CN107546126A - SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法 - Google Patents

SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法 Download PDF

Info

Publication number
CN107546126A
CN107546126A CN201610486998.XA CN201610486998A CN107546126A CN 107546126 A CN107546126 A CN 107546126A CN 201610486998 A CN201610486998 A CN 201610486998A CN 107546126 A CN107546126 A CN 107546126A
Authority
CN
China
Prior art keywords
layer
pmos
layers
grid
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610486998.XA
Other languages
English (en)
Other versions
CN107546126B (zh
Inventor
魏青
宋建军
刘伟峰
胡辉勇
宣荣喜
张鹤鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610486998.XA priority Critical patent/CN107546126B/zh
Publication of CN107546126A publication Critical patent/CN107546126A/zh
Application granted granted Critical
Publication of CN107546126B publication Critical patent/CN107546126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及一种SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法。该制备方法包括:选取单晶Si衬底;生长第一Ge层;生长第二Ge层;连续生长栅介质层和栅极层,选择性刻蚀工艺刻蚀所述栅介质层和所述栅极层形成栅极;在栅极表面形成栅极保护层;刻蚀所述第二Ge层在所述PMOS栅极位置处形成Ge台阶;采用外延工艺在所述第二Ge层表面生长Si0.24Ge0.73C0.03层;去除所述栅极保护层,利用离子注入工艺形成PMOS源漏极,最终形成PMOS器件。本发明将直接带隙Ge材料作为PMOS器件的沟道可以提升PMOS器件沟道载流子迁移率,提升电流驱动能力,使PMOS器件具有工作速度高、频率特性好的优点。同时,本发明所提出的直接带隙Ge PMOS还具有单片光电集成的优势。

Description

SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法
技术领域
本发明涉及集成电路技术领域,特别涉及一种SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法。
背景技术
集成电路(IC,Integrated Circuit)自出现以来便发展迅速,并在各领域得到广泛应用,如今集成电路已经成为电子信息产业的核心。集成电路的发展将对人类社会的发展起着深远的影响。它能在短短的几十年内得到如此迅速的发展,并非偶然,它有着它自身的发展规律——摩尔定律(Moore's law)。然而集成电路的快速发展使得很多技术很快不能满足工艺的需求。集成电路集成度的不断提高,特征尺寸的不断减小带来了一系列问题,包括器件物理极限、光刻工艺、互连线的限制等问题,这些问题导致CMOS器件性能下降。
CMOS由PMOS和NMOS互补组成,相同宽长比的条件下,PMOS的驱动电流往往比NMOS小很多。一般是增大PMOS器件的宽长比来实现驱动电流的匹配,但这样会使电路的速度和集成度都受到一定影响,降低了电路的整体性能,不能满足集成电路发展的需求,从而限制了集成电路的发展。因此,保持CMOS集成电路的快速发展,如何提升PMOS器件的性能尤为重要。
为了延续摩尔定律,新沟道材料、新工艺技术和新集成方式不断涌现。特别的,采用高迁移率材料作为PMOS器件沟道是提升器件速度、性能的有效途径之一。
锗(Ge)材料的空穴迁移率为1900cm2/V·s约为Si材料的4倍,因此可将Ge作为沟道材料来提高PMOS的性能。而值得注意的是,Ge为间接带隙半导体,通过改性技术(如应变技术),其可由间接带隙半导体变为直接带隙半导体。直接带隙Ge半导体价带轻、重空穴带发生分裂,空穴有效质量降低,其空穴迁移率相较Ge 半导体空穴迁移率显著增强。因此,若采用直接带隙Ge半导体替换Si半导体作为PMOS器件沟道材料,PMOS器件沟道电流驱动能力大大提高,工作速度高、频率特性好,器件性能将获显著提升。同时,直接带隙Ge复合效率高,涉及光电集成的各重要元件(光源、光调制器、光探测器、电子器件),甚至均可在同一有源层集成于同一芯片上。因此,直接带隙Ge PMOS还具有单片光电集成的潜在应用优势。
要实现直接带隙Ge PMOS集成器件的设计与制造,首先需要解决直接带隙Ge材料的问题。目前,国内外直接带隙Ge改性实现方法主要有施加高强度张应力和采用合金化的手段。然而,单纯施加应力作用时所需强度过大,研究表明在双轴张应力达到约2.4GPa时,Ge可以变成直接带隙材料,但目前常规外延技术工艺很难实现2.4GPa的双轴应力,工艺实现难度大。如Si衬底上直接外延Ge,退火后再利用Si与Ge不同的膨胀系数,可使Ge外延层获得0.3%的拉伸应变,但仍无法使Ge转化为直接带隙半导体材料,还需要配合重掺杂才能实现准直接带隙Ge。同时,如果采用特殊结构形成直接带隙Ge材料还面临如何基于直接带隙Ge形成PMOS器件的问题。
发明内容
因此,为解决现有技术存在的技术缺陷和不足,本发明提出一种SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法。
具体地,本发明一个实施例提出的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的制备方法,包括:
S101、选取单晶Si衬底;
S102、在275℃~325℃下在所述单晶Si衬底上外延生长厚度为50nm第一Ge层,以避免晶体质量损失;
S103、在500℃~600℃下,在所述第一Ge层上生长厚度为900~950nm的第二 Ge层;
S104、在750℃~850℃下,在H2气氛中退火10~15分钟;
S105、在75℃的H2O2溶液中,浸入时间为10分钟,在所述第二Ge层表面形成GeO2钝化层;
S106、利用原子层淀积工艺生长厚度为2~4nm的HfO2材料作为栅介质层;
S107、采用反应溅射系统工艺,在750℃~850℃下生长厚度为100~110nm TaN材料作为栅极层;
S108、利用选择性刻蚀工艺刻蚀指定区域的所述TaN材料、所述HfO2材料及所述GeO2钝化层形成PMOS栅极;
S109、在所述第二Ge层和所述PMOS栅极表面淀积厚度为10~20nm的SiO2材料;
S110、利用CVD工艺在所述SiO2材料表面淀积厚度为20~30nm的Si3N4材料;
S111、采用选择性刻蚀工艺刻蚀除所述PMOS栅极顶部及侧墙处所以外的SiO2材料和Si3N4材料,在所述PMOS栅极表面形成栅极保护层;
S112、在整个衬底表面涂抹光刻胶,利用光刻工艺曝光光刻胶,保留所述PMOS栅极表面的光刻胶;
S113、利用感应耦合等离子体刻蚀工艺刻蚀所述整个衬底表面的所述第二Ge层,形成Ge台阶;
S114、去除表面光刻胶;
S115、在500℃~600℃下,以硅烷、锗烷为气源,采用化学气相淀积工艺在所述Ge台阶周围生长厚度为20nm的Si0.24Ge0.73C0.03材料;
S116、在所述Si0.24Ge0.73C0.03材料表面异于所述PMOS栅极位置处利用离子注入工艺注入BF2 +形成PMOS源漏区;
S117、利用湿法刻蚀工艺去除所述栅极保护层;
S118、利用CVD工艺淀积厚度为20~30nm的BPSG以形成介质层;
S119、采用硝酸和氢氟酸刻蚀所述介质层形成PMOS源漏接触孔;
S120、利用电子束蒸发工艺淀积厚度为10~20nm金属W,形成PMOS源漏接触;
S121、利用选择性刻蚀工艺刻蚀掉指定区域的金属W,形成源漏区电极,最终形成所述SiGeC应力引入的直接带隙Ge沟道PMOS器件。
本发明另一个实施例提出的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件,包括:单晶Si衬底层、第一Ge层、第二Ge层及Si0.24Ge0.73C0.03层、GeO2钝化层、HfO2栅介质层、TaN栅极层;其中,所述SiGeC应力引入的直接带隙Ge沟道PMOS器件由上述实施例所述的方法制备形成。
本发明另一个实施例提出的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的制备方法,包括:
选取单晶Si衬底;
在第一温度下,在所述Ge衬底表面生长第一Ge层;
在第二温度下,在所述第一Ge层表面生长第二Ge层;
在所述第二Ge层表面连续生长栅介质层和栅极层,选择性刻蚀工艺刻蚀所述栅介质层和所述栅极层形成PMOS栅极;
在所述PMOS栅极表面形成栅极保护层;
刻蚀所述第二Ge层在所述PMOS栅极位置处形成Ge台阶;
采用外延工艺在所述第二Ge层表面生长Si0.24Ge0.73C0.03层;
去除所述栅极保护层,利用离子注入工艺形成PMOS源漏极;
在所述PMOS源漏极表面淀积金属形成接触区,以最终形成所述SiGeC应力引入的直接带隙Ge沟道PMOS器件。
在发明的一个实施例中,所述第一温度小于所述第二温度。
在发明的一个实施例中,所述第一温度的范围为275℃~325℃;所述第二温度的范围为500℃~600℃。
在本发明的一个实施例中,在所述第二Ge层表面连续生长栅介质层和栅极层,选择性刻蚀工艺刻蚀所述栅介质层和所述栅极层形成PMOS栅极,包括:
将所述第二Ge层表面浸入H2O2溶液中形成GeO2钝化层;
利用原子层淀积工艺生长HfO2材料作为栅介质层;
采用反应溅射系统工艺生长TaN材料作为栅极层;
利用选择性刻蚀工艺刻蚀指定区域的所述TaN材料、所述HfO2材料及所述GeO2钝化层形成所述PMOS栅极。
在本发明的一个实施例中,在所述PMOS栅极表面形成栅极保护层,包括:
在所述第二Ge层、所述PMOS栅极表面淀积SiO2材料;
利用CVD工艺在所述SiO2材料表面淀积Si3N4材料;
采用选择性刻蚀工艺刻蚀除所述PMOS栅极顶部及侧墙处所以外的所述SiO2材料和所述Si3N4材料,在所述PMOS栅极表面形成栅极保护层。
在本发明的一个实施例中,刻蚀所述第二Ge层在所述PMOS栅极位置处形成Ge台阶,包括:
在整个衬底表面涂抹光刻胶,利用光刻工艺曝光光刻胶,保留所述PMOS栅极表面的光刻胶;
利用感应耦合等离子体刻蚀工艺刻蚀所述整个衬底表面的所述第二Ge层,形成所述Ge台阶;
去除表面光刻胶。
在本发明的一个实施例中,采用外延工艺在所述第二Ge层表面生长 Si0.24Ge0.73C0.03层,包括:
在500℃~600℃下,以硅烷、锗烷、乙烯为气源,氢气作为载气,采用化学气相淀积工艺在所述Ge台阶周围生长厚度为20nm的Si0.24Ge0.73C0.03材料。
本发明另一个实施例提出的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件,包括:单晶Si衬底层、第一Ge层、第二Ge层及Si0.24Ge0.73C0.03层、GeO2钝化层、HfO2栅介质层、TaN栅极层;其中,所述SiGeC应力引入的直接带隙Ge沟道PMOS器件由上述实施例所述的方法制备形成。
上述实施例,通过上述方法形成直接带隙Ge材料,然后在该结构的基础上形成PMOS源、漏及栅极。其中,Ge外延层使用低温-高温两步生长法制备。与传统渐变缓冲层生长方法相比,该方法减小了渐变层厚度,并且使得Ge外延层表面粗糙度显著降低。将直接带隙Ge材料作为PMOS器件的沟道可以提升PMOS器件沟道载流子迁移率,提升电流驱动能力,使PMOS器件具有工作速度高、频率特性好的优点。同时,直接带隙Ge PMOS器件载流子复合效率高,能够应用于光子器件,因此本发明所提出的直接带隙Ge PMOS还具有单片光电集成的优势。具体优点如下:
1、本发明PMOS的沟道材料为直接带隙Ge材料,相对于传统Ge材料空穴迁移率有了很大提升,从而提高了PMOS器件的电流驱动与频率特性,有利于提升电路的速度和集成度;
2、本发明直接带隙Ge材料可应用于光子器件(光源、光调制器、光探测器、电子器件)有源层,空穴复合效率高,因此,本发明所提出的直接带隙Ge沟道PMOS还具有单片光电集成的优势;
3、本发明基于低温-高温两步生长法制备Ge材料,并利用选择性外延SiGeC引入张应力,制备的直接带隙Ge晶体质量高,从而进一步提升PMOS器件性能。
通过以下参考附图的详细说明,本发明的其它方面和特征变得明显。但是应当 知道,该附图仅仅为解释的目的设计,而不是作为本发明的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,除非另外指出,不必要依比例绘制附图,它们仅仅力图概念地说明此处描述的结构和流程。
附图说明
下面将结合附图,对本发明的具体实施方式进行详细的说明。
图1为本发明实施例提供的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的工艺流程图;
图2为本发明实施例提供的一种选择性外延锗硅碳的截面示意图;
图3a-图3r为本发明实施例提供的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的工艺示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
实施例一
请参见图1,图1为本发明实施例提供的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的工艺流程图。该方法包括如下步骤:
步骤a、选取单晶Si衬底;
步骤b、在第一温度下,在所述Ge衬底表面生长第一Ge层;
步骤c、在第二温度下,在所述第一Ge层表面生长第二Ge层;
步骤d、在所述第二Ge层表面连续生长栅介质层和栅极层,选择性刻蚀工艺刻蚀所述栅介质层和所述栅极层形成PMOS栅极;
步骤e、在所述PMOS栅极表面形成栅极保护层;
步骤f、刻蚀所述第二Ge层在所述PMOS栅极位置处形成Ge台阶;
步骤g、采用外延工艺在所述第二Ge层表面生长Si0.24Ge0.73C0.03层;
步骤h、去除所述栅极保护层,利用离子注入工艺形成PMOS源漏极;
步骤i、在所述PMOS源漏极表面淀积金属形成接触区,以最终形成所述SiGeC应力引入的直接带隙Ge沟道PMOS器件。
其中,步骤b和步骤c中,所述第一温度小于所述第二温度。进一步地,所述第一温度的范围为275℃~325℃;所述第二温度的范围为500℃~600℃。
可选地,步骤d具体可以包括:
步骤d1、将所述第二Ge层表面浸入H2O2溶液中形成GeO2钝化层;
步骤d2、利用原子层淀积工艺生长HfO2材料作为栅介质层;
步骤d3、采用反应溅射系统工艺生长TaN材料作为栅极层;
步骤d4、利用选择性刻蚀工艺刻蚀指定区域的所述TaN材料、所述HfO2材料及所述GeO2钝化层形成所述PMOS栅极。
可选地,步骤f具体包括:
步骤f1、在整个衬底表面涂抹光刻胶,利用光刻工艺曝光光刻胶,保留所述PMOS栅极表面的光刻胶;
步骤f2、利用感应耦合等离子体刻蚀工艺刻蚀所述整个衬底表面的所述第二Ge层,形成所述Ge台阶;
步骤f3、去除表面光刻胶。
可选地,步骤g,包括:
在500℃~600℃下,以硅烷、锗烷、乙烯为气源,氢气作为载气,采用化学气相淀积工艺在所述Ge台阶周围生长厚度为20nm的Si0.24Ge0.73C0.03材料。
本发明的工作原理具体为:
请参见图2,图2为本发明实施例提供的一种选择性外延锗硅碳的截面示意图。 本发明利用Ge周围选择性外延SiGeC引入张应力,将获得较高质量的直接带隙Ge材料。具体原理是由于Ge的晶格常数比SiGeC材料要大,在源漏区域下方的SiGeC材料将被迫适应Ge材料的晶格常数,因此SiGeC横向晶格将受到张应力;而在源漏区域上方的SiGeC材料由于厚度较厚,已经达到弛豫状态。由于器件总长度保持不变,随着SiGeC横向晶格的缩小,导致中心区域的Ge材料将受到张应力。
通过上述方法形成直接带隙Ge材料,然后在该结构的基础上形成PMOS源、漏及栅极。其中,Ge外延层使用低温-高温两步生长法制备。与传统渐变缓冲层生长方法相比,该方法减小了渐变层厚度,并且使得Ge外延层表面粗糙度显著降低。将直接带隙Ge材料作为PMOS器件的沟道可以提升PMOS器件沟道载流子迁移率,提升电流驱动能力,使PMOS器件具有工作速度高、频率特性好的优点。同时,直接带隙Ge PMOS器件载流子复合效率高,能够应用于光子器件,因此本发明所提出的直接带隙Ge PMOS还具有单片光电集成的优势。
实施例二
请参见图3a-图3r,图3a-图3r为本发明实施例提供的一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的工艺示意图,在上述实施例的基础上,本实施例将较为详细地对本发明的工艺流程进行介绍。该方法包括:
S101、衬底选取。如图3a所示,选取厚度为2μm的单晶硅(001)为衬底001,初始掺杂类型为n型,浓度为1015cm-3
S102、两步法生长锗外延层:
S1021、利用化学气相淀积(CVD)的方法,在衬底上,以低、高温两部法生长n型Ge(001)薄膜,掺杂浓度为1~5×1016cm-3
S1022、如图3b所示,在275~325℃下生长一层50nm厚的“低温”Ge((LT-Ge)薄膜002。大部分弹性应力的弛豫发生在小于10纳米的低温Ge层,但为避免晶体质 量损失需要厚度较大(大于27纳米)的低温Ge层。因此本发明将LT-Ge层设定为50nm。低的生长温度同时抑制了三维Ge岛的形成和位错形成的弛豫应力;
S1023、如图3c所示,在500~600℃的生长温度下,并对外延层以AsH3作为n型杂质进行,淀积900-950nm的Ge层003;
S1024、为提高晶格质量,在H2气氛中750~850℃退火(在一个固定的温度或循环)不超过10–15分钟。
S1025、为了在Ge沟道与MOS氧化层界面处获得良好的电学特性和稳定性,需要在Ge表面形成一层GeO2钝化层。方法是将衬底放在75℃的H2O2溶液中,浸入时间为10分钟,在Ge表面将形成一层很薄的GeO2钝化层004,如图3d所示。
S103、制作栅极。
S1031、如图3e所示,在250℃~300℃条件下,利用原子层淀积法淀积3nm厚的氧化铪(HfO2)005,反应前体为[(CH3)(C2H5)N]4Hf,氧化剂为H2O;
S1032、如图3f所示,采用反应溅射系统淀积110nm厚的氮化钽(TaN)006;
S1033、如图3g所示,利用刻蚀工艺刻选择性蚀掉指定区域的TaN-HfO2形成PMOS的栅极区。
S104、保护栅极。栅极在进行源漏刻蚀以及选择性锗硅碳外延生长的过程中必须得到保护。
S1041、如图3h所示,在栅极表面淀积一层薄的SiO2层007,厚度约为10nm;
S1042、如图3i所示,用化学气相沉积法淀积厚度为20~30nm的Si3N4层008作为牺牲保护层,其作用是在源漏区域刻蚀和选择性锗硅碳外延生长过程中保护栅极不受损害,另外不影响源漏离子注入的自对准工艺;
S1043、如图3j所示,刻蚀除栅极之外的SiO2和SiN层。
S105、选择性外延SiGeC材料。
S1051、光刻,涂胶并选择区域曝光。如图3k所示,在中心保留区域的光刻胶009,四周的光刻胶被刻蚀掉;
S1052、刻蚀Ge材料。如图3l所示,在CF4和SF6气体环境中,采用感应耦合等离子体(ICP)方法刻蚀。中心区域由于光刻胶的抗刻蚀性,中心的Ge材料得以保留;刻蚀栅极的四周区域;
S1053、如图3m所示,在500~600℃下,以锗烷、硅烷、乙烯为气源,氢气作为载气,采用化学气相淀积(CVD)技术在暴露出的Ge衬底上生长一层20nm厚的Si0.24Ge0.73C0.03层010。生长时腔体压强低于5×10-10mbar,生长时间为1h;并对源漏区域以BF2 +作为p型杂质对样品进行掺杂,离子注入能量与剂量分别为35keV与1×1017cm-2,如图3n是俯视图,掺杂区域为图中011;
S1044、如图3o示,采用湿法刻蚀方式去除栅极覆盖的Si3N4和SiO2
S106、淀积PMOS电极:
S1061、淀积介质层。如图3p所示,采用化学气象淀积(CVD)淀积20~30nm的BPSG,形成介质层(PMD)012,掺BPSG能俘获移动离子,以防止它们扩散到栅极而损害器件性能;
S1062、刻蚀接触孔。如图3q所示,用硝酸和氢氟酸刻蚀BPSG形成源漏接触孔;
S1063、淀积金属。如图3r所示,利用电子束蒸发淀积10~20nm厚的钨(W),形成源漏接触;利用刻蚀工艺刻选择性蚀掉指定区域的金属W,形成源漏区电极013。
实施例三
本发明实施例提供的一种直接带隙Ge沟道PMOS器件,包括:单晶Si衬底层、第一Ge层、第二Ge层及Si0.24Ge0.73C0.03层、GeO2钝化层、HfO2栅介质层、TaN栅极层;其中,所述SiGeC应力引入的直接带隙Ge沟道PMOS器件由上述实施例所 述的方法制备形成。
综上所述,本文中应用了具体个例对本发明SiGeC应力引入的直接带隙Ge沟道PMOS器件的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。

Claims (10)

1.一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的制备方法,其特征在于,包括:
S101、选取单晶Si衬底;
S102、在275℃~325℃下在所述单晶Si衬底上外延生长厚度为50nm第一Ge层,以避免晶体质量损失;
S103、在500℃~600℃下,在所述第一Ge层上生长厚度为900~950nm的第二Ge层;
S104、在750℃~850℃下,在H2气氛中退火10~15分钟;
S105、在75℃的H2O2溶液中,浸入时间为10分钟,在所述第二Ge层表面形成GeO2钝化层;
S106、利用原子层淀积工艺生长厚度为2~4nm的HfO2材料作为栅介质层;
S107、采用反应溅射系统工艺,在750℃~850℃下生长厚度为100~110nm TaN材料作为栅极层;
S108、利用选择性刻蚀工艺刻蚀指定区域的所述TaN材料、所述HfO2材料及所述GeO2钝化层形成PMOS栅极;
S109、在所述第二Ge层和所述PMOS栅极表面淀积厚度为10~20nm的SiO2材料;
S110、利用CVD工艺在所述SiO2材料表面淀积厚度为20~30nm的Si3N4材料;
S111、采用选择性刻蚀工艺刻蚀除所述PMOS栅极顶部及侧墙处所以外的SiO2材料和Si3N4材料,在所述PMOS栅极表面形成栅极保护层;
S112、在整个衬底表面涂抹光刻胶,利用光刻工艺曝光光刻胶,保留所述PMOS栅极表面的光刻胶;
S113、利用感应耦合等离子体刻蚀工艺刻蚀所述整个衬底表面的所述第二Ge层,形成Ge台阶;
S114、去除表面光刻胶;
S115、在500℃~600℃下,以硅烷、锗烷为气源,采用化学气相淀积工艺在所述Ge台阶周围生长厚度为20nm的Si0.24Ge0.73C0.03材料;
S116、在所述Si0.24Ge0.73C0.03材料表面异于所述PMOS栅极位置处利用离子注入工艺注入BF2 +形成PMOS源漏区;
S117、利用湿法刻蚀工艺去除所述栅极保护层;
S118、利用CVD工艺淀积厚度为20~30nm的BPSG以形成介质层;
S119、采用硝酸和氢氟酸刻蚀所述介质层形成PMOS源漏接触孔;
S120、利用电子束蒸发工艺淀积厚度为10~20nm金属W,形成PMOS源漏接触;
S121、利用选择性刻蚀工艺刻蚀掉指定区域的金属W,形成源漏区电极,最终形成所述SiGeC应力引入的直接带隙Ge沟道PMOS器件。
2.一种SiGeC应力引入的直接带隙Ge沟道PMOS器件,其特征在于,包括:单晶Si衬底层、第一Ge层、第二Ge层及Si0.24Ge0.73C0.03层、GeO2钝化层、HfO2栅介质层、TaN栅极层;其中,所述SiGeC应力引入的直接带隙Ge沟道PMOS器件由权利要求1所述的方法制备形成。
3.一种SiGeC应力引入的直接带隙Ge沟道PMOS器件的制备方法,其特征在于,包括:
选取单晶Si衬底;
在第一温度下,在所述Ge衬底表面生长第一Ge层;
在第二温度下,在所述第一Ge层表面生长第二Ge层;
在所述第二Ge层表面连续生长栅介质层和栅极层,选择性刻蚀工艺刻蚀所述栅介质层和所述栅极层形成PMOS栅极;
在所述PMOS栅极表面形成栅极保护层;
刻蚀所述第二Ge层在所述PMOS栅极位置处形成Ge台阶;
采用外延工艺在所述第二Ge层表面生长Si0.24Ge0.73C0.03层;
去除所述栅极保护层,利用离子注入工艺形成PMOS源漏极;
在所述PMOS源漏极表面淀积金属形成接触区,以最终形成所述SiGeC应力引入的直接带隙Ge沟道PMOS器件。
4.如权利要求3所述的方法,其特征在于,所述第一温度小于所述第二温度。
5.如权利要求4所述的方法,其特征在于,所述第一温度的范围为275℃~325℃;所述第二温度的范围为500℃~600℃。
6.如权利要求3所述的方法,其特征在于,在所述第二Ge层表面连续生长栅介质层和栅极层,选择性刻蚀工艺刻蚀所述栅介质层和所述栅极层形成PMOS栅极,包括:
将所述第二Ge层表面浸入H2O2溶液中形成GeO2钝化层;
利用原子层淀积工艺生长HfO2材料作为栅介质层;
采用反应溅射系统工艺生长TaN材料作为栅极层;
利用选择性刻蚀工艺刻蚀指定区域的所述TaN材料、所述HfO2材料及所述GeO2钝化层形成所述PMOS栅极。
7.如权利要求3所述的方法,其特征在于,在所述PMOS栅极表面形成栅极保护层,包括:
在所述第二Ge层、所述PMOS栅极表面淀积SiO2材料;
利用CVD工艺在所述SiO2材料表面淀积Si3N4材料;
采用选择性刻蚀工艺刻蚀除所述PMOS栅极顶部及侧墙处所以外的所述SiO2材料和所述Si3N4材料,在所述PMOS栅极表面形成栅极保护层。
8.如权利要求3所述的方法,其特征在于,刻蚀所述第二Ge层在所述PMOS栅极位置处形成Ge台阶,包括:
在整个衬底表面涂抹光刻胶,利用光刻工艺曝光光刻胶,保留所述PMOS栅极表面的光刻胶;
利用感应耦合等离子体刻蚀工艺刻蚀所述整个衬底表面的所述第二Ge层,形成所述Ge台阶;
去除表面光刻胶。
9.如权利要求3所述的方法,其特征在于,采用外延工艺在所述第二Ge层表面生长Si0.24Ge0.73C0.03层,包括:
在500℃~600℃下,以硅烷、锗烷、乙烯为气源,氢气作为载气,采用化学气相淀积工艺在所述Ge台阶周围生长厚度为20nm的Si0.24Ge0.73C0.03材料。
10.一种SiGeC应力引入的直接带隙Ge沟道PMOS器件,其特征在于,包括:单晶Si衬底层、第一Ge层、第二Ge层及Si0.24Ge0.73C0.03层、GeO2钝化层、HfO2栅介质层、TaN栅极层;其中,所述SiGeC应力引入的直接带隙Ge沟道PMOS器件由权利要求3~9任一项所述的方法制备形成。
CN201610486998.XA 2016-06-28 2016-06-28 SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法 Active CN107546126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610486998.XA CN107546126B (zh) 2016-06-28 2016-06-28 SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610486998.XA CN107546126B (zh) 2016-06-28 2016-06-28 SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法

Publications (2)

Publication Number Publication Date
CN107546126A true CN107546126A (zh) 2018-01-05
CN107546126B CN107546126B (zh) 2019-12-31

Family

ID=60961454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610486998.XA Active CN107546126B (zh) 2016-06-28 2016-06-28 SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法

Country Status (1)

Country Link
CN (1) CN107546126B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962802A (zh) * 2010-07-14 2011-02-02 中国科学院半导体研究所 在Si衬底上分子束外延生长GeSn合金的方法
CN102184954A (zh) * 2011-03-10 2011-09-14 清华大学 应变Ge沟道器件及其形成方法
US20120007145A1 (en) * 2010-07-07 2012-01-12 Globalfoundries Inc. Asymmetric channel mosfet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007145A1 (en) * 2010-07-07 2012-01-12 Globalfoundries Inc. Asymmetric channel mosfet
CN101962802A (zh) * 2010-07-14 2011-02-02 中国科学院半导体研究所 在Si衬底上分子束外延生长GeSn合金的方法
CN102184954A (zh) * 2011-03-10 2011-09-14 清华大学 应变Ge沟道器件及其形成方法

Also Published As

Publication number Publication date
CN107546126B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US10361201B2 (en) Semiconductor structure and device formed using selective epitaxial process
KR100845175B1 (ko) 반도체 디바이스 및 그 제조 방법
US9159834B2 (en) Faceted semiconductor nanowire
CN101281926B (zh) 半导体结构
US7314804B2 (en) Plasma implantation of impurities in junction region recesses
CN101241932B (zh) 金属氧化物半导体装置
CN103247529B (zh) 一种沟槽场效应器件及其制作方法
US20060131584A1 (en) Process to improve transistor drive current through the use of strain
CN109786333A (zh) 半导体结构的形成方法
KR20140082839A (ko) 실리콘 카바이드 에피택시
CN1732556A (zh) 厚应变硅层及含有厚应变硅层的半导体结构的形成方法
KR102104062B1 (ko) 기판 구조체, 이를 포함한 cmos 소자 및 cmos 소자 제조 방법
US20130334571A1 (en) Epitaxial growth of smooth and highly strained germanium
US20080173941A1 (en) Etching method and structure in a silicon recess for subsequent epitaxial growth for strained silicon mos transistors
CN107546176A (zh) SiGeC应力引入的直接带隙Ge沟道CMOS集成器件及其制备方法
CN107546178B (zh) 基于直接带隙改性Ge沟道的PMOS器件及其制备方法
CN111430499A (zh) 光电集成器件及其制备方法
CN107546126A (zh) SiGeC应力引入的直接带隙Ge沟道PMOS器件及其制备方法
CN107546266A (zh) SiGeC应力引入的直接带隙Ge沟道NMOS器件及其制备方法
CN107546299B (zh) 基于GeSiC选择外延的直接带隙改性Ge材料及其制备方法
CN107546275B (zh) 直接带隙Ge沟道NMOS器件及其制备方法
CN111430399A (zh) 一种基于应变的光集成器件及其制备方法
CN210325799U (zh) 一种光集成器件结构
CN107546177B (zh) 直接带隙Ge沟道CMOS集成器件及其制备方法
CN107507863B (zh) 基于沟道晶向选择的压应变Si PMOS器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant