CN107571745B - 电动车辆的电池充电系统以及电池充电方法 - Google Patents

电动车辆的电池充电系统以及电池充电方法 Download PDF

Info

Publication number
CN107571745B
CN107571745B CN201710506484.0A CN201710506484A CN107571745B CN 107571745 B CN107571745 B CN 107571745B CN 201710506484 A CN201710506484 A CN 201710506484A CN 107571745 B CN107571745 B CN 107571745B
Authority
CN
China
Prior art keywords
temperature
battery
charging
time
temperature increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710506484.0A
Other languages
English (en)
Other versions
CN107571745A (zh
Inventor
村田崇
来间雄介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN107571745A publication Critical patent/CN107571745A/zh
Application granted granted Critical
Publication of CN107571745B publication Critical patent/CN107571745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H02J7/0021
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种电动车辆的电池充电系统以及电池充电方法。电动车辆的电池充电系统中,充电控制部在充电插头与充电连接器连接的插入插头时在外部充电计时器设定有外部充电开始时刻的情况下,对该外部充电开始时刻前的外部充电进行待机设定并转变为休止状态。另外,充电控制部在从转变为休止状态的休止期间开始时刻起到外部充电开始时刻为止的计时器充电设定期间间歇启动,并且在启动时的电池温度为预定的温度以下时,能够执行使加热器而使主电池升温的升温模式。

Description

电动车辆的电池充电系统以及电池充电方法
技术领域
本发明涉及能够从外部电源对电池充电的电动车辆的电池充电系统以及电池充电方法。
背景技术
在混合动力车辆、电动汽车等以旋转电机作为驱动源的电动车辆中搭载有电池(主电池)来作为电源。电动车辆中插电式混合动力车辆、电动汽车等能够从车辆外部的电源(外部电源)向电池进行充电(外部充电)。在这些车辆中与外部充电关联而设置有以下那样的功能。
首先,作为第1功能,可举出计时器充电功能。例如即使通过外部充电暂时使电池满充电,若从该时间点起将车辆长时间放置,则也会因自放电而导致电池的SOC(State OfCharge,充电状态)降低。另外,也有想在电费相对便宜的时间段进行外部充电这一要求。因此,例如在日文特开2012-143026中,在车辆设置有设定外部充电的开始时刻的外部充电计时器。在车辆的充电连接器与外部的充电插头连接(插入插头)时,判定有无对外部充电计时器进行设定。在进行了计时器充电设定的情况下,充电系统转变为休止状态。伴随计时器充电设定,为了防止外部充电的误工作而使外部充电开始时刻前的外部充电的执行待机(暂时不准许)的待机设定成为有效,当达到外部充电开始时刻时解除该待机设定,执行外部充电。
接着,作为第2功能,可举出电池的升温(加温)功能。当电池冻结时电池内的物质移动变得困难,内阻成为极其高的值。其结果,有可能导致充电容许功率被减少为0(Win=0),外部充电有可能会被禁止。例如如果在计时器充电设定期间电池冻结,则之后即使达到外部充电开始时刻,将含有电池的车辆内设备和外部电源连接的充电继电器的接通操作(连接操作)也会被禁止。
因此,例如在日本特开2012-191781中,在电池设置温度传感器,始终监视电池温度。进行加热器的打开关闭(ON/OFF)控制的加热器控制部在检测到电池的温度成为预定温度以下这一情况时,使加热器工作而使电池升温。
发明内容
然而,由于为了电池升温而使加热器工作,会消耗电池的电力。例如若在寒冷地等频繁执行电池升温,则有可能会导致所谓的电池用尽。因此,本发明的目的在于提供一种电动车辆的电池充电系统,能够防止伴随计时器充电设定进行了外部充电的待机设定的外部充电开始时刻前的期间(计时器充电设定期间)的、伴随电池升温的电池用尽。
本发明的第1技术方案涉及具备供外部电源的充电插头连接的充电连接器,并能够进行通过所述外部电源对电池充电的外部充电的电动车辆的电池充电系统。该电池充电系统具备:充电控制部,控制所述外部充电;外部充电计时器,能够通过用户的操作来设定外部充电开始时刻;温度取得部,取得电池温度;以及加热器,使所述电池升温。所述充电控制部,在所述充电插头与所述充电连接器连接的插入插头时在所述外部充电计时器设定有所述外部充电开始时刻的情况下,对该外部充电开始时刻前的外部充电进行待机设定并转变为休止状态。所述充电控制部还在从转变为所述休止状态的休止期间开始时刻起到所述外部充电开始时刻为止的计时器充电设定期间间歇启动,并且,在启动时的所述电池温度为预定的温度以下时,能够执行使所述加热器工作而使所述电池升温的升温模式。所述充电控制部还在执行所述升温模式时,解除所述外部充电的待机设定,并且执行进行所述外部充电的升温时充电模式。
另外,在上述第1技术方案中,还可以具备计时器开关,所述计时器开关规定所述计时器充电设定期间中的启动时刻,并且在所述启动时刻使所述充电控制部启动。在该情况下,所述充电控制部能够执行如下第1升温模式来作为所述升温模式:在所述启动时刻所述电池温度为第1升温要求温度以下且比低于所述第1升温要求温度的第2升温要求温度高的情况下,使所述加热器工作而开始所述电池的升温,若所述电池升温到了第1升温目标温度,则重新设定所述启动时刻,然后,再次转变为所述休止状态。另外,所述充电控制部能够执行如下第2升温模式来作为所述升温模式:在所述启动时刻所述电池温度为所述第2升温要求温度以下的情况下,使所述加热器工作而开始所述电池的升温,当所述电池升温到了第2升温目标温度,则重新设定所述启动时刻,然后,再次转变为所述休止状态,所述第2升温目标温度是从所述第2升温要求温度起到该第2升温目标温度为止的升温幅度比从所述第1升温要求温度起到所述第1升温目标温度为止的升温幅度小的升温目标温度。所述第1升温模式设定为能够在从最初的所述休止期间开始时刻起的第1期间内执行,所述第2升温模式设定为能够在从最初的所述休止期间开始时刻起的比所述第1期间长的第2期间内执行。
如上述构成那样,第2升温模式比第1升温模式的升温幅度小,换言之,设定为工作量少,因此,能相对(与第1升温模式相比)抑制加热器以及关联回路的消耗电力。通过使该第2升温模式的可执行期间比第1升温模式长,能够在抑制加热器以及关联回路的消耗电力的同时,即,能够在抑制电池用尽的同时,长时间地防止电池的冻结。
另外,在上述第1技术方案中,所述充电控制部也可以在执行所述第1升温模式时,将从所述电池温度达到所述第1升温目标温度的时刻起经过了第1待机时间的时刻重新设定为所述启动时刻。所述充电控制部也可以在执行所述第2升温模式时,将从所述电池温度达到所述第2升温目标温度的时刻起经过了比所述第1待机时间短的第2待机时间的时刻重新设定为所述启动时刻。
在第2升温模式中,与第1升温模式相比,升温要求温度低,另外,从该升温要求温度起的升温幅度也小,因此,升温目标温度被设定为比第1升温模式低。因此,为了防止电池的冻结而优选以短间隔(频繁地)测定电池温度。因此,如以上构成,在第2升温模式中,能够使到下次启动时刻为止的待机时间比第1升温模式的待机时间短。
另外,在上述第1技术方案中,还可以具备通知器,所述通知器在执行了所述升温时充电模式时,对所述用户进行通知。
升温时充电模式本来是用户意图外的外部充电,并且伴随于此产生意图外的电费。通过向用户通知升温时充电模式的执行,用户能够认识到伴随于此的电费的产生。
本发明的第2技术方案涉及能够进行通过外部电源对电池充电的外部充电的电动车辆的电池充电方法。
该电池充电方法包括:在外部电源的充电插头与车载的充电连接器连接的插入插头时设定有外部充电开始时刻的情况下,对该外部充电开始时刻前的外部充电进行待机设定并使控制所述外部充电的电子控制单元转变为休止状态,在从转变为所述休止状态的休止期间开始时刻起到所述外部充电开始时刻为止的充电设定期间使所述电子控制单元间歇启动,并且在外部充电开始时的车载的电池的温度为预定的温度以下时,执行使加热器工作而使所述电池升温的升温模式,在执行所述升温模式时,解除所述外部充电的待机设定,并执行进行所述外部充电的升温时充电模式。
根据本发明,能够防止在伴随计时器充电设定而进行了外部充电的待机设定的外部充电开始时刻前的期间(计时器充电设定期间)的、伴随电池升温的电池用尽。
附图说明
以下,参照附图来描述本发明实施方式的特征、优点以及技术和产业上的意义,其中,同一附图标记表示同一要素,并且,其中:
图1是例示本实施方式的电池用充电系统以及搭载了该电池用充电系统的电动车辆的主要部分结构的图。
图2是说明第1以及第2升温模式的概要的表。
图3是例示本实施方式的电池的升温流程的图(1/3)。
图4是例示本实施方式的电池的升温流程的图(2/3)。
图5是例示本实施方式的电池的升温流程的图(3/3)。
图6是执行了本实施方式的电池的升温流程时的时间图。
图7是表示本实施方式的电池的升温流程的其他例的图。
具体实施方式
在图1例示本实施方式的电池用充电系统以及搭载了该电池用充电系统的电动车辆的结构。此外,为了简化图示,在图1中,关于与本实施方式的电池用充电系统的关联性低的结构,适当省略了图示。另外,图1的箭头表示信号线。
图1所示的电动车辆是将内燃机ENG以及旋转电机MG1、MG2作为驱动源,还能够进行从外部电源36向主电池10的充电(外部充电)的插电式-混合动力车辆。然而,搭载本实施方式的电池用充电系统的车辆并不限于此,也可以在能够进行插电式的外部充电的电动汽车等中搭载本实施方式的充电系统。
如图1所示,从主电池10输出的直流电力由升降压DC/DC转换器12进行升压。升压后的直流电力由变换器(inverter)14进行直交变换。变换后的交流电力被供给到旋转电机MG1、MG2的至少一方。
例如在不驱动内燃机ENG而仅利用旋转电机的驱动力使车辆行驶的EV行驶模式中,从主电池10向旋转电机MG2供给电力,由此得到的驱动力经由动力分配机构16传递给车轮18。
在除了旋转电机MG2以外还从内燃机ENG输出驱动力的HV行驶模式中,内燃机ENG的驱动力的一部分经由动力分配机构16传递给车轮18。剩余的驱动力经由动力分配机构16传递给旋转电机MG1,由此对旋转电机MG1进行发电驱动。其发电电力被供给至旋转电机MG2,由此得到的驱动力经由动力分配机构16传递给车轮18。
在图1所示的电动车辆中设置从将主电池10和升降压DC/DC转换器12连接的电路分支而与降压DC/DC转换器20连接的分支电路。由降压DC/DC转换器20降压后的直流电力被供给到子电池22以及控制部24。另外,通过使加热器开关26连接(接通),也向加热器28供给电力。
另外,在进行外部充电时,将外部的充电插头30与充电连接器32连接(插入插头)。插入插头后,充电继电器34从切断状态切换为连接状态。从外部电源36供给的交流电力通过充电器38进行功率因数改善以及交直变换,变换后的直流电力被供给到主电池10。此外,外部充电的详细内容将在后面叙述。
如图1所示,控制部24包含多个ECU(电子控制单元)而构成。具体而言,控制部24具备发动机ECU40、MG-ECU42、HV-ECU44、对照ECU46、电池ECU48、充电ECU50、以及仪表ECU56。
对各ECU的作用进行简单说明,发动机ECU40进行内燃机ENG的驱动控制。MG-ECU42经由升降压DC/DC转换器12以及变换器14的控制进行旋转电机MG1、MG2的驱动控制。HV-ECU44控制系统主继电器SMR的连接/切断和降压DC/DC转换器20。对照ECU46进行智能钥匙的认证。进而,电池ECU48进行主电池10的管理。充电ECU50如后面所述是控制外部充电的充电控制部64的基础部。仪表ECU56进行车内显示器52等显示器、计量仪器的显示控制、远程收发器(telematics transceiver)54等通信器的通信控制。
此外,在本实施方式中,上述的ECU中,HV-ECU44、电池ECU48、充电ECU50、以及仪表ECU56协调工作而构成充电控制部64。关于这一点将在后面叙述。
上述的各ECU也可以由不同的计算机构成,由一台计算机虚拟地对各ECU进行模块化。在如前者那样各ECU由不同的计算机构成的情况下,这些ECU例如能够利用CAN(ControlArea Network:控制局域网络)用的总线59(CAN总线)彼此进行通信。
<外部充电>
在外部充电之前,通过驾驶员等用户对电动车辆的点火-开关(未图示)进行断开(OFF)操作。与此相应地,HV-ECU44将系统主继电器SMR从连接状态切换为切断状态。另外,伴随点火-开关的断开操作,控制部24的各ECU成为休止状态。此外,休止(休眠)状态是指,向非易失性存储器和/或时钟、后述的外部充电计时器58、计时器开关62等总是需要电力供给的元件和/或电路以外的电力供给被切断了的状态。另外,休止期间指成为休止状态的期间,在该期间从子电池22供给电力。
在点火-开关的断开操作后,通过车辆的用户等将外部的充电插头30与车辆的充电连接器32连接(插入插头)。通过该插入插头,充电ECU50从休止状态启动。启动时的电力由子电池22供应。充电ECU50参照外部充电计时器58,确认是否对充电计时器功能进行了激活(ON,开)设定,也就是说是否设定有外部充电开始时刻。
在充电计时器功能进行了激活设定的情况下,在确认该设定后,充电ECU50对外部充电进行待机设定(使待机设定成为激活状态),并转变为休止状态。这样的外部充电待机功能是用于防止计时器充电设定期间的外部充电的误工作的功能,当使该功能成为有效(激活状态)时,例如使充电继电器34的连接请求成为保留状态或暂时无效。外部充电计时器58具备计时器开关的功能,当达到外部充电开始时刻时,使充电ECU50启动。
当达到外部充电开始时刻时,充电ECU50解除外部充电的待机设定(使待机设定成为非激活(OFF,关)状态),将充电继电器34从切断状态切换为连接状态。进而使充电器38工作,对从外部电源36供给的交流电力进行功率因数改善以及交直变换。变换后的直流电力被供给到主电池10。
与充电继电器34的连接一起,充电ECU50使电池ECU48启动。电池ECU48通过由电流传感器61测定的电流累计等算出(推定)主电池10的SOC(State Of Charge)。将算出的SOC发送至充电ECU50,在充电ECU50中基于该SOC来控制外部充电。例如当SOC达到预定的充电结束SOC时,充电ECU50将充电继电器34从连接状态切换为切断状态,使外部充电结束。
另外,在进行外部充电时,充电ECU50使HV-ECU44启动。通过启动了的HV-ECU44将系统主继电器SMR从切断状态切换为连接状态,从外部电源36供给并经由充电器38进行了交直变换的直流电力被供给到降压DC/DC转换器20。通过降压DC/DC转换器20降压了的直流电力被供给到子电池22、控制部24。
另外,电池ECU48从电池温度传感器60取得主电池10的温度Tb(电池温度)。当电池温度Tb低(例如-10℃以下)时,由于主电池10内部的物质移动变缓而内阻会增加。充电ECU50在进行主电池10的外部充电时,若内阻大则进行缩小充电容许功率(Win)的充电功率限制,在内阻增加的电池温度Tb为低温时,由于该充电电力限制,会使充电期间延长。另外,已知若电池温度Tb低则充电容量会减少,即使在低温时成为满充电,也有可能在规格温度(推荐温度)范围(例如0℃~50℃)中变得容量不足。
因此,电池ECU48在外部充电开始时刻的电池温度Tb低的情况下,使加热器开关26进行接通连接而使加热器28工作,来使主电池10升温。具体而言,电池ECU48在电池温度Tb为预定的第1升温要求温度A1以下的情况下,与外部充电一同地使主电池10升温到第1升温目标温度B1。第1升温要求温度A1例如为-10℃,第1升温目标温度B1例如为0℃。通过将主电池10提高到规格温度范围的0℃,能解除充电功率限制,缩短充电期间。另外,通过解除充电容量的降低,例如能对主电池10充电至足以进行EV行驶的容量。
进一步,在本实施方式中,如后面所叙述,除了在外部充电时使主电池10升温,还在伴随计时器充电的激活设定而控制部24转变为休止状态的计时器充电设定期间,为了抑制主电池10的冻结而实施适当升温。
进一步,在本实施方式中,当在计时器充电设定期间执行主电池10的升温时,使外部充电待机设定非激活(解除),与升温并行而执行对主电池10的外部充电。由此,能防止计时器充电设定期间的、伴随电池升温的主电池10的电池用尽。此外,解除外部充电待机设定,另一方面,可使充电计时器功能维持激活(有效)的状态。也就是说,计时器充电设定期间维持有效的状态不变。
<电池用充电系统>
本实施方式的电池用充电系统包含主电池10、电池温度传感器(温度取得部)60、加热器28、外部充电计时器58、计时器开关62、车内显示器52、远程收发器54、HV-ECU44、电池ECU48、充电ECU50、以及仪表ECU56而构成。HV-ECU44、电池ECU48、充电ECU50、以及仪表ECU56协调工作而构成充电控制部64。
主电池10由镍氢、锂离子电池等二次电池构成。例如主电池10由将1~5V左右的多个电池单元(单电池)进行层叠得到的堆(层叠体)构成。
电池温度传感器60是取得作为主电池10的温度的电池温度Tb的温度取得部。电池温度传感器60例如由热敏电阻构成,该温度检测元件可安装在主电池10的各电池单元中。
加热器28设置在主电池10的附近,使主电池10升温。在加热器28和降压DC/DC转换器20以及子电池22之间设置加热器开关26,通过该加热器开关26的接通/断开切换,控制由加热器28实现的升温。从主电池10供给的直流电力通过降压DC/DC转换器20进行降压,然后经由加热器开关26,降压后的直流电力被供给到加热器28。
车内显示器52是向车内的乘员显示各种信息的通知器。如后面所述,在计时器充电设定期间执行了外部充电的情况下(执行了升温时充电模式的情况),将该情况显示在车内显示器52上。
远程收发器54是将车辆的各种信息发送给用户、例如车辆的所有者的终端(例如智能手机)的通知器。如后面所述,在计时器充电设定期间执行了外部充电的情况下(执行了升温时充电模式的情况下),与此对应的消息通过远程收发器54发送给用户的终端。
外部充电计时器58是用于实施外部充电中的计时器充电功能的计时器开关。外部充电计时器58可以作为程序存储在充电ECU50中,也可以与充电ECU50相独立地设置计时器开关设备。在通过用户等的输入操作而插入插头之前在外部充电计时器58中设定外部充电开始时刻。另外,外部充电计时器58也可以设定外部充电结束时刻。在该情况下,充电ECU50根据由用户设定的外部充电结束时刻和主电池10的SOC等算出(反向运算)外部充电开始时刻。
计时器开关62为了使根据计时器充电功能而成为休止状态的充电控制部64(HV-ECU44、电池ECU48、充电ECU50、以及仪表ECU56)启动而设置。如后面所述,计时器开关62规定在从充电控制部64转变为休止状态的休止期间的开始时刻到外部充电开始时刻为止的计时器充电设定期间中的启动时刻。进而,在该启动时刻使充电控制部64启动。计时器开关62可以作为程序存储在充电ECU50中,也可以与充电ECU50相独立地设置计时器开关设备。关于对计时器开关62的启动时刻设定将在后面叙述。
仪表ECU56进行车内显示器52的显示控制。在仪表ECU56的存储部(未图示)存储有各种消息。例如在执行了后述的升温时充电模式时,将与此对应的消息从存储部调出并显示在车内显示器52上。另外,经由远程收发器54,向用户的终端发送该消息。
电池ECU48进行主电池10的管理。具体而言,电池ECU48进行主电池10的SOC、劣化状态、温度等的管理。电池ECU48从电流传感器61、电压传感器66、以及电池温度传感器60分别取得主电池10的电流、电压、以及电池温度Tb。另外,从加热器温度传感器68取得加热器温度。除此之外,电池ECU48能够操作加热器开关26,通过加热器开关26的接通(连接)/断开(切断)来控制加热器28。
充电ECU50是控制外部充电的充电控制部64的基础部。充电ECU50通过接收在将外部的充电插头30插入时从充电连接器32输出的插入插头信号,对执行了插入插头这一情况进行检测。另外,通过控制充电器38的未图示的开关元件的接通断开动作,进行功率因数变换和/或交直变换的控制。另外,充电ECU50能够对充电继电器34的连接/切断进行切换。进一步,充电ECU50在计时器充电功能被进行激活设定而达到外部充电开始时刻时,从外部充电计时器58接收启动信号。另外,对计时器开关62设定启动时刻,并且当达到该启动时刻时,从计时器开关62接收启动信号。
在本实施方式的电池用充电系统中,在对计时器充电功能进行激活设定、且控制部24转变为休止状态的计时器充电设定期间中,为了抑制主电池10的冻结,使用计时器开关62,在预定的启动时刻使充电控制部64(HV-ECU44、电池ECU48、充电ECU50、以及仪表ECU56)间歇启动。进一步,如后面所述,充电控制部64在上述计时器充电设定期间中,根据电池温度Tb使加热器28工作而使主电池10升温。由此,能够抑制计时器充电设定期间的主电池10的冻结。另外,在计时器充电设定期间中使充电控制部64不为总是工作(ON)的状态而使之适当休止,并通过使其间歇启动,能够抑制计时器充电设定期间的电力消耗。
进一步,在本实施方式中,在上述计时器充电设定期间中使加热器28工作而使主电池10升温时,与此一起解除外部充电待机设定,执行向主电池10的外部充电。通过对成为加热器28的电源的主电池10进行外部充电,能够防止伴随主电池10的升温导致的主电池10自身的电池用尽。
<升温模式>
在图2中例示出在计时器充电设定期间所执行的主电池10的升温模式。在本实施方式中,根据电池温度Tb设定有第1升温模式和第2升温模式这两种升温模式。两种升温模式都在充电控制部64的启动时刻的电池温度Tb为预定的温度以下时使加热器28工作而使主电池10升温。
第1升温模式着眼于解除由低温导致的主电池10的容量降低,并充分确保EV行驶的续航距离这一点。第1升温模式在电池温度Tb为第1升温要求温度A1以下且比第2升温要求温度A2大(超过)时执行。第1升温要求温度A1例如为-10℃,第2升温要求温度A2例如为-25℃。也就是说,当-25℃<Tb≦-10℃时执行第1升温模式。成为判定可否执行第1升温模式的基准的电池温度Tb使用例如在充电ECU50启动时,即插入插头时或由计时器开关62引起的启动时从电池温度传感器60取得的温度。
在第1升温模式中,充电控制部64使加热器28工作而使主电池10升温至第1升温目标温度B1。如上所述,在第1升温模式中,由于着眼于充分确保EV行驶的续航距离这一点,所以第1升温目标温度B1包含在主电池10的规格温度(推荐温度)的范围内。例如,第1升温目标温度B1为0℃。
另外,第1升温模式(以及第2升温模式)在计时器充电设定期间中能够执行多次。具体而言,在第1升温模式中定有到充电控制部64的下次启动为止的待机时间C1。待机时间C1例如为12小时。
此外,如后面所述,第1升温模式与第2升温模式相比较,将从升温要求温度到升温目标温度为止的升温幅度设定为较大,由于相应的工作量变大,所以加热器28、关联回路的负荷、电力消耗相对较大。因此,第1升温模式的可执行期间D1设定为比第2升温模式的可执行期间D2短。可执行期间D是指,从计时器充电设定期间的初期起算能够(许可)执行各升温模式的期间。例如,第1升温模式的可执行期间D1设定为7日,第2升温模式的可执行期间D2设定为31日。此外,计时器充电设定期间的初期是指,最初的休止期间开始时刻、也就是说插入插头后最初转变为休止状态的时刻,在后述的图3中是指最初进入步骤S22的时刻。
通过将第1升温模式的可执行期间D1设定为相对短,能够减轻加热器28以及关联回路的负荷。另外,通过将消耗电力相对多的第1升温模式的执行频度抑制为低,能够抑制主电池10的电池用尽。
在第2升温模式中,与确保EV行驶的续航距离相比,重点放在抑制加热器以及关联回路的负荷、消耗电力上。第2升温模式在电池温度Tb为第2升温要求温度A2以下(Tb≦A2)时执行。如上所述,例如第2升温要求温度A2为-25℃。通过将第2升温要求温度A2设定为比第1升温要求温度A1低,能够抑制加热器28的启动。
在第2升温模式中,充电控制部64使加热器28工作,使主电池10升温到第2升温目标温度B2。第2升温目标温度B2设定为从第2升温要求温度A2起的升温幅度ΔT2比从第1升温要求温度A1到第1升温目标温度B1为止的升温幅度ΔT1小(ΔT1>ΔT2)。第2升温目标温度B2例如设定为-20℃。也就是说,ΔT1=10℃,而ΔT2=5℃。
另外,如上所述,第2升温模式的可执行期间D2设定为比第1升温模式的可执行期间D1长。第2升温模式的可执行期间D2例如设定为31日。
通过将第2升温模式的可执行期间D2设定为相对长,能够在抑制加热器28以及关联回路的负荷的同时,抑制主电池10的冻结。尤其是通过使第2升温模式的可执行期间D2与计时器充电的最大设定期间一致,能够在计时器充电设定期间的整个期间,抑制主电池10的冻结。另外,通过将可执行期间设定为相对长的升温模式为消耗电力相对少的第2升温模式,能抑制主电池10的电池用尽。
此外,如后述的图6的时间图所示,多数情况下,成为本实施方式的电池升温流程启动的触发的插入插头,在对车辆的点火-开关(未图示)进行了断开操作之后的短时间内执行。此时,主电池10由于点火-接通时的充放电、周围的设备的工作的热而处于规格温度范围。因此,在插入插头后,当主电池10由于环境气温而冷却时,首先电池温度Tb降低至第1升温要求温度A1,由此执行第1升温模式。也就是说在插入插头后且可执行期间D1中主要执行第1升温模式,当超过可执行期间D1时从那之后执行第2升温模式。
另外,第2升温模式的(到下次启动为止的)待机时间C2设定为比第1升温模式的待机时间C1短。在第2升温模式中,将升温要求温度A2设定为相对低,还将升温幅度ΔT2设定为相对小,因此,升温目标温度B2比升温目标温度B1低。也就是说,主电池10冻结的可能性相对高。因此,在执行第2升温模式时,为了防止电池的冻结,使得能够以短间隔(频繁地)取得电池温度。第2升温模式的待机时间C2例如设定为6小时。
<主电池升温流程>
在图3~图5例示出计时器充电设定期间的主电池10的升温流程。该流程由充电控制部64执行。此外,用于执行该升温流程的程序例如存储在充电ECU50的存储部(未图示)中。
另外,主电池升温流程是用于抑制计时器充电设定期间的主电池10的冻结的流程,因此,在达到例如由计时器充电功能实现的外部充电开始时刻的时间点强制结束。另外,与此同时也解除(非激活设定)外部充电待机设定。
进而,由于主电池升温流程是用于抑制主电池10的冻结的流程,所以也可以在不可能冻结的夏季等使流程停止。也可以是,例如能够使用车内显示器52以及操作开关65来选择设定图3~图5所示的主电池升温流程的执行/停止。
除此之外,主电池升温流程以维持充电插头30插入充电连接器32的插入插头的状态为前提而构成。因此,在充电插头30从充电连接器32拔出的插头拔出的时间点,升温流程强制结束。另外,与此同时也解除(非激活设定)外部充电待机设定。
参照图3,将充电插头30插入充电连接器32的插入插头作为触发,开始升温流程。因插入插头而从休止状态启动的充电ECU50确认外部充电计时器58的计时器充电设定(S10)。在对计时器充电功能进行非激活设定的情况下,本流程结束。
在对计时器充电功能进行激活设定的情况下,也就是说在外部充电计时器58设定有外部充电开始时刻的情况下,充电ECU50对计时器充电设定期间、也即是外部充电开始时刻前的外部充电进行待机设定(将外部充电待机设定为激活)(S12)。接着,充电控制部64转变为休止状态,但是之前判定是否需要进行主电池10的升温。
充电ECU50从电池ECU48取得充电控制部64启动时、也即是插入插头时间点的电池温度Tb,并判定该电池温度Tb是否为第2升温要求温度A2以下(S14)。在电池温度Tb为第2升温要求温度A2以下的情况下,执行图5所示的第2升温模式以及升温时充电模式。
在电池温度Tb比第2升温要求温度A2大(超过)的情况下,充电ECU50判定电池温度Tb是否为第1升温要求温度A1以下(S16)。在电池温度Tb为第1升温要求温度A1以下的情况下,充电ECU50确认第1升温模式的可执行期间。即充电ECU50判定当前时刻是否是从计时器充电设定期间的开始时刻(最初的休止期间开始时刻、也即是插入插头后最初转变为休止状态的时刻)起经过了第1可执行期间D1的时刻(S18)。在没有经过第1可执行期间D1的情况下,执行图4所示的第1升温模式以及升温时充电模式。
在当前时刻是从最初的休止期间开始时刻起经过了第1可执行期间D1的时刻的情况下并且在步骤S16中电池温度Tb比第1升温要求温度A1大的情况下,不进行对主电池10的升温而设定下次的启动时刻。即充电ECU50对计时器开关62设定启动时刻(S20)。作为该启动时刻,设定从当前时刻起的第3待机时间C3后的时刻。第3待机时间C3例如也可以与第1升温模式的待机时间C1相等(C3=C1)。
在对计时器开关62设定了启动时刻之后,充电控制部64、也即是HV-ECU44、充电ECU50、电池ECU48、以及仪表ECU56转变为休止状态(S22)。
此外,通常的插入插头动作在车辆的停止后迅速执行,通过在此之前的伴随车辆行驶的充放电,电池温度Tb包含在使用温度范围内。因此,在刚刚插入插头就执行主电池10的升温很少见,多数情况下,在确认计时器充电功能的激活设定(S10)之后,外部充电待机设定成为激活(S12),就那样地转变为休止状态(S22)。
当经过待机时间C3时,计时器开关62使充电控制部64启动(S24)。具体而言,从计时器开关62向充电ECU50发送启动指令,由此使充电ECU50启动。启动时的电力由子电池22供应。接着,充电ECU50向HV-ECU44、电池ECU48以及仪表ECU56发送启动指令,使这些ECU启动。
充电ECU50判定启动时刻是否是从最初的休止期间开始时刻(最初进入步骤S22的时刻)起经过了第2可执行期间D2的时刻(S26)。在没有经过第2可执行期间D2的情况下,返回至步骤S14。
在计时器开关62所设定的启动时刻是从最初的休止期间开始时刻起经过了第2可执行期间D2的时刻的情况下,由于D1<D2,所以也经过了第1可执行期间D1。也就是说成为第1升温模式和第2升温模式都不被许可执行的状态。此时,仪表ECU56经由远程收发器54,向用户的终端发送主电池10的升温功能已结束之意的消息(S28)。之后充电控制部64转变为休止状态(S30),流程结束。
在图4中例示出第1升温模式的流程。此外,在图4中,为了便于图示,用单点划线将从使加热器28接通(ON)的步骤S32到返回图3的步骤S22的参照记号h为止围起来作为第1升温模式,但是实际上将到参照记号h之前的步骤S22为止作为第1升温模式。另外,在本实施方式中,与第1升温模式并行,执行外部充电待机设定的解除和对主电池10进行外部充电的升温时充电模式。通过执行升温模式并进行主电池10的外部充电,向主电池10供应升温时所消耗的电力。
在步骤S18(图3)中,在充电控制部64启动的时刻还没有达到从最初的休止期间开始时刻起经过了第1可执行期间D1的时刻的情况下,执行第1升温模式以及升温时充电模式。
每当执行第1升温模式,HV-ECU44将系统主继电器SMR从切断状态切换为连接状态。由此,从主电池10向降压DC/DC转换器20供给电力。进而,电池ECU48将加热器开关26从切断(断开)状态切换为连接(接通)状态。其结果,通过降压DC/DC转换器20降压后的电力被向加热器28供给(S32)。
此外,此时,通过降压DC/DC转换器20降压后的电力除了加热器28以外还被向子电池22供给。如上所述,子电池22成为使充电控制部64从休止状态启动时的电源。通过在执行第1升温模式(以及后述的第2升温模式也是同样的)时对子电池22充电,能确保之后的计时器充电设定期间以及使充电控制部64启动时的电力。
当加热器28成为接通状态时,电池ECU48从电池温度传感器60接收电池温度Tb(S34)。在电池温度传感器60由热敏电阻构成的情况下,电池ECU48向该热敏电阻施加预定的电压,根据相应的热敏电阻的电阻值算出电池温度Tb。电池ECU48判定电池温度Tb是否成为第1升温目标温度B1以上(S36)。在电池温度Tb低于第1升温目标温度B1的情况下,返回至步骤S34。
在步骤S36中判定为电池温度Tb为第1升温目标温度B1以上时,电池ECU48将加热器开关26从连接状态切换为切断状态,使加热器28断开(OFF)(S38)。
之后,充电ECU50重新设定在计时器开关62中设定的启动时刻(S40)。具体而言,充电ECU50将从升温结束时刻、也即是电池温度Tb达到了第1升温目标温度B1的时刻起经过第1待机时间C1后的时刻重新设定为下次的启动时刻。在重新设定后进行待机直到升温时充电模式结束(S42)。
与执行第1升温模式并行,充电ECU50判定外部充电待机设定是否是激活状态(S44)。在进行了激活设定的情况下,充电ECU50解除外部充电待机设定(使外部充电待机设定为非激活)(S46)。由此,计时器充电设定期间的外部充电成为可能。与此相伴,充电ECU50执行升温时充电模式。充电ECU50将充电继电器34从切断状态切换为连接状态,并且使充电器38驱动。相应地,从外部电源36向主电池10供给电力(S48)。
电池ECU48通过对由电流传感器61测定的电流值进行累计,算出(推定)主电池10的SOC(S50)。电池ECU48判定算出的SOC是否为预定的充电结束SOCth(满充电SOC)以上(S52)。
在算出的SOC低于充电结束SOCth的情况下,返回至步骤S50而继续进行外部充电。在算出的SOC为充电结束SOCth以上的情况下,充电ECU50使外部充电结束(S54),使升温时充电模式结束。例如,控制充电器38的升压率以使得充电器38的输出电压成为与主电池10的充电结束SOCth对应的电压值以下。之后,充电ECU50以及构成充电控制部64的其他ECU待机直到第1升温模式结束(S56)。
在升温时充电模式比第1升温模式提前结束的情况下,图4所示的流程在步骤S56成为待机状态。当第1升温模式结束时,从步骤S56进入接下来的步骤S58。另外,在第1升温模式侧的流程中,在第1升温模式结束(S40)后会经过步骤S42。也就是说,步骤S56和S42实质上同时(至少以同一时钟计数)进入步骤S58。
在步骤S58中,向用户通知外部充电以及第1升温模式的执行。如上所述,升温时充电模式以及第1升温模式基本上在车内没有乘员的计时器充电设定期间执行。通过设置步骤S58的通知步骤,用户能够知道执行了外部充电以及第1升温模式。尤其是通过通知用户意图外的外部充电的执行,用户能够认识到伴随外部充电的执行而产生电费。
仪表ECU56使消息显示在车内显示器52上。例如使“由于驱动用电池为低温,所以使充电以及升温优先”等消息显示在车内显示器52上。另外,与此同时,锁定对车内显示器52的显示内容进行操作的操作开关65,使得上述消息的显示不会消失。通过坐入车辆的用户视觉确认该显示,能够知道外部充电以及升温模式的实施。另外,仪表ECU56经由远程收发器54,向用户的终端发送同样的消息。在步骤S58之后,返回图3的步骤S22,充电控制部64转变为休止期间。
在图5中例示出第2升温模式的流程。此外,在图5中为了便于图示,用单点划线将从使加热器28接通的步骤S32到返回图3的步骤S22的参照记号h为止围起来作为第2升温模式,但是实际上将参照记号h的目的地的步骤S22之前的工作作为第2升温模式。
另外,在本实施方式中,与第1升温模式同样,与第2升温模式并行而执行外部充电待机设定的解除以及升温时充电模式。此外,针对与图4相同的步骤标注同一符号,并省略适当说明。在步骤S14(图3)中,当判定为电池温度Tb为第2升温要求温度A2以下时,执行第2升温模式以及升温时充电模式。
在第2升温模式中,作为与第1升温模式不同之处在于,升温时的电池温度Tb的比较对象为第2升温目标温度B2(S60)。另外,每当重新设定计时器开关62的启动时刻时,充电ECU50将从升温结束时刻、也即是电池温度Tb达到了第2升温目标温度B2的时刻起经过第2待机时间C2后的时刻重新设定为下次的启动时刻(S62)。在第2升温模式中,除了上述那样的作为比较对象的参数的变更以外,执行与第1升温模式同样的处理。
另外,与第2升温模式并行而执行的外部充电待机设定的解除以及升温时充电模式中,除了在步骤S64中待机直到第2升温模式结束以外,执行与图4所示的流程同样的处理。
<实施例>
在图6中例示出实施本实施方式的主电池升温流程时的时间图。纵轴表示电池温度Tb,横轴表示时间(日)。计时器充电设定期间设为31日。另外,在该例中将第1可执行期间D1设定为7日,将第2可执行期间D2设定为31日。进一步,在该例中,将第1待机时间C1设定为12小时,将第2待机时间C2设定为6小时,将第3待机时间C3设定为12小时。
另外,在该时间图中,假设为在充电连接器32与充电插头30连接(插入插头)的状态下将车辆长时间放置的情况。例如在寒冷地的具备外部充电功能的停车场使车辆长时间停车的情况等正是如此。
在将充电插头30与充电连接器32连接(插入插头)时,启动充电控制部64。充电控制部64的充电ECU50经由电池ECU48从电池温度传感器60取得启动时的电池温度Tb。通常插入插头在车辆行驶后的短时间内执行。通过伴随车辆行驶的充放电,电池温度Tb包含在使用温度范围内。在这样的情况下,由于不需要主电池10的升温,所以充电ECU50在将外部充电待机设定为激活(有效)之后(S12),对计时器开关62设定从插入插头的启动时刻加上第3待机时间C3的时刻来作为下次启动时刻。之后,充电控制部64转变为休止状态(S14→S16→S20→S22)。进一步,在经过第3待机时间C3之后,如图6的时间图中点(·)所示,充电控制部64启动(S24)。在图6中,由于在该启动时刻电池温度Tb也比第1升温要求温度A1大,所以充电ECU50对计时器开关62重新设定从启动时刻(当前时刻)起经过了第3待机时间C3后的时刻来作为下次的启动时刻(S26→S14→S16→S20→S22→S24→S26)。反复执行该充电控制部64的再启动和对计时器开关62的重新设定直到时刻t1为止。
当在时刻t1启动充电控制部64时,时刻t1的电池温度Tb为第1升温要求温度A1以下且比第2升温要求温度A2大。响应于此,充电控制部64执行第1升温模式(S24→S26→S14→S16→S18→第1升温模式)。另外,与之并行地解除外部充电待机设定(S46),执行升温时充电模式。
当电池温度Tb达到第1升温目标温度B1时,第1升温模式结束。另外,当主电池10的SOC达到充电结束SOCth时,升温时充电模式结束。另外,充电ECU50对计时器开关62重新设定从第1升温模式的结束时刻起经过了第1待机时间C1的时刻来作为下次的启动时刻,之后转变为休止状态。
在下次的启动时刻t2,由于电池温度Tb比第1升温要求温度A1大(A1<Tb),所以不执行第1以及第2升温模式,而重新设定下次的启动时刻。在下次的启动时刻t3由于电池温度Tb为第1升温要求温度A1以下且比第2升温要求温度A2大,所以再次执行第1升温模式(以及升温时充电模式)。执行与时刻t1以及时刻t2同样的处理直到以下时刻t4为止。
在时刻t4,由于从最初的休止期间开始时刻经过了第1可执行期间D1,所以不执行第1升温模式。也就是说,在时刻t4以后,在图3的流程中步骤S18始终进入步骤S20。在该情况下,不执行主电池10的升温而反复进行充电控制部64的启动和启动时刻的重新设定,直到电池温度Tb成为第2升温要求温度A2以下为止。
由于在成为时刻t5时电池温度Tb成为第2升温要求温度A2以下,所以执行第2升温模式以及升温时充电模式。当电池温度Tb达到第2升温目标温度B2时,第2升温模式结束。另外,当主电池10的SOC达到充电结束SOCth时,升温时充电模式结束。充电ECU50对计时器开关62重新设定从电池温度Tb达到了第2升温目标温度B2时刻起加上第2待机时间C2而得到的时刻来作为下次的启动时刻。
以后,每次重新启动时执行第2升温模式。通过将启动间隔设为相对短的第2待机时间,能抑制主电池10的冻结。
在时刻t6以后,主电池10的温度因环境气温而上升。例如,可以例示出寒流通过后的状况。电池温度Tb低于第1升温要求温度A1,但是由于经过了第1升温模式的可执行期间D1,所以反复进行充电控制部64的再启动和启动时刻的重新设定直到外部充电开始时刻(31d)。
<其他实施方式>
在上述的实施方式中,作为充电控制部64的启动时刻的电池温度Tb,使用了该时刻的电池温度传感器60的测定值,但是并不限于该方式。例如也可以算出该时刻的电池温度Tb的推定值。
在从预定时刻(时刻tn)起经过了一定时间tw后的时刻tn+1的电池温度的推定值Tb_es(tn+1)能够使用以下式(1)算出。此外,Tb_tn指时刻tn的电池温度,α指该时刻tn的推定环境温度。另外,D是规定的常数。
Tb_es(tn+1)=(Tb_tn-α)e-D/tw+α···(I)
在充电控制部64例如电池ECU48的存储部(未图示)中存储有上述式(1)。电池ECU48通过将从电池温度传感器60取得的当前时刻tn的电池温度Tb_tn和从当前时刻tn到充电控制部64的下次的启动时刻tn+1为止的待机时间tw代入式(1),求出下次的启动时刻的电池温度的推定值Tb_es(tn+1)。
另外,将下次的启动时刻tn+1的电池温度的推定值Tb_es(tn+1)和在时刻tn+1从电池温度传感器60取得的电池温度的实测值Tb进行比较,根据该差量修正推定环境温度α。通过反复执行该修正,能够提高电池温度的推定值Tb_es的推定精度。
通过使用电池温度的推定值Tb_es,能够事先进行图3~图5的流程的一部分。例如,在当前的启动时刻tn推定下次的启动时刻tn+1的电池温度的推定值Tb_es(tn+1),基于此,能够在当前时刻tn时进行下次的启动时刻tn+1的图3的流程中的S10~S16。也就是说,能够在当前时刻tn判定在下次的启动时刻tn+1时,使(1)第1升温模式以及升温时充电模式的执行、(2)第2升温模式以及升温时充电模式的执行、以及(3)不执行两升温模式以及升温时充电模式而基于第3待机时间C3确定下次的启动时刻(图3的S20)中的哪一个执行。通过完成这样的事先判定,能够在下次的启动时刻tn+1迅速地转变为升温和/或外部充电。
这样,在除了电池温度传感器60的电池温度实测值以外还使用电池ECU48的电池温度的推定值的情况下,除了电池温度传感器60以外,电池ECU48也包含在温度取得部中。
在图7中例示出使用了电池温度的推定值Tb_es的电池升温流程。与图3同样地,以将充电插头30插入至充电连接器32的插入插头为触发,开始升温流程。因插入插头而从休止状态启动了的充电ECU50确认外部充电计时器58的计时器充电设定(S100)。在对计时器充电功能进行了非激活设定的情况下,本流程结束。
在对计时器充电功能进行了激活设定的情况下,充电ECU50将外部充电待机设定设为激活(S102)。进一步,充电ECU50经由电池ECU48从电池温度传感器60取得充电控制部64启动时、也即是插入插头时间点的电池温度的实测值Tb,判定该电池温度Tb是否为第2升温要求温度A2以下(S104)。在电池温度Tb为第2升温要求温度A2以下的情况下,执行图5所示的第2升温模式、外部充电待机设定的解除、以及升温时充电模式。
在步骤S104中电池温度Tb比第2升温要求温度A2大的情况下,充电ECU50判定电池温度Tb是否为第1升温要求温度A1以下(S106)。在电池温度Tb为第1升温要求温度A1以下的情况下,执行图4所示的第1升温模式、外部充电待机设定的解除、以及升温时充电模式。
在步骤S106中电池温度Tb比第1升温要求温度A1大的情况下,不进行对主电池10的升温而设定下次的启动时刻tn+1。即充电ECU50对计时器开关62设定启动时刻(S108)。设定从当前时刻起第3待机时间C3后的时刻来作为该启动时刻。与图3同样地,第3待机时间C3例如也可以与第1升温模式的待机时间C1相等(C3=C1)。
在对计时器开关62设定了下次的启动时刻tn+1之后,电池ECU48基于上述式(1),求出下次的启动时刻tn+1的电池温度的推定值Tb_es(tn+1)(S110)。接着,充电ECU50判定通过电池ECU48算出的推定值Tb_es(tn+1)是否为第2升温要求温度A2以下(S112)。在推定值Tb_es(tn+1)为第2升温要求温度A2以下的情况下,设定判定值f(S114)。
在步骤S112中推定值Tb_es(tn+1)比第2升温要求温度A2大的情况下,充电ECU50判定推定值Tb_es(tn+1)是否为第1升温要求温度A1以下(S116)。
在步骤S116中,在推定值Tb_es(tn+1)为第1升温要求温度A1以下的情况下,充电ECU50判定下次的启动时刻tn+1是否是从计时器充电设定期间的开始时刻(最初的休止期间开始时刻、也即是插入插头后最初转变为休止状态的时刻)起经过了第1可执行期间D1(S118)。在下次的启动时刻tn+1并未从计时器充电设定期间的开始时刻起经过第1可执行期间D1的情况下,设定判定值g(S120)。
在下次的启动时刻tn+1是从最初的休止期间的开始时刻起经过了第1可执行期间D1的情况下、以及在步骤S116中推定值Tb_es(tn+1)比第1升温要求温度A1大的情况下,设定判定值e(S122)。
在步骤S114、S120、S122中分别设定了判定值之后,充电控制部64转变为休止状态(S124)。当达到启动时刻tn+1时,计时器开关62使充电控制部64启动(S126)。休止期间以及启动时的电力由子电池22供应。
充电ECU50判定启动时刻tn+1是否是从最初的休止期间开始时刻起经过了第2可执行期间D2的时刻(S128)。在经过第2可执行期间D2的情况下,仪表ECU56经由远程收发器54,向用户的终端发送主电池10的升温功能结束之意的消息(S130)。之后,充电控制部64转变为休止状态(S132),流程结束。
在步骤S128中,在启动时刻tn+1并未从最初的休止期间开始时刻起经过了第2可执行期间D2的情况下,充电ECU50参照在上次的启动时刻tn所设定的判定值(S134)。在设定有判定值e的情况下,返回至步骤S108。在设定有判定值g的情况下,执行图4所示的第1升温模式、外部充电待机设定的解除、以及升温时充电模式。在设定有判定值f的情况下,执行图5所示的第2升温模式、外部充电待机设定的解除、以及升温时充电模式。此外,当图4以及图5的流程推进而执行步骤S58(通知步骤)时,流程返回至步骤S110。

Claims (8)

1.一种电动车辆的电池充电系统,其特征在于,包括:
充电连接器,构成为供外部电源的充电插头连接;
充电控制部,构成为对通过所述外部电源对电池充电的外部充电进行控制;
外部充电计时器,构成为能够通过用户的操作来设定外部充电开始时刻;
温度取得部,取得电池温度;以及
加热器,使所述电池升温,
所述充电控制部在所述充电插头插入至所述充电连接器时在所述外部充电计时器设定有所述外部充电开始时刻的情况下,对该外部充电开始时刻前的外部充电进行待机设定并转变为休止状态,在从转变为所述休止状态的休止期间开始时刻起到所述外部充电开始时刻为止的计时器充电设定期间,所述充电控制部间歇启动,并且在所述充电控制部启动时的所述电池温度为预定的温度以下时,执行使所述加热器工作而使所述电池升温的升温模式,
所述充电控制部还在执行所述升温模式时,解除所述外部充电的待机设定,并且执行进行所述外部充电的升温时充电模式,
还包括计时器开关,所述计时器开关规定所述计时器充电设定期间中的启动时刻,并且在所述启动时刻使所述充电控制部启动,
所述充电控制部构成为,执行第1升温模式和第2升温模式来作为所述升温模式,
所述充电控制部构成为,
在所述第1升温模式中,在所述启动时刻所述电池温度为第1升温要求温度以下且比低于所述第1升温要求温度的第2升温要求温度高的情况下,使所述加热器工作而开始所述电池的升温,若所述电池升温到了第1升温目标温度,则重新设定所述启动时刻,然后,再次转变为所述休止状态,
在所述第2升温模式中,在所述启动时刻所述电池温度为所述第2升温要求温度以下的情况下,使所述加热器工作而开始所述电池的升温,当所述电池升温到了第2升温目标温度,则重新设定所述启动时刻,然后,再次转变为所述休止状态,所述第2升温目标温度是从所述第2升温要求温度起到该第2升温目标温度为止的升温幅度比从所述第1升温要求温度起到所述第1升温目标温度为止的升温幅度小的升温目标温度,
所述第1升温模式设定为在从最初的所述休止期间开始时刻起的第1期间内执行,所述第2升温模式设定为在从最初的所述休止期间开始时刻起的比所述第1期间长的第2期间内执行。
2.根据权利要求1所述的电动车辆的电池充电系统,其特征在于,
所述充电控制部,
在执行所述第1升温模式时,将从所述电池温度达到所述第1升温目标温度的时刻起经过了第1待机时间的时刻重新设定为所述启动时刻,
在执行所述第2升温模式时,将从所述电池温度达到所述第2升温目标温度的时刻起经过了比所述第1待机时间短的第2待机时间的时刻重新设定为所述启动时刻。
3.根据权利要求1或2所述的电动车辆的电池充电系统,其特征在于,
所述充电控制部在所述充电插头插入至所述充电连接器之后且所述第1期间中执行所述第1升温模式,当超过所述第1期间时,执行所述第2升温模式。
4.根据权利要求1或2所述的电动车辆的电池充电系统,其特征在于,
所述充电控制部在从最初的所述休止期间开始时刻起经过所述第1期间的情况下、以及在所述电池温度比所述第1升温要求温度高的情况下,不执行升温模式,设定下次的启动时刻,然后,使所述外部充电成为所述休止状态。
5.根据权利要求1或2所述的电动车辆的电池充电系统,其特征在于,
还包括通知器,所述通知器在执行了所述升温时充电模式时,对所述用户进行通知。
6.根据权利要求1或2所述的电动车辆的电池充电系统,其特征在于,
所述温度取得部取得插入插头时或所述充电控制部启动时的电池温度。
7.根据权利要求1或2所述的电动车辆的电池充电系统,其中,
所述温度取得部通过基于所述计时器充电设定期间中的预定的启动时刻的电池温度和从所述预定的启动时刻起到下一启动时刻为止的待机时间来推定下一启动时刻的电池温度,从而取得所述电池温度。
8.一种电动车辆的电池充电方法,其特征在于,包括:
在外部电源的充电插头插入至车载的充电连接器时设定有外部充电开始时刻的情况下,对该外部充电开始时刻前的外部充电进行待机设定并使控制所述外部充电的电子控制单元转变为休止状态,在从转变为所述休止状态的休止期间开始时刻起到所述外部充电开始时刻为止的计时器充电设定期间使所述电子控制单元间歇启动,并且在外部充电开始时的车载的电池的温度为预定的温度以下时,执行使加热器工作而使所述电池升温的升温模式,
在执行所述升温模式时,解除所述外部充电的待机设定,并执行进行所述外部充电的升温时充电模式,
规定所述计时器充电设定期间中的启动时刻,并且在所述启动时刻使充电控制部启动,
执行第1升温模式和第2升温模式来作为所述升温模式,
在所述第1升温模式中,在所述启动时刻所述电池温度为第1升温要求温度以下且比低于所述第1升温要求温度的第2升温要求温度高的情况下,使所述加热器工作而开始所述电池的升温,若所述电池升温到了第1升温目标温度,则重新设定所述启动时刻,然后,再次转变为所述休止状态,
在所述第2升温模式中,在所述启动时刻所述电池温度为所述第2升温要求温度以下的情况下,使所述加热器工作而开始所述电池的升温,当所述电池升温到了第2升温目标温度,则重新设定所述启动时刻,然后,再次转变为所述休止状态,所述第2升温目标温度是从所述第2升温要求温度起到该第2升温目标温度为止的升温幅度比从所述第1升温要求温度起到所述第1升温目标温度为止的升温幅度小的升温目标温度,
所述第1升温模式设定为在从最初的所述休止期间开始时刻起的第1期间内执行,所述第2升温模式设定为在从最初的所述休止期间开始时刻起的比所述第1期间长的第2期间内执行。
CN201710506484.0A 2016-07-04 2017-06-28 电动车辆的电池充电系统以及电池充电方法 Active CN107571745B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-132181 2016-07-04
JP2016132181A JP6520848B2 (ja) 2016-07-04 2016-07-04 電動車両のバッテリ充電システム

Publications (2)

Publication Number Publication Date
CN107571745A CN107571745A (zh) 2018-01-12
CN107571745B true CN107571745B (zh) 2020-03-13

Family

ID=59269932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710506484.0A Active CN107571745B (zh) 2016-07-04 2017-06-28 电动车辆的电池充电系统以及电池充电方法

Country Status (6)

Country Link
US (1) US10179514B2 (zh)
EP (1) EP3266641B1 (zh)
JP (1) JP6520848B2 (zh)
KR (1) KR101986888B1 (zh)
CN (1) CN107571745B (zh)
RU (1) RU2666147C1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569122B2 (ja) * 2015-08-05 2019-09-04 株式会社オートネットワーク技術研究所 車載充電システム
US10796500B2 (en) * 2017-08-01 2020-10-06 Ford Global Technologies, Llc Electronic communication modules provisioning for smart connectivity
DE102017222541A1 (de) * 2017-12-13 2019-06-13 Bayerische Motoren Werke Aktiengesellschaft Hochvolt-Steckverbindungsteil für einen Hochvolt-Steckverbinder eines Kraftfahrzeugs, Hochvoltbordnetz sowie Kraftfahrzeug
US10795986B2 (en) * 2018-02-12 2020-10-06 Ge Energy Power Conversion Technology Limited Method and system for authenticating a component in a power converter
JP7070294B2 (ja) * 2018-09-27 2022-05-18 トヨタ自動車株式会社 車両の制御装置
JP7103135B2 (ja) * 2018-10-04 2022-07-20 トヨタ自動車株式会社 充電装置
FR3087899B1 (fr) * 2018-10-26 2021-01-15 Renault Sas Methode de charge d'une batterie d'accumulateurs par une borne de charge
CN111261977A (zh) * 2018-11-30 2020-06-09 株式会社斯巴鲁 车辆的电池加热装置
JP7115338B2 (ja) * 2019-01-25 2022-08-09 トヨタ自動車株式会社 電動車両
JP7111078B2 (ja) 2019-08-27 2022-08-02 トヨタ自動車株式会社 電動車両
CN110808434B (zh) * 2019-09-25 2022-04-08 浙江合众新能源汽车有限公司 一种汽车低温充电时动力电池的加热控制方法及装置
CN112824139B (zh) * 2020-05-07 2022-06-28 长城汽车股份有限公司 车辆的电池保温方法、系统
CN111942228A (zh) * 2020-07-28 2020-11-17 中国第一汽车股份有限公司 一种电动汽车低温充电控制系统及其控制方法
CN112248883B (zh) * 2020-10-28 2022-06-14 睿驰电装(大连)电动系统有限公司 动力电池的加热方法、装置和电子设备
JP7426332B2 (ja) * 2020-11-20 2024-02-01 プライムプラネットエナジー&ソリューションズ株式会社 充電制御装置
CN113504790B (zh) * 2021-07-08 2022-08-26 中国南方电网有限责任公司超高压输电公司大理局 一种无人机的飞行控制方法、装置及无人机

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986430A (en) * 1998-07-06 1999-11-16 Motorola, Inc. Method for ultra-rapidly charging a rechargeable battery using multi-mode regulation in a vehicular recharging system
US6380712B2 (en) * 2000-04-10 2002-04-30 Kenneth C. Murphy Battery booster with preconditioning and temperature compensation
JP4379441B2 (ja) * 2006-07-18 2009-12-09 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、蓄電装置の昇温制御方法、ならびに蓄電装置の昇温制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
KR101230353B1 (ko) * 2010-01-28 2013-02-06 주식회사 엘지화학 전지 내부 저항을 이용한 저온 성능 개선 전지팩 시스템
KR101184752B1 (ko) * 2010-06-03 2012-09-20 정윤이 배터리 팩 그리고 배터리 팩의 충전 방법
JP2012044813A (ja) * 2010-08-20 2012-03-01 Denso Corp 車両用電源装置
JP2012055115A (ja) * 2010-09-02 2012-03-15 Panasonic Electric Works Co Ltd 充電制御装置及び充電制御システム
EP2634035B1 (en) * 2010-10-28 2018-05-16 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
JP5506052B2 (ja) 2010-12-28 2014-05-28 トヨタ自動車株式会社 車両用充電装置
JP5720322B2 (ja) * 2011-03-11 2015-05-20 日産自動車株式会社 バッテリ温度制御装置
JP5668541B2 (ja) * 2011-03-11 2015-02-12 日産自動車株式会社 車両の充電制御装置
JP5736860B2 (ja) * 2011-03-11 2015-06-17 日産自動車株式会社 バッテリ充電制御装置
JP2012209213A (ja) * 2011-03-30 2012-10-25 Equos Research Co Ltd 電動車両充電システム
JP5821310B2 (ja) 2011-06-14 2015-11-24 三菱自動車工業株式会社 車両の暖機制御装置
CN102945988B (zh) * 2012-11-26 2015-12-23 小米科技有限责任公司 一种控制电池温度的方法及装置
JP2015006043A (ja) * 2013-06-19 2015-01-08 住友電気工業株式会社 電源システム
JP6176223B2 (ja) * 2014-11-04 2017-08-09 トヨタ自動車株式会社 バッテリシステム
US10581251B2 (en) * 2014-12-18 2020-03-03 Fca Us Llc Battery pack active thermal management system
JP6156353B2 (ja) 2014-12-24 2017-07-05 トヨタ自動車株式会社 車載電池の昇温装置および昇温方法

Also Published As

Publication number Publication date
JP6520848B2 (ja) 2019-05-29
KR20180004667A (ko) 2018-01-12
BR102017013716A2 (pt) 2018-01-16
EP3266641B1 (en) 2019-11-27
RU2666147C1 (ru) 2018-09-06
JP2018007428A (ja) 2018-01-11
EP3266641A1 (en) 2018-01-10
US20180001774A1 (en) 2018-01-04
CN107571745A (zh) 2018-01-12
KR101986888B1 (ko) 2019-06-07
US10179514B2 (en) 2019-01-15

Similar Documents

Publication Publication Date Title
CN107571745B (zh) 电动车辆的电池充电系统以及电池充电方法
CN107404144B (zh) 太阳能电池系统
US10543757B2 (en) Techniques for adjusting wakeup time of an electrified vehicle for low voltage battery conditioning
US9573476B2 (en) Method and apparatus for controller wakeup using control pilot signal from charge port
JP5757298B2 (ja) 車両の電源システムおよびそれを備える車両
RU2561162C1 (ru) Система зарядки транспортного средства и способ зарядки транспортного средства
US11167657B2 (en) Vehicle charging system
US20150258911A1 (en) Hybrid vehicle
JP2011182518A (ja) 車載充電制御装置
US9789771B2 (en) Single battery architecture for electrification vehicle
JP2012143026A (ja) 車両用充電装置
US20200307412A1 (en) Vehicle
WO2013031320A1 (ja) 車両用充電システム
JP2014003737A (ja) 充電制御装置
JP2012075268A (ja) 蓄電池の充電システム
KR20140031500A (ko) 전기자동차 충전 제어 시스템 및 그 방법
JP6402687B2 (ja) 車両電池システム
US20220009357A1 (en) Vehicle control apparatus, control method, non-transitory storage medium, and vehicle
JP7236984B2 (ja) バッテリ管理装置およびバッテリ管理方法
CN111762033A (zh) 控制车辆供电的方法、装置、存储介质及车辆
BR102017013716B1 (pt) Sistema de carga de bateria e método de carga de bateria para um veículo acionado eletricamente
JP6488972B2 (ja) 車両電池システム
JP2023106974A (ja) バッテリ温調システム
JP2014150635A (ja) 車載制御装置
JPWO2013140536A1 (ja) 電動車両、電力設備および電力供給システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant