基板,再执行步骤S122,直至待测SiNx膜层的折射率为高折射率,则将待测SiNx膜层作为第二SiNx层;
若待测SiNx膜层的折射率小于高折射率,则排出化学气相沉积反应器中的剩余气体,重新往化学气相沉积反应器中填充第二成膜气体,提升第二成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中第二成膜气体的密度,或者减小交变电场值,重新选择一块基板后作为步骤S122中的基板,再执行步骤S122,直至待测SiNx膜层的折射率为高折射率,则将待测SiNx膜层作为第二SiNx层。
进一步地,第三成膜气体包括:NH3和/或N2,以及SiH4
步骤S10具体为:
S101、在化学气相沉积反应器中填充第三成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,上下电极之间的距离为50nm~150nm;优选地,输送至上下电极产生交变电场的功率范围为5000W~20000W。
S102、通过交变电场解离第三成膜气体,将解离的第三成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S103。
S103、检测待测SiNx膜层的折射率,判断待测SiNx膜层的折射率是否为低折射率,若是,则将待测SiNx膜层作为第三SiNx层,若否,则执行步骤S104。
S104、若待测SiNx膜层的折射率大于低折射率,则排出化学气相沉积反应器中的剩余气体,重新往化学气相沉积反应器中填充第三成膜气体,降低第三成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中第三成膜气体的密度,或者增加交变电场值,重新选择一块基板后作为步骤S102中的基板,再执行步骤S102,直至待测SiNx膜层的折射率为低折射率,则将待测SiNx膜层作为第三SiNx层;
若待测SiNx膜层的折射率小于低折射率,则排出化学气相沉积反应器中的剩余气体,重新往化学气相沉积反应器中填充第三成膜气体,提升第三成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中第三成膜气体的密度,或者减小交变电场值,重新选择一块基板后作为步骤S102中的基板,再执行步骤S102,直至待测SiNx膜层的折射率为低折射率,则将待测SiNx膜层作为第三SiNx层。
优选地,步骤S2具体为:
将包含有Si元素和O元素的第四成膜气体进行解离,利用化学气相沉积方法制备得到SiOy层,其中,第四成膜气体可以是SiH4和氮氧化合物气体的混合气体,其中,氮氧化合物气体y可以是N2O。
本发明还提供一种层间绝缘层,如图2所示,该层间绝缘层包括:第一SiNx层10、第二SiNx层20、SiOy层30。
第二SiNx层20位于第一SiNx层10上方;SiOy层30位于第二SiNx层20上方。
其中,第一SiNx层10的折射率范围为1.7~1.87,即为低折射率,第二SiNx层20的折射率的范围为1.91~1.93,即为高折射率,SiOy层30的折射率范围为1.4~1.5,x≥1,y≥1。
进一步地,如图3所示,层间绝缘层还包括第三SiNx层40,第三SiNx层40位于第一SiNx层10的下方,即第三SiNx层40位于第一SiNx层10与基板之间,且第三SiNx层40的折射率范围为1.91~1.93。
本发明还提供一种液晶显示面板,如图4所示,该显示面板包括基板2、低温多晶硅层3、上述的层间绝缘层1;低温多晶硅位于基板2上方,层间绝缘层1位于低温多晶硅层3上方。
优选地,该显示面板还包括:TFT阵列电路4、滤光片5;TFT阵列电路4位于层间绝缘层上方,滤光片5位于TFT阵列电路4上方。
综上所述,本发明提供的层间绝缘层的制备方法及层间绝缘层,有较好的弹性,且稳定性较好。并且,第一SiNx层10的折射率较低,承受的应力较小,因此不会破坏膜层,形成膜破,或者造成膜层破裂剥落。还有,第一SiNx层10受应力影响较小,降低了层间绝缘层1的收缩性,降低了对低温多晶硅的长距离精度的影响,在后面制程中,层间绝缘层1上的TFT阵列电路4与滤光片上的手指对位标记进行对位时,提高了对位的准确度。
进一步地,高折射率的第三SiNx层40上可以保证与第三SiNx层40接触的低温多晶硅层3有较强的补氢效果。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种层间绝缘层的制备方法,其特征在于,包括下述步骤:
S1、在基板上依次沉积低折射率的第一SiNx层、高折射率的第二SiNx层,其中,低折射率的范围为1.7~1.87,高折射率的范围为1.91~1.93,x≥1;
S2、在所述第二SiNx层上沉积SiOy层,其中,所述SiOy层的折射率范围为1.4~1.5,y≥1。
2.根据权利要求1所述的层间绝缘层的制备方法,其特征在于,在步骤S1之前还包括下述步骤:
S10、在基板上沉积高折射率的第三SiNx层,其中,所述第一SiNx层位于所述第三SiNx层上方;
所述第一SiNx层的厚度范围、所述第二SiNx层的厚度范围以及所述第三SiNx层的厚度范围均为800~1200埃米,且所述第一SiNx层、所述第二SiNx层以及所述第三SiNx层的总厚度范围为2700~3300埃米。
3.根据权利要求1所述的层间绝缘层的制备方法,其特征在于,所述第一SiNx层的厚度范围和所述第二SiNx层的厚度范围均为1200~1800埃米,且所述第一SiNx层和所述第二SiNx层的总厚度范围为2700~3300埃米;
所述SiOy层的厚度范围为2700~3300埃米。
4.根据权利要求2所述的层间绝缘层的制备方法,其特征在于,步骤S1包括:
S11、将包含有Si元素和N元素的第一成膜气体进行解离,利用化学气相沉积方法制备得到所述第一SiNx层;
S12、将包含有Si元素和N元素的第二成膜气体进行解离,利用化学气相沉积方法制备得到所述第二SiNx层;
步骤S10具体为:
将包含有Si元素和N元素的第三成膜气体进行解离,利用化学气相沉积方法制备得到所述第三SiNx层。
5.根据权利要求4所述的层间绝缘层的制备方法,其特征在于,所述第一成膜气体包括:NH3和/或N2,以及SiH4
步骤S11具体为:
S111、在化学气相沉积反应器中填充所述第一成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,所述上下电极之间的距离为50nm~150nm;
S112、通过所述交变电场解离所述第一成膜气体,将解离的所述第一成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S113;
S113、检测所述待测SiNx膜层的折射率,判断所述待测SiNx膜层的折射率是否为低折射率,若是,则将所述待测SiNx膜层作为所述第一SiNx层,若否,则执行步骤S114;
S114、若所述待测SiNx膜层的折射率大于低折射率,则降低所述第一成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中所述第一成膜气体的密度,或者增加交变电场值,再执行步骤S112,直至所述待测SiNx膜层的折射率为低折射率,则将待测SiNx膜层作为所述第一SiNx层;
若所述待测SiNx膜层的折射率小于低折射率,则提升所述第一成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中所述第一成膜气体的密度,或者减小交变电场值,再执行步骤S112,直至所述待测SiNx膜层的折射率为低折射率,则将所述待测SiNx膜层作为所述第一SiNx层。
6.根据权利要求4所述的层间绝缘层的制备方法,其特征在于,所述第二成膜气体包括:NH3和/或N2,以及SiH4
步骤S12具体为:
S121、在化学气相沉积反应器中填充所述第二成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,所述上下电极之间的距离为50nm~150nm;
S122、通过所述交变电场解离所述第二成膜气体,将解离的所述第二成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S123;
S123、检测所述待测SiNx膜层的折射率,判断所述待测SiNx膜层的折射率是否为高折射率,若是,则将所述待测SiNx膜层作为所述第二SiNx层,若否,则执行步骤S124;
S124、若所述待测SiNx膜层的折射率大于高折射率,则降低所述第二成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中所述第二成膜气体的密度,或者增加交变电场值,再执行步骤S122,直至所述待测SiNx膜层的折射率为高折射率,则将所述待测SiNx膜层作为所述第二SiNx层;
若所述待测SiNx膜层的折射率小于高折射率,则提升所述第二成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中所述第二成膜气体的密度,或者减小交变电场值,再执行步骤S122,直至所述待测SiNx膜层的折射率为高折射率,则将所述待测SiNx膜层作为所述第二SiNx层。
7.根据权利要求4所述的层间绝缘层的制备方法,其特征在于,所述第三成膜气体包括:NH3和/或N2,以及SiH4
步骤S10具体为:
S101、在化学气相沉积反应器中填充所述第三成膜气体,设置用于产生交变电场的上下电极之间的距离以及交变电场值;其中,所述上下电极之间的距离为50nm~150nm;
S102、通过所述交变电场解离所述第三成膜气体,将解离的所述第三成膜气体沉积到基板上,得到待测SiNx膜层,再执行步骤S103;
S103、检测所述待测SiNx膜层的折射率,判断所述待测SiNx膜层的折射率是否为低折射率,若是,则将所述待测SiNx膜层作为所述第三SiNx层,若否,则执行步骤S104;
S104、若所述待测SiNx膜层的折射率大于低折射率,则降低所述第三成膜气体中NH3所占的比例,或者降低化学气相沉积反应器中所述第三成膜气体的密度,或者增加交变电场值,再执行步骤S102,直至所述待测SiNx膜层的折射率为低折射率,则将所述待测SiNx膜层作为所述第三SiNx层;
若所述待测SiNx膜层的折射率小于低折射率,则提升所述第三成膜气体中NH3所占的比例,或者提升化学气相沉积反应器中所述第三成膜气体的密度,或者减小交变电场值,再执行步骤S102,直至所述待测SiNx膜层的折射率为低折射率,则将所述待测SiNx膜层作为所述第三SiNx层。
8.一种层间绝缘层,其特征在于,包括:第一SiNx层、第二SiNx层、SiOy层;
所述第二SiNx层位于所述第一SiNx层上方;所述SiOy层位于所述第二SiNx层上方;
其中,所述第一SiNx层的折射率范围为1.7~1.87,所述第二SiNx层的折射率的范围为1.91~1.93,所述SiOy层的折射率范围为1.4~1.5,x≥1,y≥1。
9.根据权利要求8所述的层间绝缘层,其特征在于,还包括第三SiNx层,所述第三SiNx层位于所述第一SiNx层的下方,且所述第三SiNx层的折射率范围为1.91~1.93。
10.一种液晶显示面板,其特征在于,包括基板、低温多晶硅层、权利要求8或9所述的层间绝缘层;
所述低温多晶硅位于所述基板上方,所述层间绝缘层位于所述低温多晶硅层上方。
CN201710846716.7A 2017-09-19 2017-09-19 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板 Active CN107611144B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710846716.7A CN107611144B (zh) 2017-09-19 2017-09-19 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板
US15/735,547 US20200035718A1 (en) 2017-09-19 2017-10-12 An interlayer-dielectric layer, a manufacturing method thereof, and a liquid crystal display panel
PCT/CN2017/105830 WO2019056417A1 (zh) 2017-09-19 2017-10-12 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710846716.7A CN107611144B (zh) 2017-09-19 2017-09-19 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板

Publications (2)

Publication Number Publication Date
CN107611144A true CN107611144A (zh) 2018-01-19
CN107611144B CN107611144B (zh) 2019-10-11

Family

ID=61060962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710846716.7A Active CN107611144B (zh) 2017-09-19 2017-09-19 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板

Country Status (3)

Country Link
US (1) US20200035718A1 (zh)
CN (1) CN107611144B (zh)
WO (1) WO2019056417A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713834A (zh) * 2008-10-07 2010-05-26 甘国工 高透光导电膜系
US20140349091A1 (en) * 2013-05-21 2014-11-27 Industrial Technology Research Institute Thin-film device
CN104681579A (zh) * 2013-11-29 2015-06-03 乐金显示有限公司 有机发光显示装置及其制造方法
CN105655353A (zh) * 2016-01-21 2016-06-08 武汉华星光电技术有限公司 Tft阵列基板结构及其制作方法
CN105652348A (zh) * 2016-01-16 2016-06-08 汕头万顺包装材料股份有限公司 增亮阻隔膜及具有该增亮阻隔膜的量子点膜、背光模组
TW201705492A (zh) * 2015-07-08 2017-02-01 應用材料股份有限公司 薄膜電晶體

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105106A1 (en) * 2004-11-16 2006-05-18 Applied Materials, Inc. Tensile and compressive stressed materials for semiconductors
JP5233562B2 (ja) * 2008-10-04 2013-07-10 東京エレクトロン株式会社 成膜方法及び成膜装置
US9184410B2 (en) * 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
TW201522696A (zh) * 2013-11-01 2015-06-16 Applied Materials Inc 使用遠端電漿cvd技術的低溫氮化矽膜
KR102301594B1 (ko) * 2016-12-05 2021-09-14 글로벌웨이퍼스 씨오., 엘티디. 높은 저항률 실리콘-온-절연체 구조 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713834A (zh) * 2008-10-07 2010-05-26 甘国工 高透光导电膜系
US20140349091A1 (en) * 2013-05-21 2014-11-27 Industrial Technology Research Institute Thin-film device
CN104681579A (zh) * 2013-11-29 2015-06-03 乐金显示有限公司 有机发光显示装置及其制造方法
TW201705492A (zh) * 2015-07-08 2017-02-01 應用材料股份有限公司 薄膜電晶體
CN105652348A (zh) * 2016-01-16 2016-06-08 汕头万顺包装材料股份有限公司 增亮阻隔膜及具有该增亮阻隔膜的量子点膜、背光模组
CN105655353A (zh) * 2016-01-21 2016-06-08 武汉华星光电技术有限公司 Tft阵列基板结构及其制作方法

Also Published As

Publication number Publication date
CN107611144B (zh) 2019-10-11
US20200035718A1 (en) 2020-01-30
WO2019056417A1 (zh) 2019-03-28

Similar Documents

Publication Publication Date Title
US10976586B2 (en) Manufacturing method for liquid crystal display panel with high transmittance and display panel thereof
TW574584B (en) Method for manufacturing electro-optic element
CN110082977B (zh) 一种tft阵列基板及显示面板
US11443658B2 (en) Flexible display panels, manufacturing methods thereof and flexible display apparatuses
KR100468994B1 (ko) 액티브 매트릭스형 표시 장치 및 박막 트랜지스터의 제조 방법
JPH08186267A (ja) 半導体装置およびその作製方法および電気光学装置
CN102593050B (zh) 一种液晶显示面板阵列基板的制作方法
US20030162346A1 (en) Silicon oxide co-deposition/etching process
CN107957822A (zh) 阵列基板及其制造方法、触控显示面板、触控显示装置
JP4243401B2 (ja) 銅配線基板およびその製造方法ならびに液晶表示装置
CN109581570A (zh) 金属线栅及其制造方法、显示面板、显示装置
CN104465670B (zh) 一种阵列基板及其制作方法、显示装置
CN107611144A (zh) 一种层间绝缘层的制备方法、层间绝缘层及液晶显示面板
CN104319261B (zh) 一种阵列基板的制备方法、阵列基板和显示装置
CN104538408B (zh) 一种阵列基板及其制备方法和显示装置
CN108987418A (zh) 阵列基板及其制备方法和显示器件
JP4693759B2 (ja) 薄膜成膜装置
CN104393005B (zh) 显示基板及其制作方法、显示装置
CN101217151B (zh) 像素结构、显示面板、光电装置及其制造方法
CN112645277B (zh) 一种新型红外探测器及制备方法
US20210217746A1 (en) Esd protection
CN103579400B (zh) 一种电池用复合中间反射层以及多结多叠层硅基薄膜电池
CN203103303U (zh) 一种阵列基板及显示装置
CN108807424A (zh) 一种阵列基板的制作方法、阵列基板及显示面板
CN203746865U (zh) 一种薄膜晶体管、阵列基板及显示装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant