CN107482432A - Annular multi-range laser amplification device - Google Patents

Annular multi-range laser amplification device Download PDF

Info

Publication number
CN107482432A
CN107482432A CN201710700165.3A CN201710700165A CN107482432A CN 107482432 A CN107482432 A CN 107482432A CN 201710700165 A CN201710700165 A CN 201710700165A CN 107482432 A CN107482432 A CN 107482432A
Authority
CN
China
Prior art keywords
laser
spatial filter
reflection mirror
degree
system
Prior art date
Application number
CN201710700165.3A
Other languages
Chinese (zh)
Inventor
王江峰
郭江涛
范薇
林尊琪
黄庭瑞
夏刚
陈亚林
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to CN201710700165.3A priority Critical patent/CN107482432A/en
Publication of CN107482432A publication Critical patent/CN107482432A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising more than two reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising more than two reflectors defining a plurality of resonators, e.g. for mode selection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising more than two reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control

Abstract

The invention discloses an annular multi-range laser amplification device, and the device comprises a beam expander, a soft-edge diaphragm, a first polarization splitting prism, an electro-optic switch, a second polarization splitting prism, a first spatial filter system, a first 45-degree total-reflection mirror, a second 45-degree total-reflection mirror, a first laser amplification module, a third 45-degree total-reflection mirror, a fourth 45-degree total-reflection mirror, a 90-degree quartz rotor, a second spatial filter system, a second laser amplification module, a fifth 45-degree total-reflection mirror, a sixth 45-dgree total-reflection mirror, a third spatial filter system and a two-dimensional adjustable 45-degree total-reflection mirror with the one-dimensional displacement. The first laser amplification module and the second laser amplification module have the same performances. Based on an annular optical path structure and pulse synchronization control, the device achieves the active multi-range amplification, is compact in structure, and is high in efficiency of energy storage and extraction.

Description

环形多程激光放大装置 An annular multi-pass laser amplification means

技术领域 FIELD

[0001] 本发明涉及固体激光放大技术领域,特别是一种基于主动偏振控制的环形多程激光放大装置。 [0001] The present invention relates to the field of solid-state laser amplification techniques, in particular based on active polarization control loop multi-pass laser amplification apparatus.

背景技术 Background technique

[0002] 随着固体激光技术的发展,利用单一谐振腔激光器难以实现大能量、高功率、高光束质量等指标的激光脉冲输出。 [0002] With the development of solid-state laser technology, using a single laser cavity is difficult to achieve high energy, high power, high beam quality indicators of laser output pulses. 于是,近年来发展出激光器放大器结构激光系统(ΜΟΡΑ),利用这种系统可实现上述要求,并具有时间波形、脉宽、光谱特性、偏振特性等方面的全域调制能力。 Thus, in recent years the structure of the laser system amplifier laser (ΜΟΡΑ), utilizing such a system can achieve the above requirements, and has a global capacity modulation time waveform, pulse width, spectral characteristics, polarization characteristics.

[0003] 现有固体激光放大技术,主要采用单程(图1)、双程(图2)、或四程(图3)放大技术, 即激光脉冲在栗浦结束,单次、双次、四次通过增益介质,激光栗浦储能提取效率随着通过程数可不断提高。 [0003] The prior art amplifying solid-state laser, mainly one-way (FIG. 1), two-way (FIG. 2), or four-pass (FIG. 3) amplification, i.e., the laser pump pulse at the end of Li, single, double, four pass through the gain medium, laser Li Pu as the number of stored energy extraction efficiency through process can be improved. 但现有双程或四程放大系统都采用被动多程放大方式,即一旦系统搭建完毕,无法动态改变光束通过增益介质的次数。 However, the existing two-way or four-pass amplifier multipass amplification are passive manner, i.e., once the system is set up is completed, can not dynamically change the number of light beam through the gain medium.

[0004] 对于高储能增益介质,如钕玻璃材料,在四程通过增益介质后,激光脉冲对储能的能量提取效率仍然较低,通过提高通过增益介质的程数,可提高储能提取效率; [0004] For high energy remains low gain medium such as neodymium glass material, after the four-pass through the gain medium, the laser pulse energy extraction efficiency of the stored energy, by increasing the number of passes through the gain medium, the extraction can be improved storage effectiveness;

[0005] 由于菲涅耳衍射效应,激光光束自由传播会在光斑边缘产生衍射调制,进而降低光束质量,结合空间小孔滤波技术和像传递技术可以有效保证激光光束传输中光束质量; [0005] Because the Fresnel diffraction effect, the laser beam will produce diffraction free propagation edge modulated light spots, thereby reducing beam quality, and combining spatial filtering aperture image beam delivery technology can effectively guarantee the transmission quality of the laser beam;

[0006] 现有技术中,采用线性腔放大技术如四程放大系统(图3),无法有效避免长脉冲放大(5_25ns)中激光脉冲在增益介质或光学元件中交叉重叠,而脉冲重叠会造成局部峰值功率过尚,易造成光学兀件损伤,不利于尚功率激光系统运行。 [0006] In the prior art, linear amplification techniques such as four cavities pass amplifier (FIG. 3), can not effectively prevent long-pulse amplification (5_25ns) laser pulses overlap in the gain medium or an optical element, the pulses overlap will cause local peak power is too still, could easily lead to damage optical parts Wu, is not conducive to power laser systems still run.

发明内容 SUMMARY

[0007] 本发明是提供一种主动偏振控制多程激光放大装置,该装置具有放大倍数高、结构紧凑、储能提取效率高的特点。 [0007] The present invention provides an active polarization control multi-pass laser amplification apparatus having a high magnification, compact, high energy extraction efficiency.

[0008] 本发明的技术解决方案如下: [0008] The technical solutions of the present invention are as follows:

[0009] —种环形多程激光放大装置,特点在于其构成包括:扩束器、软边光阑、第一偏振分光棱镜、电光开光、第二偏振分光棱镜、第一空间滤波器系统、第一45度全反镜、第二45度全反镜、第一激光放大模块、第三45度全反镜、第四45度全反镜、90度石英转子、第二空间滤波器系统、第二激光放大模块、第五45度全反镜、第六45度全反镜、第三空间滤波器系统和具有一维平移的二维可调45度全反镜;上述元部件的位置关系如下: [0009] - Multi-Species annular path of the laser amplifying device, characterized by their configuration comprising: a beam expander, a soft edge aperture, the first polarization splitting prism, an electro-optical opening, the second polarization splitting prism, a first spatial filter system, the a 45-degree mirror, the second-degree mirror 45, a first laser amplifier module, a third-degree mirror 45, a fourth-degree mirror 45, the rotor 90 of quartz, the second spatial filter system, the laser two amplification modules, a fifth-degree mirror 45, a sixth-degree mirror 45, a third system and a two-dimensional spatial filter having a tunable dimensional translational degree total reflection mirror 45; positional relationship between the component parts are as follows :

[0010] 垂直线偏振激光脉冲依次经所述的扩束器和软边光阑后入射到所述第一偏振分光棱镜,经该第一偏振分光棱镜90度反射后经所述的电光开光垂直入射到所述的第二偏振分光棱镜,经该第二偏振分光棱镜90度反射后,依次经所述的第一空间滤波器系统、第一45 度全反镜、第二45度全反镜入射到第一激光放大模块,经该第一激光放大模块放大后,再依次经第三45度全反镜、第四45度全反镜、90度石英转子和第二空间滤波器系统入射到第二激光放大模块,经该第二激光放大模块放大输出后,再次经第五45度全反镜、第六45度全反镜和第三空间滤波器系统入射到所述的二维可调45度全反镜,经该二维可调45度全反镜(反射后射入到所述的第一偏振分光棱镜,经该第一偏振分光棱镜透射后入射到所述的电光开光; [0010] vertical linearly polarized laser pulses sequentially through the beam expander and the soft edge aperture is incident to the first polarization splitting prism, the reflection through the first polarization splitting prism 90 through a vertical opening of said electrooptic incident on the second polarization splitting prism, after the second polarization splitting prism 90 is reflected sequentially by a first spatial filter system according to a first-degree total reflection mirror 45, a second 45-degree total reflection mirror laser light incident to the first amplification module, the first laser light amplified by the amplification module, and then followed by a third 45-degree total reflection mirror, a fourth mirror 45-degree, 90 degree quartz rotor and the second spatial filter system incident amplifying the second laser module, the laser light amplified by the second amplifying module output, again by a fifth-degree mirror 45, a sixth-degree mirror 45 and a third two-dimensional spatial filter system enters the adjustable 45-degree total reflection mirror, the two-dimensional adjustable through 45 ° total reflection mirror (a first incident polarization after reflection of the dichroic prism, after transmitting the first polarization splitting prism light incident on the electro-optical opening;

[0011] 所述的第一空间滤波器系统为4f像传递系统,两个透镜的间距为CU = Sfhf1为第一空间滤波器透镜焦距; [0011] The spatial filter of the first 4f system image transmission system, for the distance between the two lenses CU = Sfhf1 first spatial filter lens focal length;

[0012] 所述的第二空间滤波器系统为离焦4f像传递系统,两个透镜的间距为d2, Second spatial filter system [0012] The image transmission system is defocused 4f, the distance between the two lenses is d2,

Figure CN107482432AD00051

[00M]其中,5为第二空间滤波器透镜焦距,Lf4l分别为激光放大模块热透镜焦距的径向分量和切向分量; [00M] wherein the second spatial filter 5 is the focal length of the lens, Lf4l were amplified laser module radial component and a tangential component to the thermal focal length;

[0015] 所述的第三空间滤波器系统为4f像传递系统,两个透镜的间距为d3 = 2f3,f3为第三空间滤波器透镜焦距; [0015] The spatial filter of the third 4f system image transfer system, distance between the two lenses is d3 = 2f3, f3 is the focal length of the third lens spatial filter;

[0016] 利用脉冲同步信号发生器同步控制栗浦电源、电光开关与激光脉冲同步。 [0016] The synchronizing signal generator by the pulse synchronization control power Pu Li, optical switch synchronized with the laser pulse.

[0017] 所述的软边光阑为镀铬石英玻璃板或光学玻璃镀渐变反射率增透膜制成或光寻址液晶光调制器; [0017] the soft edge aperture chrome plated glass or quartz glass coated graded optical reflectance or light anti-reflection film made addressed liquid crystal light modulator;

[0018] 所述的电光开光开启时使线偏振激光脉冲偏振旋转90度,该电光开关可替换为两个,每个电光开关使偏振同向旋转45度,效果和前者等价; [0018] When the opening of the wire electrooptic polarization turned by 90 degrees polarization rotation of the laser pulse, the optical switch may be replaced with two, each optical switch in the same direction of polarization rotated by 45 degrees, and the effect is equivalent to the former;

[0019] 所述的第一激光放大模块和第二激光放大模块的增益介质几何形状为棒状或片状增益介质,增益介质材料为钕玻璃,所述的第一激光放大模块和第二激光放大模块的性能参数完全一致。 [0019] amplifying said first laser and the second laser module amplifying module gain medium rod shaped or plate geometry gain medium, the gain medium is neodymium glass material, said first laser and the second laser amplifier module amplifies exactly the same performance parameters of the module.

[0020] 所述的具有一维平移的二维可调45度全反镜可替换为变形镜。 [0020] The two-dimensional variable having a one-dimensional translational degree total reflection mirror 45 may be replaced with a deformable mirror.

[0021] 所述的第一空间滤波器系统、第二空间滤波器系统和第三空间滤波器系统的结构,包含两等焦距第一平凸透镜、第二平凸透镜、真空管道和置于第一平凸透镜焦平面处的滤波小孔,该滤波小孔具有二维平移机构。 [0021] The structure of the system of the first spatial filter, the spatial filter system of a second and third spatial filter system, comprising two first focal length plano-convex lens and the like, a second plano-convex lens, and placed in the first vacuum line filtering aperture plano-convex lens at the focal plane, the two-dimensional translation mechanism having a filter aperture.

[0022] 所述的放大系统光路的注入方式为反射式或透射式。 Amplification system [0022] The optical path injection method is reflective or transmissive.

[0023] 本发明利用双激光放大模块结合像传递及90度石英转子来补偿激光放大模块热褪偏效应; [0023] The present invention uses a double pass laser amplifier module incorporated as quartz and the rotor 90 to compensate for thermal laser amplifier module partial faded effect;

[0024] 所述的90度石英转子使注入偏振光偏振旋转90度,置于两组激光放大模块间靠近激光放大模块位置,等价于采用两45度同向石英转子; [0024] The rotor 90 of quartz injected polarized light by 90 degrees polarization rotation, is placed between the two laser amplification module position close to the laser amplifier module, it is equivalent to using two 45 ° and the rotor into the quartz;

[0025] 整体激光放大系统环形光路腔长L与种子光束脉宽知相关为, [0025] Laser amplification system overall annular cavity optical path length L of the seed light pulse width related art,

[0026] L = tcC> (tr+tp) C [0026] L = tcC> (tr + tp) C

[0027] 其中,C为空气中激光光速,t。 [0027] wherein, C is the speed of light in air laser, t. 为激光束腔内传输一周时间,tr分别为电光开关上升沿时间; Laser beam transmission cavity week, tr rise time optical switch respectively;

[0028] 与现有技术相比,本发明具有如下效果: [0028] Compared with the prior art, the present invention has the following effects:

[0029] 本发明利用电光开关主动控制激光脉冲偏振,实现激光脉冲多程放大系统,利于提高增益介质储能提取效率,在使用相同放大模块时,增加激光系统输出能量;结合像传递技术,有效保证长腔长传输光束质量; [0029] The optical switch of the present invention utilizes active control of the polarization of the laser pulse, the laser pulse to achieve a multi-pass amplifier, help to improve the extraction efficiency gain storage medium, when the same amplifier module, increasing the laser output energy system; combined image transfer technology, effective ensure the transmission beam quality long cavity length;

[0030] 双激光放大模块结合像传递技术及石英转子,有效补偿双激光放大模块热褪偏效应,尤其适用于具有严重热效应的重频钕玻璃激光放大系统; [0030] The dual laser pulse repetition frequency amplification block binding neodymium glass laser amplifier system having a serious effect heat transfer technique and a quartz as a rotor, effectively compensate thermal fade dual laser amplifier module partial effect, especially for;

[0031] 利用具有一维平移的二维可调全反镜,有效保证多程光束与第一程光束同轴传输,便于调节; Two-dimensional [0031] using a one-dimensional translational having an adjustable total reflection mirror, effectively guarantee the multi-pass light beam with a first coaxial transmission path for easy adjustment;

[0032] 本发明多程放大系统采用环形构型,结构紧凑,利于高功率激光系统小型化;最终保证激光脉冲的高光束质量、大能量、高功率输出。 [0032] The present invention is a multi-pass amplifier adopts an annular configuration, compact, high power laser system conducive to miniaturization; ultimately ensure high beam quality laser pulse, high energy, high power output.

附图说明 BRIEF DESCRIPTION

[0033] 图1为现有技术单程多级激光放大装置结构示意图 [0033] FIG. 1 is an enlarged schematic view of apparatus of the prior art multi-level laser way

[0034] 图2为现有技术双程激光放大装置结构示意图 [0034] FIG. 2 is a schematic structural diagram of the prior art dual laser amplifying means

[0035] 图3为现有技术四程激光放大装置结构示意图 Schematic structure of the apparatus [0035] FIG. 3 is a prior art four-pass laser amplification

[0036] 图4为本发明环形多程激光放大装置实施例1结构示意图 [0036] FIG. 4 is an annular multi-pass laser amplification apparatus 1 a schematic configuration example of embodiment of the invention

[0037] 图中:1、扩束器;2、软边光阑;3、第一偏振分光棱镜;4、电光开关;5、第二偏振分光棱镜;6、第一空间滤波器系统,包括组成4f成像系统的两个等焦距透镜,真空管道及窗口片,以及置于真空管道中的滤波小孔;7、第一45度全反镜;8、第二45度全反镜;9、第一激光放大模块;10、第三45度全反镜;11、第四45度全反镜;12、90度石英转子;13、第二空间滤波器系统;14、第二激光放大模块;15、第五45度全反镜;16、第六45度全反镜17、第三空间滤波器系统;18、具有一维平移的45度二维可调全反镜; [0037] FIG: 1, a beam expander; 2, the soft edge aperture; 3, the first polarization splitting prism; 4, optical switch; 5, the second polarization splitting prism; 6, a first spatial filter system comprising 4f imaging system composed of two focus lens and the like, and window films vacuum duct, the vacuum duct and disposed in the filtering aperture; 7, a first-degree mirror 45; 8, a second-degree mirror 45; 9, a laser amplifier module; 10, third 45-degree mirror; 11, a fourth-degree mirror 45; 12,90 of quartz rotor; 13, a second spatial filter system; 14, a second laser amplification module; 15 , a fifth-degree mirror 45; 16, 45 a sixth-degree total reflection mirror 17, a third spatial filter system; 18, 45 having a dimension of a two-dimensional translation of the adjustable total reflection mirror;

[0038] 图5为本发明环形多程激光放大装置实施例2 (透射注入型)结构示意图,图中:19、 第三偏振分光棱镜;20、第四偏振分光棱镜; [0038] FIG. 5 is an enlarged schematic view of the device structure (transmission injection type) Example 2 a multi-pass ring laser embodiment the invention, FIG: 19, the third polarization beam splitter prism; 20, fourth polarization splitting prism;

[0039] 图6为本发明实施例中,环形四程放大时激光脉冲偏振变化过程示意图,忽略放大系统中对激光脉冲偏振无影响的元件; [0039] FIG. 6 embodiment of the present invention, the laser pulse polarization changes during the ring schematic four-pass amplification, amplification systems ignore the element has no effect on the polarization of the laser pulses;

[0040] 图7为本发明实施例中,电光开关开启门宽和激光脉冲同步时间序列示意图; [0040] FIG. 7 embodiment of the present invention, the door width, and laser pulse synchronized time series switch on the electro-optical schematic diagram;

[0041] 图8为本发明实施例中,空间滤波器系统结构示意图; [0041] FIG. 8 embodiment of the present invention, a schematic view of the spatial filter architecture;

具体实施方式 Detailed ways

[0042] 下面结合实施例和附图对本发明做进一步说明。 [0042] The following Examples and accompanying drawings further illustrate the present invention. 但不应以此限制本发明的保护范围。 However, this should not limit the scope of the present invention.

[0043] 先请参阅图4,图4为本发明环形多程激光放大装置实施例1结构示意图,由图可见,本发明环形多程激光放大装置的构成包括:注入系统线偏振激光脉冲透过扩束器1、经软边光阑2整形、经第一偏振分光棱镜3反射90度、透过电光开光4、经第二偏振分光棱镜5反射90度、透过第一空间滤波器系统6、经第一45度全反镜7、第二45度全反镜8折返180度、透射第一激光放大模块9、经第三45度全反镜10、第四45度全反镜11折返180度、接着透射90度石英转子12、第二空间滤波器系统13、第二激光放大模块14、经第五45度反镜15、第六45度反镜16折返180度、透射第三空间滤波器系统17、经具有一维平移的二维可调45度全反镜18 折返90度,激光脉冲透射第一偏振分光棱镜3,激光脉冲经历一程放大; [0043] Please refer to FIG. 4, FIG. 4 is an annular multi-pass laser amplification apparatus configuration example of an embodiment of the invention a schematic view seen from the figure, the present invention is composed of an annular multi-pass laser amplification apparatus comprising: a linearly polarized laser pulse injection system through a beam expander, by shaping the soft edge aperture 2, the first polarization splitting prism 3 via the reflection by 90 degrees, light transmitted through the electro-optical opening 4, through the second polarization beam splitter 90 reflecting prism 5, the first space through the filter system 6 , through the first 45-degree total reflection mirror 7, a second 45-degree total reflection mirror 8 folded by 180 degrees, the transmittance of the first laser amplification block 9, the third 45-degree total reflection mirror 10, a fourth 45-degree total reflection mirror 11 folded 180 degrees, 90 degrees and then the quartz transmittance rotor 12, a second spatial filter system 13, a second laser amplification module 14, the fifth 45-degree mirror 15, a sixth mirror 16 folded 45 degrees 180 degrees, the third space transmission a filter system 17, having a one-dimensional by two-dimensional translatory adjustable 45 degree total reflection mirror 18 folded 90 degrees, laser pulses transmitting the first polarized beam splitting prism 3, a laser drive pulses subjected to amplification;

[0044] 所述的软边光阑2为镀铬石英玻璃板或光学玻璃镀渐变反射率增透膜制成或光寻址液晶光调制器。 [0044] the soft edge aperture 2 chrome-plated glass or quartz glass coated graded optical reflectance or light anti-reflection film made addressed liquid crystal light modulator.

[0045] 所述的电光开光晶体4为磷酸二氘钾(DKDP)晶体,晶体驱动电压IlKV使光束偏振旋转90度,偏振由垂直偏振变为水平偏振或水平偏振变为垂直偏振,应知悉同时使用两个电光开关,每个电光开关使激光束偏振同方向旋转45度和前者等价。 [0045] The opening of the electro-optic crystal 4 deuterated potassium diphosphate (of DKDP) crystals, crystal drive voltage IlKV polarized light beam rotated by 90 degrees, the vertical polarization to horizontal polarization by the polarization or horizontal polarization into vertical polarization, should be aware of while two electro-optical switches, each optical switch of the laser beam with the polarization direction rotated by 45 degrees and the former equivalents. 通过主动控制电光开关的开启和关闭,从而控制激光脉冲的输入输出,进而控制激光脉冲在腔内传输的程数。 By actively controlling the opening and closing of the optical switch, thereby controlling input and output of the laser pulse, thereby controlling the laser drive pulses transmitted within the cavity. 电光开关工作需要两路触发时序,分别控制电光开关的开启(ON)和关闭(OFF),电光开关开启关闭时序相对于激光脉冲通过电光开关的时序如图7示意,图中下图对应激光脉冲第η次通过电光开关的时序,上图为电光开关触发脉冲时序,这里是针对环形四程放大时的时序图, 调节电光开关开启的门宽,即可调节环形多程放大的程数; Work needs two optical switch trigger timing, controlling optical switch are turned on (ON) and off (OFF), the electro-optical switch is turned off timing relative to the timing of the laser pulse through the electro-optical switch 7 a schematic, FIG lower laser pulse corresponding to FIG. the first pass η timing of the electro-optical switch, the optical switch trigger pulse sequence Pictured here is a timing chart for a four-pass amplification annular adjusting gate width of the optical switch is turned on, to adjust the number of annular multipass amplification process;

[0046] 所述的第一空间滤波器系统、第二空间滤波器系统和第三空间滤波器系统的结构,如图8所示,包括两等焦距的第一平凸透镜61、第二平凸透镜62、真空管道63和置于第一平凸透镜61焦平面处的滤波小孔64,该滤波小孔具有二维平移机构。 [0046] The structure of the system of the first spatial filter, the spatial filter system of a second and third spatial filter system 8, comprising a first focal length plano-convex lens 61 and the like of the two, a second plano-convex lens 62, vacuum line 63 and a first plano-convex lens disposed filter apertures 61 at the focal plane 64, the two-dimensional translation mechanism having a filter aperture.

[0047] 所述的第一空间滤波器系统为4f像传递系统,两个透镜间距为CU = Sfhf1为第一空间滤波器透镜焦距; [0047] The spatial filter of the first 4f system image transfer system, two lenses CU = Sfhf1 pitch of the first spatial filter lens focal length;

[0048] 所述的第二空间滤波器系统为离焦4f像传递系统,两个透镜间距为d2, [0048] The spatial filter of the second 4f system defocused image transfer system, two lens pitch is d2,

Figure CN107482432AD00071

[0050] 其中,5为第二空间滤波器透镜焦距,ί^,ί·φ分别为激光放大模块热透镜焦距径向分量和切向分量; [0050] wherein the second spatial filter 5 is the focal length of the lens, ί ^, ί · φ respectively, the thermal focal length of the laser amplifier module a radial component and a tangential component;

[0051] 所述的第三空间滤波器系统为4f像传递系统,两个透镜间距为d3 = 2f3,f3为第三空间滤波器透镜焦距; [0051] The spatial filter of the third 4f system image transfer system, two lenses pitch d3 = 2f3, f3 is the focal length of the third lens spatial filter;

[0052] 所述的两组激光放大模块的增益介质几何形状为棒状或片状,增益介质材料为钕玻璃; [0052] The gain medium of the laser amplification module sets a rod or a sheet-like geometry, gain medium material is a neodymium glass;

[0053] 所述的两组激光放大模块性能参数完全一致,如增益介质口径、掺杂浓度、栗浦方式(激光二极管侧面栗浦、激光二极管端面栗浦或氙灯栗浦)、栗浦功率等; [0053] The two sets of laser performance parameters identical amplifying modules, such as the diameter of the gain medium, the doping concentration, Li manner Pu (Pu Li side of the laser diode, a laser diode or a xenon lamp end surface Li Li Pu Pu), Li Pu power, etc. ;

[0054] 所述系统中,利用双激光放大模块结合像传递及90度石英转子来补偿激光放大模块热褪偏效应; [0054] The system, using a double-pass laser amplifier module incorporated as quartz and the rotor 90 to compensate for thermal laser amplifier module partial faded effect;

[0055] 所述系统中,90度石英转子使注入偏振光偏振旋转90度,置于两组激光放大模块间靠近激光放大模块的位置,等价于采用两45度同向石英转子; [0055] In the system, the rotor 90 of the quartz injected polarized light by 90 degrees polarization rotation, is placed between the position of two laser amplification modules close to the laser amplifier module, is equivalent to using two 45 ° and the rotor into the quartz;

[0056] 所述的系统中,整体光路为环形构型,注入方式为反射式实施例1(见图1)或透射式注入实施例2 (见图2; [0056] the system, overall light path to an annular configuration, the injection mode is a reflective Example 1 (see FIG. 1) or a transmission injection Example 2 (see Figure 2;

[0057] 所述系统中,利用脉冲同步信号发生器同步技术保证栗浦电源、电光开关与激光脉冲同步; [0057] The system, using the synchronization pulse synchronizing signal generator to ensure power Pu Li, optical switch synchronized with the laser pulse;

[0058] 所述系统中,整体激光放大系统环形光路腔长L与种子光束脉宽知相关为: [0058] In the system, the entire laser amplification system of the annular cavity optical path length L of the seed light pulse width related art:

[0059] L = tcC> (tr+tp) C [0059] L = tcC> (tr + tp) C

[0060] 其中,C为空气中激光光速,tc为激光束在腔内传输一周的时间,tr为电光开关上升沿时间; [0060] wherein, C is the speed of light in air laser, tc for the cavity laser beam transmission time of the week, tr is the rise time optical switch;

[0061] 所述的具有一维平移的45度二维可调全反镜8,该45度二维可调全反镜,固定在一维平移底座上,使全反镜有三个可调维度,使多程光束与第一程光束共轴传输,便于调节; [0061] The one-dimensional translational having a two-dimensional adjustable 45 degree total reflection mirror 8, the two-dimensional adjustable 45 degree total reflection mirror, fixed to a base dimensional translation, so that total reflection mirror has three adjustable dimensions the multi-pass light beam coaxial with the first drive transmission, to facilitate adjustment;

[0062] 下面结合图6,详细说明激光脉冲放大过程中偏振变化情况: [0062] below with reference to FIG. 6, an enlarged detail during the laser pulse polarization changes:

[0063] 首先注入光偏振为垂直线偏振光的激光脉冲,经过扩束器1和软边光阑2得到预整形后的激光脉冲,接着预整形后的激光脉冲(s光)进入第一偏振分光棱镜3被反射进入电光开关4,此时电光开关4是关闭状态,不对偏振发生改变,透过电光开关4仍然是s光,s光接着进入第二偏振分光棱镜5被反射进入后续光路,透射第一空间滤波器系统6偏振不变;接着s 光穿过第一激光放大模块9放大一次,到达90度石英转子12,偏振顺时针旋转90度,变为水平线偏振光(P光),透射第二空间滤波器系统13(图中未示),穿过第二激光放大模块14再次被放大,透射第三空间滤波器系统17,至此激光脉冲以p光再次到达第一偏振分光棱镜3前, 激光脉冲经过一程放大,光束偏振由s光变为p光; [0063] First, the injection laser pulse light polarization is vertical linear polarized light through a beam expander 2 and the soft edge aperture obtained after the pre-shaping of the laser pulses, then the pre-shaping of the laser pulse (s light) enters the first polarizer dichroic prism 3 is reflected into the optical switch 4, when optical switch 4 is turned off, the polarization does not change, through the optical switch 4 is still light s, s light then enters the second polarizing beam splitter prism 5 is reflected into the light path subsequent, spatial filter 6 transmits the first polarization invariant system; s then passes through the first amplifying a laser amplification module 9, the rotor 12 reaches 90 degrees quartz, polarization rotated 90 degrees clockwise, into a horizontally polarized light (P light), transmitting a second spatial filter system 13 (not shown), through the second laser amplification module 14 is amplified again, transmitting a third spatial filter system 17, laser pulses to this light again reaches the first p polarized beam splitting prism 3 before, after one pass amplification of laser pulses, the polarization of the beam light becomes s p light;

[0064] 接着p光透射第一偏振分光棱镜,到达电光开关4,此时电光开关4为开启状态,将p 光偏振向右偏转90度,变为s光,接着s光在第二偏振分光棱镜5被反射90度,透射第一空间滤波器系统6,穿过第一激光放大模块9被放大接着s光穿过90度石英转子,偏振向右旋转90 度,变为P光,透射第二空间滤波器系统,接着P光穿过第二激光放大模块13被放大,透射第三空间滤波器系统17,P光第三次到达第一偏振分光棱镜3,至此,激光脉冲实现第二程放大,第一程P光在第二程放大后仍然保持P光,接着P光以类似第二程放大的方式依次实现第三程、第四程放大,至此,激光脉冲实现四程放大,此时激光脉冲再次到达第一偏振分光棱镜前,偏振为P光偏振; [0064] Next a first light-transmissive p polarization splitting prism and arriving at optical switch 4, then the ON state optical switch 4, the p-polarized light deflected by 90 degrees to the right, the light becomes s, then the light in the second polarization splitting s 5 is reflected by the prism 90, the transmission system of the first spatial filter 6, through the first laser amplification module 9 is then amplified light passes through the 90 ° quartz s rotor, polarization rotated clockwise by 90 degrees, the light becomes P, passes through the first two spatial filter system, then P passes through the second laser light is amplified by amplifier module 13, the transmission system of the third spatial filter. 17, the third light P reaches the first polarization splitting prism 3, so far, to achieve a second laser pulse drive amplifying the first optical path P P light remains after the second pass amplifier, followed by a second similar light path P turn in a manner to achieve amplification third process, the fourth pass amplification, so far, to achieve four-pass amplification of laser pulses, this when the laser pulse again before reaching the first polarization splitting prism, the polarization of P polarized light;

[0065] 接着p光透过第一偏振分光棱镜,到达所述的电光开关4,此时,电光开关关闭,不对激光脉冲偏振发生改变,激光脉冲以P光透过电光开关4,到达第二偏振分光棱镜;接着p 光透过第二偏振分光棱镜,激光脉冲输出;至此,激光脉冲实现四程激光放大,并实现激光脉冲放大输出。 [0065] p is then transmitted through the first polarization splitting prism light arriving at the optical switch 4, this time, the electro-optical switch is turned off, no change in the polarization of the laser pulses, the laser pulses P to the light transmitting optical switch 4, to the second the PBS; p then the second polarization splitting prism light, through laser pulse output; Thus, the laser pulse to achieve four-pass laser amplification, and the amplified output laser pulse to achieve.

[0066] 对于其他程数多程激光脉冲放大过程偏振变化,类似上面四程放大过程,只需改变电光开关开启门宽并保证光束和电光开关4时间同步,即可实现其他程数多程激光脉冲放大。 [0066] For other multi-pass processes the number of pulses of laser polarization change the amplification process, similar to the above four-pass amplification process, simply by changing the optical switch to open the door and to ensure wide beam optical switch 4 and the time synchronization can be realized several other multi-path of the laser drive pulse amplification.

[0067] 以上所述仅为本发明实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关技术领域,均同理包括在本发明的专利保护范围内。 [0067] The embodiments described above are only embodiments of the present invention, not intended to limit the scope of the present invention, all utilize the present specification and drawings taken equivalent structures or equivalent process, directly or indirectly, to other related BACKGROUND shall also fall within the scope of protection of the present invention.

Claims (7)

1. 一种环形多程激光放大装置,特征在于其构成包括:扩束器(I)、软边光阑(2)、第一偏振分光棱镜(3)、电光开光⑷、第二偏振分光棱镜(5)、第一空间滤波器系统(6)、第一45 度全反镜(7)、第二45度全反镜(8)、第一激光放大模块(9)、第三45度全反镜(10)、第四45度全反镜(11)、90度石英转子(12)、第二空间滤波器系统(13)、第二激光放大模块(14)、第五45度全反镜(15)、第六45度全反镜(16)、第三空间滤波器系统(17)和具有一维平移的二维可调45度全反镜(18); 垂直线偏振激光脉冲依次经所述的扩束器(1)和软边光阑(2)后入射到所述第一偏振分光棱镜(3),经该第一偏振分光棱镜(3) 90度反射后经所述的电光开光(4)垂直入射到所述的第二偏振分光棱镜(5),经该第二偏振分光棱镜(5) 90度反射后,依次经所述的第一空间滤波器系统(6)、第一45度全反镜(7)、第二45度 An annular multi-pass laser amplifier apparatus, characterized in that it constitutes comprising: a beam expander (the I), soft-edge stop (2), first polarization beam splitting prism (3), opening of the electro-optical ⑷, the second polarization splitting prism (5), a first spatial filter system (6), a first 45-degree total reflection mirror (7), a second 45-degree total reflection mirror (8), a first laser amplification module (9), the third 45-degree mirror (10), the fourth 45-degree total reflection mirror (11), the rotor 90 of quartz (12), a second spatial filter system (13), a second laser amplification module (14), the fifth 45-degree all-trans mirror (15), a sixth-degree mirror 45 (16), a third spatial filter system (17) is adjustable 45 degree total reflection mirror (18) having a one-dimensional and two-dimensional translation; vertical linearly polarized laser pulses sequentially through the incident beam expander (1) and the soft edge aperture (2) of said first polarization beam splitting prism (3), through the first polarization beam splitting prism (3) through 90 degrees of the reflected the electro-optical light opening (4) perpendicularly incident on the second polarization splitting prism (5), through the second polarization beam splitter prism (5) reflected by 90 degrees, followed by a first spatial filter system (6) according to, The first 45-degree total reflection mirror (7), a second 45 ° 反镜⑶入射到第一激光放大模块(9), 经该第一激光放大模块(9)放大后,再依次经第三45度全反镜(10)、第四45度全反镜(11)、 90度石英转子(12)和第二空间滤波器系统(13)入射到第二激光放大模块(14),经该第二激光放大模块(14)放大输出后,再次经第五45度全反镜(15)、第六45度全反镜(16)和第三空间滤波器系统(17)入射到所述的二维可调45度全反镜(18),经该二维可调45度全反镜(18) 反射后射入到所述的第一偏振分光棱镜(3),经该第一偏振分光棱镜⑶透射后入射到所述的电光开光⑷; 所述的第一空间滤波器系统(6)为4f像传递系统,两个透镜的间距为Cl1 = Sf1 J1为第一空间滤波器透镜焦距; 所述的第二空间滤波器系统为离焦4f像传递系统,两个透镜的间距为d2, ⑶ incident on the first mirror laser amplification module (9), (9) a first laser light amplified by the amplification module, and then followed by a third 45-degree total reflection mirror (10), the fourth 45-degree total reflection mirror (11 ), 90 degree quartz rotor (12) and a second spatial filter system (13) amplifying laser light incident on the second module (14), rear (14) amplifying the output through the second laser amplifier module 45 degrees again by the fifth total reflection mirror (15), a sixth-degree mirror 45 (16), and a third spatial filter system (17) incident on the two-dimensional adjustable 45 degree total reflection mirror (18), through the two-dimensional may modulation degree total reflection mirror 45 (18) incident on the back reflector to the first polarization splitting prism (3), wherein, after being transmitted through the first polarization splitting prism ⑶ incident on said electrooptic light ⑷ opening; said first spatial filter system (6) is a 4f image transmission system, for the distance between the two lenses Cl1 = Sf1 J1 is the focal length of the first lens spatial filter; a second spatial filter system according to 4f defocused image transfer system, two the lens pitch d2,
Figure CN107482432AC00021
其中,f 2为第二空间滤波器透镜焦距,fr,f4>分别为激光放大模块热透镜焦距的径向分量和切向分量; 所述的第三空间滤波器系统为4f像传递系统,两个透镜的间距为d3 = 2f3,f3为第三空间滤波器透镜焦距; 利用脉冲同步信号发生器同步控制栗浦电源、电光开关与激光脉冲同步。 Wherein, f 2 is the focal length of the second spatial filter, fr, f4> respectively radial and tangential components of the laser amplifier module to a component of the thermal focal length; third space for the filter system of the image transmission system 4f, two pitch of lenses is d3 = 2f3, f3 is the focal length of the third lens spatial filter; synchronizing signal generator by the pulse synchronization control power Pu Li, optical switch synchronized with the laser pulse.
2. 根据权利要求1所述的环形多程激光放大装置,其特征在于所述的软边光阑(2)为镀铬石英玻璃板或光学玻璃镀渐变反射率增透膜制成或光寻址液晶光调制器。 The annular according to claim 1 multi-pass laser amplification apparatus, wherein the soft edge aperture (2) is a chrome-plated glass of quartz glass or optical reflectivity graded AR coating made or photoaddressable liquid crystal light modulator.
3. 根据权利要求1所述的环形多程激光放大装置,其特征在于所述的电光开光(3)开启时使线偏振激光脉冲偏振旋转90度,该电光开关可替换为两个,每个电光开关使偏振同向旋转45度,效果和前者等价。 The ring according to claim 1 multi-pass laser amplification apparatus, wherein the wire opening when the electro-optic light (3) open polarized laser pulse polarization rotated by 90 degrees, the optical switch may be replaced with two, each the electro-optical switch with the polarization direction rotated by 45 degrees, and the effect is equivalent to the former.
4. 根据权利要求1所述的环形多程激光放大装置,其特征在于所述的第一激光放大模块和第二激光放大模块的增益介质几何形状为棒状或片状增益介质,增益介质材料为钕玻璃,所述的第一激光放大模块和第二激光放大模块的性能参数完全一致。 The ring according to claim 1 multi-pass laser amplification apparatus, wherein the first laser gain medium and the second laser amplifier module amplifying module rod shaped or plate geometry gain medium, the gain medium material exactly neodymium glass laser amplifier module according to a first and a second laser amplification module performance parameters.
5. 根据权利要求1所述的环形多程激光放大装置,其特征在于所述的具有一维平移的二维可调45度全反镜可替换为变形镜。 The ring according to claim 1 multi-pass laser amplification apparatus, wherein said two-dimensional variable having a one-dimensional translational degree total reflection mirror 45 may be replaced with a deformable mirror.
6. 根据权利要求1所述的环形多程激光放大装置,其特征在于所述的第一空间滤波器系统、第二空间滤波器系统和第三空间滤波器系统的结构,包含两等焦距第一平凸透镜(61)、第二平凸透镜(62)、真空管道(63)和置于第一平凸透镜(61)焦平面处的滤波小孔(64),该滤波小孔具有二维平移机构。 6. The focal length of the two other annular according to claim 1 multi-pass laser amplification apparatus, wherein the first spatial filter of the system, the system structure of the second and third spatial filters of the spatial filter system, comprising a plano-convex lens (61), a second plano-convex lens (62), a vacuum duct (63) and a first plano-convex lens disposed (61) filtering apertures (64) at the focal plane, the aperture having a two-dimensional translation mechanism filter .
7.根据权利要求1至6任一项所述的环形多程激光放大装置,其特征在于所述的放大系统光路的注入方式为反射式或透射式。 The ring according to any one of claims 1 to 6, claim multipass laser amplifier apparatus, wherein said amplification system optical path injection method is reflective or transmissive.
CN201710700165.3A 2017-08-16 2017-08-16 Annular multi-range laser amplification device CN107482432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710700165.3A CN107482432A (en) 2017-08-16 2017-08-16 Annular multi-range laser amplification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710700165.3A CN107482432A (en) 2017-08-16 2017-08-16 Annular multi-range laser amplification device

Publications (1)

Publication Number Publication Date
CN107482432A true CN107482432A (en) 2017-12-15

Family

ID=60599728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710700165.3A CN107482432A (en) 2017-08-16 2017-08-16 Annular multi-range laser amplification device

Country Status (1)

Country Link
CN (1) CN107482432A (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897328A (en) * 1995-03-24 1999-04-27 Tdk Corporation Thin film transistor, organic electroluminescence display device and manufacturing method of the same
CN101051164A (en) * 2006-04-06 2007-10-10 杨爱萍 Circular chamber regulating Q optical fiber laser regenerating amplifier
JP2008292113A (en) * 2007-05-28 2008-12-04 Toshiba Corp Semiactive guidance device
CN202002883U (en) * 2010-12-31 2011-10-05 中国科学院国家授时中心 Minitype saturated absorption spectrum device
CN102243106A (en) * 2011-04-06 2011-11-16 中国航空工业集团公司北京长城计量测试技术研究所 Frequency-beating device for laser frequency measurement
CN102252690A (en) * 2011-04-14 2011-11-23 西安电子科技大学 Measuring system of relative position of laser mode and aperture and measuring method thereof
CN102436065A (en) * 2011-12-15 2012-05-02 哈尔滨理工大学 Method and device for simultaneously generating and amplifying hollow beams through liquid core optical fiber
CN102539381A (en) * 2010-12-24 2012-07-04 南京理工大学 Refractive index chromatography device based on micro-off-axis microscopic interference projection
CN102570281A (en) * 2012-01-10 2012-07-11 北京工业大学 Amplifier and method for increasing multipass amplifying output power of bar-like Nd: YAG (yttrium aluminum garnet) laser
CN102856781A (en) * 2012-09-07 2013-01-02 山东海富光子科技股份有限公司 Seed injecting Q-switching single-frequency fiber laser
CN202749674U (en) * 2012-09-07 2013-02-20 山东海富光子科技股份有限公司 Seed injection Q-switched single-frequency optical fiber laser
CN103560387A (en) * 2013-11-14 2014-02-05 中国电子科技集团公司第十一研究所 Double-pass absorption spectral matching laser amplifier and amplifying method thereof
JP2014119467A (en) * 2012-12-13 2014-06-30 Isao Yamane Total reflection toroidal mirror
US20150085885A1 (en) * 2004-03-31 2015-03-26 Imra America, Inc. High power short pulse fiber laser
US20150164318A1 (en) * 2013-04-09 2015-06-18 Smart Vision Labs Systems and methods for processing portable wavefront aberrometer data
US20160139200A1 (en) * 2009-05-01 2016-05-19 Dcg Systems, Inc. Systems and method for laser voltage imaging state mapping
DE102014118880A1 (en) * 2014-12-17 2016-06-23 Rofin-Baasel Lasertech Gmbh & Co. Kg An optical device for modulating the spectral phase of laser pulses
CN106486882A (en) * 2016-11-16 2017-03-08 苏州大学 Novel highly-efficient high-power annular laser amplifier
CN206259606U (en) * 2016-11-16 2017-06-16 苏州大学 Novel high -efficient high power annular laser amplifier

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897328A (en) * 1995-03-24 1999-04-27 Tdk Corporation Thin film transistor, organic electroluminescence display device and manufacturing method of the same
US20150085885A1 (en) * 2004-03-31 2015-03-26 Imra America, Inc. High power short pulse fiber laser
US9640940B2 (en) * 2004-03-31 2017-05-02 Imra America, Inc. High power short pulse fiber laser
CN101051164A (en) * 2006-04-06 2007-10-10 杨爱萍 Circular chamber regulating Q optical fiber laser regenerating amplifier
JP2008292113A (en) * 2007-05-28 2008-12-04 Toshiba Corp Semiactive guidance device
US20160139200A1 (en) * 2009-05-01 2016-05-19 Dcg Systems, Inc. Systems and method for laser voltage imaging state mapping
CN102539381A (en) * 2010-12-24 2012-07-04 南京理工大学 Refractive index chromatography device based on micro-off-axis microscopic interference projection
CN202002883U (en) * 2010-12-31 2011-10-05 中国科学院国家授时中心 Minitype saturated absorption spectrum device
CN102243106A (en) * 2011-04-06 2011-11-16 中国航空工业集团公司北京长城计量测试技术研究所 Frequency-beating device for laser frequency measurement
CN102252690A (en) * 2011-04-14 2011-11-23 西安电子科技大学 Measuring system of relative position of laser mode and aperture and measuring method thereof
CN102436065A (en) * 2011-12-15 2012-05-02 哈尔滨理工大学 Method and device for simultaneously generating and amplifying hollow beams through liquid core optical fiber
CN102570281A (en) * 2012-01-10 2012-07-11 北京工业大学 Amplifier and method for increasing multipass amplifying output power of bar-like Nd: YAG (yttrium aluminum garnet) laser
CN102856781A (en) * 2012-09-07 2013-01-02 山东海富光子科技股份有限公司 Seed injecting Q-switching single-frequency fiber laser
CN202749674U (en) * 2012-09-07 2013-02-20 山东海富光子科技股份有限公司 Seed injection Q-switched single-frequency optical fiber laser
JP2014119467A (en) * 2012-12-13 2014-06-30 Isao Yamane Total reflection toroidal mirror
US20150164318A1 (en) * 2013-04-09 2015-06-18 Smart Vision Labs Systems and methods for processing portable wavefront aberrometer data
CN103560387A (en) * 2013-11-14 2014-02-05 中国电子科技集团公司第十一研究所 Double-pass absorption spectral matching laser amplifier and amplifying method thereof
DE102014118880A1 (en) * 2014-12-17 2016-06-23 Rofin-Baasel Lasertech Gmbh & Co. Kg An optical device for modulating the spectral phase of laser pulses
CN106486882A (en) * 2016-11-16 2017-03-08 苏州大学 Novel highly-efficient high-power annular laser amplifier
CN206259606U (en) * 2016-11-16 2017-06-16 苏州大学 Novel high -efficient high power annular laser amplifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘成: "高能量环形长腔再生放大啁啾脉冲激光的研究", 《物理学报》 *
张伟: "采用环形再生腔结构的飞秒激光啁啾脉冲放大研究", 《物理学报》 *

Similar Documents

Publication Publication Date Title
US5555186A (en) Projection type liquid crystal display apparatus using multiple polarizing beam splitters
US20130235284A1 (en) Stereoscopic projection systems and methods for employing spatial multiplexing at an intermediate image plane
US5748376A (en) High optical throughput liquid-crystal projection display system
US6704469B1 (en) Polarization beam combiner/splitter
WO2001073485A1 (en) High efficiency prism assembly for image projection
WO1987005751A1 (en) Efficient phase conjugate laser
JPH1041565A (en) Solid laser amplifier
WO2003091783A1 (en) Image display unit
CN1187637C (en) Optical system of liquid crystal projector
JPH08254678A (en) Projection type liquid crystal display device
CN100458566C (en) beamsplitter optical design without inverting image and holding catadioptric photoetching system
KR20000067242A (en) Reflection type projector
JPH03243932A (en) Rear projection type image receiver
CN102483520B (en) Stereoscopic projection system employing spatial multiplexing at an intermediate image plane
CN1230703C (en) Optical unit and projection type projector using it
CN105093555B (en) Short-distance optical amplification module and its near-eye display using the optical module
US6996141B1 (en) Device for reducing the peak power of a pulsed laser light source
CN104272172B (en) The stereoscopic image apparatus
US7387388B2 (en) Illumination system using polarization conversion
US20050002169A1 (en) Polarization recycler
CN104882776B (en) The adjustable repetition rate high power femtosecond laser scanning speed
Bourderionnet et al. Spatial mode control of a diode-pumped Nd: YAG laser by an intracavity liquid-crystal light valve
KR0149771B1 (en) Solid state laser for highpower laser beam generation
CN102279507B (en) Projection display apparatus
CN102771020A (en) High power femtosecond laser with adjustable repetition rate

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination