CN107488833B - 一种磁电薄膜材料及其制备方法 - Google Patents

一种磁电薄膜材料及其制备方法 Download PDF

Info

Publication number
CN107488833B
CN107488833B CN201710670799.9A CN201710670799A CN107488833B CN 107488833 B CN107488833 B CN 107488833B CN 201710670799 A CN201710670799 A CN 201710670799A CN 107488833 B CN107488833 B CN 107488833B
Authority
CN
China
Prior art keywords
sputtering
fesibc
magnetoelectric
film material
bismuth ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710670799.9A
Other languages
English (en)
Other versions
CN107488833A (zh
Inventor
文丹丹
张怀武
李强
荆玉兰
甘功雯
李颉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710670799.9A priority Critical patent/CN107488833B/zh
Publication of CN107488833A publication Critical patent/CN107488833A/zh
Application granted granted Critical
Publication of CN107488833B publication Critical patent/CN107488833B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种新型的磁电薄膜材料及其制备方法,属于功能复合材料制备技术领域。所述磁电薄膜材料包括依次沉积于非晶玻璃基片上的具有铁磁性的FeSiBC非晶材料和具有铁电性的Sm离子改性的铁酸铋,所述FeSiBC非晶材料为Fe81Si3.5B13.5C2,所述Sm离子改性的铁酸铋的化学式为Bi1‑xSmxFeO3,其中x=0.02~0.06。本发明磁电薄膜具有优良的磁电性能,可应用于小型化或微型化的多功能电磁器件上。

Description

一种磁电薄膜材料及其制备方法
技术领域
本发明属于功能复合材料制备技术领域,具体涉及一种磁电薄膜材料及其制备方法。
背景技术
随着科学技术、工业发展和国防需求的进步,性能单一的材料很难满足各种高要求的综合指标,使得功能复合材料的研究成为材料科学与工程领域的研究重点。复合磁电薄膜因其具有多功能性、磁电效应等特点,在小型化及微型化的多功能电磁器件上有巨大的应用潜力。磁电薄膜是一种具有磁电转换功能的多功能复合材料,它是由两种单项材料即铁磁相和铁电相复合得到的,同时具有铁磁性能和铁电性能,而且在外电场的作用下能在一定方向上发生磁化,在外磁场的作用下能在一定方向上发生极化,可以实现磁场能量与电场能量之间的转化。
磁电薄膜材料的应用相当广泛,主要体现在微波领域、高压输电线路的电流测量、宽波段磁探测以及磁场感应器等领域。另外,作为磁电薄膜材料,还可以利用材料的本征铁磁性和铁电性的有序耦合性质,以及具有磁矩有序和电偶极子有序共存的特性,在制作探测器、高密度存储器、多态记忆元、电场控制的磁共振装置以及压磁传感器等方面应用。
发明内容
本发明的目的在于提供一种磁电薄膜材料及其制备方法,通过在玻璃基片上磁控溅射铁磁相FeSiBC薄膜和铁电相Sm离子改性的铁酸铋薄膜,得到一种性能优良的磁电薄膜,可应用于小型化或微型化的多功能电磁器件上。
一种磁电薄膜材料,其特征在于,所述磁电薄膜材料包括依次沉积于非晶玻璃基片上的具有铁磁性的FeSiBC非晶材料和具有铁电性的Sm离子改性的铁酸铋,所述FeSiBC非晶材料为Fe81Si3.5B13.5C2,所述Sm离子改性的铁酸铋的化学式为Bi1-xSmxFeO3,其中x=0.02~0.06。
进一步地,所述FeSiBC非晶材料的厚度为0.2~2μm,所述Sm离子改性的铁酸铋的厚度为0.1~1μm。
进一步地,所述FeSiBC非晶材料采用磁控溅射法沉积于非晶玻璃基片上,其中,溅射靶材为Fe81Si3.5B13.5C2合金靶材,工作气压为0.6~1.2Pa,溅射功率为60~85W,保护气体为Ar气等惰性气体,溅射过程中提供大小为50~300Oe的平行于基片方向的外加磁场,溅射时间0.5~2h。
进一步地,所述Sm离子改性的铁酸铋采用磁控溅射法沉积于FeSiBC非晶材料上,其中,溅射靶材为按照Bi1-xSmxFeO3的化学计量比的原料通过固相合成法得到的铁电靶材,工作气压6×10-4~7×10-4Pa,溅射功率为50~70W,保护气体为Ar气等惰性气体,溅射时间0.5~2h。
一种磁电薄膜材料的制备方法,包括以下步骤:
步骤1、按照Bi1-xSmxFeO3(BSFO,x=0.02~0.06)的化学计量比称取原料Bi2O3,Sm2O3和Fe2O3,通过固相合成法得到Sm离子改性的铁酸铋,作为铁电靶材;
步骤2、在非晶玻璃基片上采用磁控溅射法沉积FeSiBC非晶薄膜,其中,溅射靶材为Fe81Si3.5B13.5C2合金靶材,工作气压为0.6~1.2Pa,溅射功率为60~85W,保护气体为Ar气等惰性气体,溅射过程中提供大小为50~300Oe的平行于基片方向的外加磁场,溅射时间0.5~2h,溅射厚度为0.2~2μm;
步骤3、在步骤2得到的FeSiBC非晶薄膜上采用磁控溅射法沉积Sm离子改性的铁酸铋薄膜层,其中,溅射靶材为步骤1得到的铁电靶材,工作气压6×10-4~7×10-4Pa,溅射功率为50~70W,保护气体为Ar气等惰性气体,溅射时间0.5~2h,溅射厚度为0.1~1μm。
进一步地,步骤1所述原料Bi2O3,Sm2O3和Fe2O3的纯度均不低于99.99%。
进一步地,步骤2所述Fe81Si3.5B13.5C2合金靶材的纯度不低于99.99%。
本发明的有益效果为:
1、本发明提供的一种磁电薄膜材料,是采用磁控溅射法在非晶玻璃基片上依次沉积FeSiBC非晶材料和Sm离子改性的铁酸铋得到的,通过对FeSiBC非晶薄膜和BSFO薄膜的厚度以及Sm改性的铁酸铋材料中Sm离子的含量的不断调整和试验,得到了性能优良的磁电薄膜。
2、本发明提供的FeSiBC非晶材料和Sm改性的铁酸铋结合得到的新型磁电薄膜材料,从材料特性到薄膜结构,都在良好的磁电性能方面起到关键性作用,对磁电薄膜材料的研究具有重要的推动作用,并有望用于实现磁电薄膜器件的微型化和小型化,对提高器件的集成度和高密度起到很好的奠基作用。
附图说明
图1为本发明提供的一种磁电薄膜材料的结构示意图;
图2为本发明中Sm离子改性的铁酸铋铁电靶材的制备工艺流程图;
图3为实施例1得到的磁电薄膜材料的磁电效应测试曲线;
图4为实施例2得到的磁电薄膜材料的磁电效应测试曲线;
图5为实施例3得到的磁电薄膜材料的磁电效应测试曲线。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种磁电薄膜材料的制备方法,包括以下步骤:
步骤1、按照Bi0.98Sm0.02FeO3(BSFO,x=0.02)的化学计量比,称量0.49mol的Bi2O3,0.01mol的Sm2O3和0.5mol的Fe2O3,用去离子水做磨介,一次球磨18h,烘干,在725℃下预烧结2h;然后进行二次球磨12h,加入粘合剂,压制,在820℃烧结30min,即可得到Sm离子改性的铁酸铋靶材,作为铁电靶材;
步骤2、选取市售的纯度为99.99%的Fe81Si3.5B13.5C2合金靶材作为铁磁靶材;
步骤3、选取10×5mm的非晶玻璃基片作为衬底,将非晶玻璃基片分别在无水乙醇、丙酮中超声清洗4次;
步骤4、在步骤3清洗后的非晶玻璃基片上采用磁控溅射法沉积FeSiBC非晶薄膜,其中,溅射靶材为步骤2选取的市售的Fe81Si3.5B13.5C2合金靶材,工作气压为0.8Pa,溅射功率为70W,温度为室温,保护气体为Ar气,溅射过程中提供大小为150Oe的平行于基片方向的外加磁场,溅射时间1h;
步骤5、在步骤4得到的FeSiBC非晶薄膜上采用磁控溅射法沉积Sm离子改性的铁酸铋薄膜层,其中,溅射靶材为步骤1得到的铁电靶材,工作气压6×10-4Pa,溅射功率为60W,温度为室温,保护气体为Ar气,溅射时间1h;即可得到所述磁电薄膜材料。
图3为实施例1得到的磁电薄膜材料的磁电效应测试曲线;VSM测试显示该磁电薄膜材料具有较好的磁电效应现象,在0kV/cm和2kV/cm的作用下,其磁电效应区别明显。
实施例2
实施例2与实施例1的区别在于:步骤1中Sm离子改性的铁酸铋为Bi0.96Sm0.04FeO3(BSFO,x=0.04),称取的原料为0.48mol的Bi2O3,0.02mol的Sm2O3和0.5mol的Fe2O3。其余步骤与实施例1相同。
图4为实施例2得到的磁电薄膜材料的磁电效应测试曲线;VSM测试显示该磁电薄膜材料具有较好的磁电效应现象,当Sm的含量x=0.04时,基于本发明的双层结构,铁电相的作用效果更强,该薄膜材料在0kV/cm和2kV/cm的作用下,磁电效应区别明显,材料更容易被磁化饱和。
实施例3
实施例3与实施例1的区别在于:步骤1中Sm离子改性的铁酸铋为Bi0.94Sm0.06FeO3(BSFO,x=0.06),称取的原料为0.47mol的Bi2O3,0.03mol的Sm2O3和0.5mol的Fe2O3。其余步骤与实施例1相同。
图5为实施例3得到的磁电薄膜材料的磁电效应测试曲线;VSM测试显示该磁电薄膜材料具有较好的磁电效应现象,当Sm的含量x=0.06时,基于本发明的双层结构,铁电相的作用更强,该薄膜材料在0kV/cm和2kV/cm的作用下,磁电效应区别更加明显。

Claims (7)

1.一种磁电薄膜材料,其特征在于,所述磁电薄膜材料包括依次沉积于非晶玻璃基片上的FeSiBC非晶材料和Sm离子改性的铁酸铋,所述FeSiBC非晶材料为Fe81Si3.5B13.5C2,所述Sm离子改性的铁酸铋的化学式为Bi1-xSmxFeO3,其中x=0.02~0.06。
2.根据权利要求1所述的磁电薄膜材料,其特征在于,所述FeSiBC非晶材料的厚度为0.2~2μm,所述Sm离子改性的铁酸铋的厚度为0.1~1μm。
3.根据权利要求1所述的磁电薄膜材料,其特征在于,所述FeSiBC非晶材料采用磁控溅射法沉积于非晶玻璃基片上,其中,溅射靶材为Fe81Si3.5B13.5C2合金靶材,工作气压为0.6~1.2Pa,溅射功率为60~85W,保护气体为惰性气体,溅射过程中提供大小为50~300Oe的平行于基片方向的外加磁场,溅射时间0.5~2h。
4.根据权利要求1所述的磁电薄膜材料,其特征在于,所述Sm离子改性的铁酸铋采用磁控溅射法沉积于FeSiBC非晶材料上,其中,溅射靶材为按照Bi1-xSmxFeO3的化学计量比的原料通过固相合成法得到的铁电靶材,工作气压6×10-4~7×10-4Pa,溅射功率为50~70W,保护气体为惰性气体,溅射时间0.5~2h。
5.一种磁电薄膜材料的制备方法,包括以下步骤:
步骤1、按照Bi1-xSmxFeO3的化学计量比称取原料Bi2O3,Sm2O3和Fe2O3,通过固相合成法得到Sm离子改性的铁酸铋,作为铁电靶材,其中x=0.02~0.06;
步骤2、在非晶玻璃基片上采用磁控溅射法沉积FeSiBC非晶薄膜,其中,溅射靶材为Fe81Si3.5B13.5C2合金靶材,工作气压为0.6~1.2Pa,溅射功率为60~85W,保护气体为惰性气体,溅射过程中提供大小为50~300Oe的平行于基片方向的外加磁场,溅射时间0.5~2h,溅射厚度为0.2~2μm;
步骤3、在步骤2得到的FeSiBC非晶薄膜上采用磁控溅射法沉积Sm离子改性的铁酸铋薄膜层,其中,溅射靶材为步骤1得到的铁电靶材,工作气压6×10-4~7×10-4Pa,溅射功率为50~70W,保护气体为惰性气体,溅射时间0.5~2h,溅射厚度为0.1~1μm。
6.根据权利要求5所述的磁电薄膜材料的制备方法,其特征在于,步骤1所述原料Bi2O3,Sm2O3和Fe2O3的纯度均不低于99.99%。
7.根据权利要求5所述的磁电薄膜材料的制备方法,其特征在于,步骤2所述Fe81Si3.5B13.5C2合金靶材的纯度不低于99.99%。
CN201710670799.9A 2017-08-08 2017-08-08 一种磁电薄膜材料及其制备方法 Expired - Fee Related CN107488833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710670799.9A CN107488833B (zh) 2017-08-08 2017-08-08 一种磁电薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710670799.9A CN107488833B (zh) 2017-08-08 2017-08-08 一种磁电薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107488833A CN107488833A (zh) 2017-12-19
CN107488833B true CN107488833B (zh) 2019-10-01

Family

ID=60643478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710670799.9A Expired - Fee Related CN107488833B (zh) 2017-08-08 2017-08-08 一种磁电薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107488833B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535783A (zh) * 2018-11-19 2019-03-29 江苏科技大学 一种铁酸铋电泳悬浮液及其制备方法和应用
CN109972104B (zh) * 2019-03-05 2020-01-10 北京科技大学 一种弥补Co靶材质量缺陷的方法
CN110527969A (zh) * 2019-09-30 2019-12-03 辽宁科技大学 利用热丝增强等离子体磁控溅射法制备铁磁非晶膜的方法
CN112928158A (zh) * 2019-12-05 2021-06-08 电子科技大学 一种基于自旋织构的存储器及其制备方法
CN114275730B (zh) * 2021-11-17 2023-09-26 电子科技大学 一种磁振子耦合共振型微纳称重器件与其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112867A (zh) * 2015-08-27 2015-12-02 西南交通大学 一种磁控溅射制备锂电池电极材料FeSe2薄膜的方法
CN105720188A (zh) * 2016-03-03 2016-06-29 天津理工大学 一种基于磁电效应的铁电/铁磁复合薄膜的磁电存储元件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343315B (zh) * 2013-06-04 2016-07-06 南京理工大学 一种掺杂铁酸铋半导体薄膜材料及其制备方法
CN103668060B (zh) * 2013-12-04 2016-04-06 华东师范大学 多层同质生长铁酸铋薄膜材料及其制备方法
US20160172087A1 (en) * 2014-12-11 2016-06-16 Metglas, Inc. Fe-Si-B-C-BASED AMORPHOUS ALLOY RIBBON AND TRANSFORMER CORE FORMED THEREBY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112867A (zh) * 2015-08-27 2015-12-02 西南交通大学 一种磁控溅射制备锂电池电极材料FeSe2薄膜的方法
CN105720188A (zh) * 2016-03-03 2016-06-29 天津理工大学 一种基于磁电效应的铁电/铁磁复合薄膜的磁电存储元件

Also Published As

Publication number Publication date
CN107488833A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
CN107488833B (zh) 一种磁电薄膜材料及其制备方法
Chen et al. Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films
CN105720188A (zh) 一种基于磁电效应的铁电/铁磁复合薄膜的磁电存储元件
CN102867645B (zh) 一种提高各向异性磁电阻坡莫合金薄膜热稳定性的方法
Kumar et al. Composition dependent Ferro-piezo hysteresis loops and energy density properties of mechanically activated (Pb 1− x La x)(Zr 0.60 Ti 0.40) O 3 ceramics
Mukherjee et al. Nanocolumnar interfaces and enhanced magnetic coercivity in preferentially oriented cobalt ferrite thin films grown using oblique-angle pulsed laser deposition
CN102945922B (zh) 集记忆电阻与隧穿磁电阻的自旋记忆电阻器件及制备方法
CN110350082A (zh) 包括赫斯勒化合物的磁性器件和提供磁性器件的方法
CN111423231A (zh) 一种三元系弛豫铁电薄膜材料及其制备方法和应用
CN103819188A (zh) 一种Aurivillius相结构的钛铁酸铋多铁性陶瓷材料及其制备方法
Premkumar et al. Magnetic and magnetostrictive properties of tape casted free standing NZFO thick films and its composite with piezoelectric phase
CN102071399B (zh) 全钙钛矿多铁性磁电复合薄膜
CN102942361B (zh) 层状结构的钛铁钴酸铋陶瓷材料及其制备方法
CN102916122A (zh) 一种低漏电流半导体薄膜异质结及制备方法
Prabahar et al. Effect of magnetic field annealing on the magnetostriction and deflection properties of CoFe2O4 thin films grown by PLD
CN105336845B (zh) 一种高极化强度铁酸铋厚膜材料体系及中低温制备方法
Das et al. Strain induced FCC to BCC structural change in sputtered molybdenum thin films
Long et al. Origin of room-temperature ferromagnetism for cobalt-doped ZnO diluted magnetic semiconductor
CN102863211B (zh) 层状结构的钛铁钴酸钆铋陶瓷材料及其制备方法
CN103288437B (zh) 具有多铁性能的六层状结构钛铁钴酸钇铋陶瓷材料及其制备方法
Rao et al. Magnetic properties of amorphous BiFeO3‐PbZrO3 sputtered films
CN106910821A (zh) 一种具有垂直交换偏置效应的双层钙钛矿锰氧化物薄膜及其制备方法
CN109234678B (zh) 一种铜掺杂钛酸钡/镍锌铁氧体复相薄膜材料及制备方法
Liu et al. Structure, leakage mechanism and multiferroic properties of (Mn, Cr) co-doped BiFe0. 93Mn0. 04Cr0. 03O3/NiFe2O4 bilayer film by sol–gel
Rebouta et al. Room temperature magnetic response of sputter deposited TbDyFe films as a function of the deposition parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191001