CN107465345B - 用于dc/dc变换器的系统和方法 - Google Patents

用于dc/dc变换器的系统和方法 Download PDF

Info

Publication number
CN107465345B
CN107465345B CN201710416430.5A CN201710416430A CN107465345B CN 107465345 B CN107465345 B CN 107465345B CN 201710416430 A CN201710416430 A CN 201710416430A CN 107465345 B CN107465345 B CN 107465345B
Authority
CN
China
Prior art keywords
bridge circuit
energy storage
storage device
coupled
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710416430.5A
Other languages
English (en)
Other versions
CN107465345A (zh
Inventor
A.埃拉泽尔
M.阿加米
K.K.许
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN107465345A publication Critical patent/CN107465345A/zh
Application granted granted Critical
Publication of CN107465345B publication Critical patent/CN107465345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/305Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/315Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/3155Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种电子驱动电路,包括能量储存装置和耦连至能量储存装置的第一桥接电路。第一桥接电路包括至少一个具有两个开关的臂。电子驱动电路还包括变压器。变压器包括耦连至第一桥接电路的第一绕组以及通过中心抽头耦连至能量储存装置的第二绕组。电子驱动电路还包括耦连至变压器的第二绕组的第二桥接电路。第二桥接电路包括一对开关,开关能够操作以在双方向导通以及在双方向阻止电压。电子驱动电路另外包括耦连至第二桥接电路的DC母线以及控制器,控制器被配置成将来自能量储存装置的DC电压降低或升高,以供应至DC母线;以及将来自DC母线的DC电压降低或升高,以供应至能量储存装置。

Description

用于DC/DC变换器的系统和方法
技术领域
本发明的实施例一般涉及电力驱动系统,包括混合和电动车辆,以及遭遇暂态或脉动负载的静止驱动器,并且更具体地涉及用于在电力储存装置和车辆或驱动器的DC母线之间传递能量的双向降压/升压DC-DC变换器(buck/boost DC-DC converter)。
背景技术
混合电动车辆(HEV)可以组合内燃发动机和由能量储存装置(诸如牵引电池)供电的电动机,以推进车辆。通常,HEV的电动机耦连于内燃发动机和变速器之间,以利用通过变速器的转矩提升。这种组合可以通过使内燃发动机和电动机能够分别操作于其相应的提高的效率范围,提高总的燃料效率。电动机例如可以是在从静止启动加速时是高效的,而内燃发动机可以在恒定发动机运行的持续周期中(诸如在高速公路驾驶时)是高效的。使电动机提升初始加速度允许HEV中的内燃发动机更小,燃料效率更高。
纯电动车辆(EV)通常使用储存的电能来给推进车辆的电动机供电。EV可以使用一个或多个储存的电能来源,并被配置成使用来自外部来源的能量对牵引电池或其它储存装置再充电。例如,可以使用第一储量源(有时称作“能量”源)提供更持久的能量,而可以使用第二储能源(有时称作“动力”源)提供例如从静止加速或操作中提速的更高的动力。第一和第二源可以包括基于化学品的电池或者可以包括例如超级电容器。通常,EV中的(若干)电能源(能量和/或动力电池)通过插电充电器或其它外部能源充电。与HEV相比,EV通常完全依赖于插电电力,可以具有提高的能量储存能力和驱动范围。
插电混合电动车辆(PHEV)可以包括内燃发动机和由能量储存装置(诸如牵引电池)供电的电动机。通常,PHEV被配置成使用来自外部源的能量对牵引电池或其它储存装置再充电。因此,与HEV相比,PHEV更依赖于插电电力,可以具有提高的能量储存能力和驱动范围。
通常有两种类型的PHEV:并联和串联。在并联PHEV布置中,电动机耦连于内燃发动机和变速器之间,使得与HEV类似,内燃发动机和电动机能够各自操作于相应的提高的效率范围。在串联PHEV布置中,电动机耦连于能量储存装置和车辆驱动轴之间,而内燃发动机直接耦连至能量储存装置,而不是车辆驱动轴。串联PHEV还可以称作扩展范围电动车辆(EREV),其关于纯电动驱动系统,具有经由内燃发动机并且经由例如液体燃料储存系统针对能量储存系统的能量放大。
通常,EV、HEV和PHEV通常包括在制动操作期间对能量储存装置充电的再生制动。同样,这些车辆可以包括例如道路车辆和越野车辆、高尔夫球车、小区电动车、铲车和公用载重汽车。这些车辆可以使用非车载静止电池充电器或车载电池充电器从公用电网或可再生能源向车辆的车载牵引电池传递电能。
这些车辆还可以包括用于步升(step up)(升高)或步降(step down)(降低)DC母线上的电压的DC/DC变换器。常规的DC/DC变换器包括耦连至一对开关并耦连至一对二极管的电感器。每个开关耦连至相应的二极管,每个开关/二极管对形成相应的半相位模块。在这种拓扑中,所有的功率都由变换器处理,这导致更低的效率。而且,这种拓扑有较少的自由度。
因此,需要有高效率的双向降压/升压DC/DC变换器拓扑,其提供宽范围的输出电压以将能量提供至DC母线以及对一个或多个能量储存装置充电。
发明内容
本发明的一方面公开了一种电子驱动电路。电子驱动电路包括能量储存装置和耦连至能量储存装置的第一桥接电路。第一桥接电路包括至少一个具有两个开关的臂。电子驱动电路还包括变压器。变压器包括耦连至第一桥接电路的第一绕组以及通过中心抽头耦连至能量储存装置的第二绕组。电子驱动电路还包括耦连至变压器的第二绕组的第二桥接电路。第二桥接电路包括一对开关,一对开关能够操作以在双方向导通以及在双方向阻止电压。电子驱动电路另外包括耦连至第二桥接电路的DC母线以及控制器,控制器被配置成:将来自能量储存装置的DC电压降低或升高,以供应至DC母线;以及将来自DC母线的DC电压降低或升高,以供应至能量储存装置。
根据本发明的一个实施例,电子驱动电路还包括耦连于第一桥接电路和变压器的第一绕组之间的谐振电路。
根据本发明的一个实施例,谐振电路包括耦连至电容器的电感器。
根据本发明的一个实施例,控制器被配置成操作第一桥接电路作为脉冲宽度调制变换器、变频变换器或相移变换器,操作第二桥接电路作为整流器。
根据本发明的一个实施例,控制器被配置成操作第一桥接电路作为全波二极管整流器,操作第二桥接电路作为脉冲宽度调制的变换器。
根据本发明的一个实施例,控制器被配置成用与变频和脉冲宽度调制控制结合的桥-桥相移控制操作两个桥。
根据本发明的一个实施例,电子驱动电路还包括耦连于第二桥接电路和DC母线之间的滤波电容器和电感器。
根据本发明的一个实施例,DC母线耦连至包括逆变器和牵引电动机的牵引驱动器。
根据本发明的一个实施例,DC电压通过再生制动供应至能量储存装置。
本发明的另一方面公开了一种用于操作电子驱动电路的方法。方法包括将能量储存装置耦连至第一桥接电路。第一桥接电路包括至少一个具有两个开关的臂。方法还包括将变压器的第一绕组耦连至第一桥接电路;以及将变压器的第二绕组通过中心抽头耦连至能量储存装置。方法还包括将第二桥接电路耦连至变压器的第二绕组。第二桥接电路包括一对开关,一对开关能够操作以在双方向导通以及在双方向阻止电压。方法另外包括将DC母线耦连至第二桥接电路;以及配置控制器以将能量储存装置输出的DC电压降低或升高,以供应至DC母线;以及将DC母线输出的DC电压降低或升高,以供应至能量储存装置。
根据本发明的一个实施例,方法还包括将谐振电路耦连于第一桥接电路和变压器之间。
根据本发明的一个实施例,谐振电路包括耦连至电容器的电感器。
根据本发明的一个实施例,方法还包括配置控制器以操作第一桥接电路作为脉冲宽度调制变换器、变频变换器或相移变换器,操作第二桥接电路作为整流器。
根据本发明的一个实施例,方法还包括配置控制器以操作第一桥接电路作为全波二极管整流器,操作第二桥接电路作为脉冲宽度调制的变换器。
本发明的另一方面公开了一种电动车辆。车辆包括能量储存装置和耦连至能量储存装置的第一桥接电路。第一桥接电路包括至少一个具有两个开关的臂。车辆还包括耦连至第一桥接电路的谐振电路和变压器,其中,变压器包括耦连至谐振电路的第一绕组以及通过中心抽头耦连至能量储存装置的第二绕组。车辆还包括耦连至变压器的第二绕组的第二桥接电路。第二桥接电路包括一对开关,一对开关能够操作以在双方向导通以及在双方向阻止电压。车辆另外包括耦连至第二桥接电路的DC母线以及耦连至DC母线的车辆的牵引驱动器。车辆还包括控制器,控制器被配置成将来自能量储存装置的DC电压降低或升高,以供应至DC母线;以及将来自DC母线的DC电压降低或升高,以供应至能量储存装置。
根据本发明的一个实施例,谐振电路包括耦连至电容器的电感器。
根据本发明的一个实施例,控制器被配置成操作第一桥接电路作为脉冲宽度调制的变频或相移变换器,操作第二桥接电路作为整流器。
根据本发明的一个实施例,控制器被配置成操作第一桥接电路作为全波二极管整流器,操作第二桥接电路作为脉冲宽度调制的变换器。
根据本发明的一个实施例,车辆还包括耦连于第二桥接电路和DC母线之间的滤波电容器和电感器。
根据本发明的一个实施例,DC电压通过再生制动供应至能量储存装置。
通过以下的详细描述和附图,会更明白各个其它特征和优点。
附图说明
为了使本发明的优点容易理解,将通过参照在附图中图示的特定的实施例呈现对上文简要描述的本发明的更加具体的描述。要理解,这些附图只描绘本发明的示例性实施例,因此不认为是限制其范围,通过附图的使用,另外特定和详细地描述和解释本发明,图中:
图1是根据本发明的实施例的牵引系统的示意图;
图2是根据本发明的实施例的脉冲序列图,其图解说明通过步升能量储存装置的电压使能量储存装置放电的门控序列;
图3是根据本发明的实施例的脉冲序列图,其图解说明通过步降能量储存装置的电压使能量储存装置放电的门控序列;
图4是根据本发明的实施例的脉冲序列图,其图解说明通过步升DC母线电压对能量储存装置充电的门控序列;
图5是根据本发明的实施例的脉冲序列图,其图解说明通过步降DC母线电压对能量储存装置充电的门控序列;
图6是根据本发明的另一实施例的牵引系统的示意图;以及
图7是根据本发明的另一实施例的牵引系统的示意图。
具体实施方式
本文中公开了部分功率处理的双向、降压/升压变换器技术。双向功率流使电池在再生制动模式期间充电。可以以步升(升压)或步降(降压)模式操作变换器,因此允许根据所需的电动机速度优化DC母线电压。
图1图解说明根据本发明的实施例的牵引系统100的示意图。牵引系统100可以包括于诸如电动车辆(EV)、混合电动车辆(HEV)或插电混合电动车辆(PHEV)之类的车辆中。牵引系统100可以替代性地包括于静止电力驱动系统中。
牵引系统100包括能量储存装置102。作为非限制性示例,能量储存装置102可以是电池、燃料蓄电池或超级电容器。
能量储存装置102通过DC链接104耦连至第一桥接电路106。第一桥接电路106包括四个开关108-114。作为非限制性示例,开关108-114可以是硅(Si)或碳化硅(SiC)MOSFET、IGBT、MCT、晶闸管、GTO、IGCT、SiC JFET和Si MOSFET或GaN HEMT和Si开关的级联开关、或十字开关,诸如混合Si/SiC器件:Si IGBT和SiC肖特基二极管。第一桥接电路106还包括四个二极管116-122,每个二极管与对应的开关108-114并联耦连。第一桥接电路106通过结点128和130耦连至变压器126的一次绕组124。
在示例性实施例中,可以使用第一桥接电路106对来自能量储存装置102的输入电压进行脉冲宽度调制(PWM)以输入到变压器126的一次绕组124中。第一桥接电路106的这种PWM功能由控制器132控制,控制器132通过控制线134耦连至开关108-114。控制器132通过控制PWM的占空比(即开关保持接通/关断的时间的长度)控制开关108-114的动作。以此方式,来自能量储存装置102的输入电压转换成PWM电压,输入到一次绕组124中以由变压器126转换成变压器126的二次绕组136中的二次电压。在替代性实施例中,可以由变频或相移控制操作第一桥接电路106。可以使用这些控制方法中的任何一种将输出电压调整至设置的参考值。可以使用变频控制来实现宽操作范围上的更高的操作效率,而在更接近操作范围的极限时可以使用PWM或相移。
第一桥接电路106还可以作为整流器操作,以输出用于对能量储存装置102充电的电压。在这种情况下,开关108-114通过控制器132保持关断。替代性地,可以以特定的相移角切换开关108-114,以调整对电池充电的功率流。作为非限制性示例,这些操作会在再生制动期间发生。
变压器126的二次绕组136耦连至第二桥接电路138。由变压器126的二次绕组136产生的二次电压被输入到第二桥接电路138中。能量储存装置102的输入电压还输入到变压器126的二次绕组136的中心抽头139中,以允许一定输入功率绕过第一桥接电路106,由此提高牵引系统100的总效率。
部分功率处理意味着变换器额定值可以比全功率额定值更低。取决于DC母线需要的最大电压和电池电压范围,作为示例,可以将变换器设计成全额定值的大约67%。因为输入功率的一部分以100%的效率被直接馈送至输出,所以部分功率处理带来较高的效率。
第二桥接电路138包括四个开关140-146。作为非限制性示例,开关140-146可以是Si或SiC MOSFET、IGBT、MCT、晶闸管、GTO、IGCT、SiC JFET和Si MOSFET或GaN HEMT和Si开关的级联开关、或十字开关,诸如混合Si/SiC器件:Si IGBT和SiC肖特基二极管。开关140-146可以替代性地是反向阻断或反向导通IGBT。第二桥接电路138还包括四个二极管148-154,每个与对应的开关140-146并联耦连。开关140-146是交流(AC)开关,取决于开关140-146的操作,可以在双方向导通以及在双方向阻止电压。控制器132还通过控制线156耦连至开关140-146,以控制开关140-146的动作,从而将第二桥接电路138作为整流器操作。电感器158和电容器160还耦连至第二桥接电路138以过滤输出。以此方式,第二桥接电路138将负载电压输出至DC母线162。
在示例性实施例中,DC母线162耦连至牵引驱动器164。牵引驱动器可以包括耦连至牵引电动机168的逆变器166。不过,在替代性实施例(未显示)中,DC母线162可以耦连至第二能量储存装置、包括逆变器和电动机的电力驱动器或另一DC/DC变换器以进一步变换DC电压,以用于DC负载,诸如步进电机或辅助负载(例如空调、电动车窗或立体声系统)。
还可以使用第二桥接电路138,以脉冲宽度调制(PWM)来自DC母线162的送往变压器126的二次绕组136的电压。控制器132通过控制PWM占空比控制开关148-154的动作。以此方式,来自DC母线162的电压转换成PWM电压,输入到二次绕组136中以由变压器126转换成变压器126的一次绕组124中的另一电压,用于对能量储存装置102充电。在替代性实施例中,可以由变频或相移控制操作第二桥接电路138。可以使用这些控制方法中的任何一种来将输出电压调整至设置的参考值。可以使用变频控制实现宽操作范围上的更高的操作效率,而在更接近操作范围的极限时可以使用PWM或相移。作为非限制性示例,PWM、变频或相移控制会出现在再生制动期间。
牵引系统100还可以包括在第一桥接电路106和变压器126的一次绕组124之间的谐振电路170。在图1中所示的示例性实施例中,谐振电路170是LLC电路,包括两个电感器(LL)172和174和电容器(C)176。在替代性实施例中,谐振电路170可以是LC并联电路或LCC电路。在牵引系统100中包括谐振电路170提供控制功率流和电压调整的更多的自由度。谐振电路170还提供软开关(soft switching),这会提高总体效率。开关108-114的开关频率规定谐振回路(resonant tank)的增益。取决于开关频率是否在串联谐振频率(步升)以下或在串联谐振频率(步降)以上,这能够提供步升或步降操作。谐振变流器的电压增益取决于操作频率。作为非限制性示例,对于LLC谐振电路,电压增益大于1,在提供步升能力的串联谐振频率以下。电压增益小于1,在提供步降操作的串联谐振频率以上。在PWM控制中,0.5的占空比提供最高增益,而任何其它占空比提供较低增益。当组合步升和步降能力时,在调整终端电压以及通过实现有源器件的零电压切换过渡提高效率时,有更多的灵活性。
图2是根据本发明的实施例的脉冲序列图178,其图解说明在放电期间步升模式的门控序列。在步升模式中,来自变换器的功率增加到输出以提高电压。脉冲序列图166示出单个周期T期间的各个波形。
在步升模式中,在能量储存装置102放电期间,第一桥接电路106可以作为PWM变换器操作,第二桥接电路138作为整流器操作。因此,开关108-114是如图2所示的脉冲宽度调制的,开关140-142被接通,而开关144-146被关断。当第一桥接电路106的开关108-114导通时,电压施加在变压器126的二次绕组136上。在二极管152-154处的瞬时输出是能量储存装置102的输入电压加上变压器的二次电压,其等于输入电压除以变压器匝数比Np/Ns。通过从0%至100%改变PWM占空比D,平均电压输出可以被控制在输入电压的最小值和输入电压的最大值加上由变压器126的二次电压输出提供的增压之间。最大增益出现在50%占空比,并对较高或较低值的占空比对称降低。电感器158和电容器160作为滤波器操作以使输出电压平滑。输出电压因此是Vout=Vin+(Gain)*Vin。对于PWM操作,电压增益(Gain)等于2*D*(Ns/Np)。
第一桥接电路还可以作为变频变换器操作。对于使用LLC谐振变换器的变频操作,增益(Gain)等于:
Figure BDA0001313356230000101
在此计算中,fn是标准化开关频率
Figure BDA0001313356230000102
λ是电感比率,Q是品质因数。如果第一桥接电路以PWM和频率控制的组合操作,则电压增益将是组合值。如果第一桥接电路以PWM和频率控制的组合操作,则电压增益将是组合值。
对于LLC谐振变换器拓扑,为了实现零电压开关(ZVS),开关频率需要高于谐振频率,使得谐振回路电流滞后谐振回路电压。滞后的回路电流导致在器件接通之前的负的器件电流。此负电流使器件/缓冲电容(snubber capacitance)放电,然后通过反并联二极管流动。因此,器件在接通之前,器件电压降低到零,因此实现ZVS。
如果开关频率fs在fm<fs<fr范围内,则器件关断电流局限于磁化电流。这里,fm是由于谐振电容器和组合电感之间的谐振造成的总谐振频率,等于
Figure BDA0001313356230000103
fr是由于串联的电感器和电容器之间的谐振造成的串联谐振频率,等于
Figure BDA0001313356230000104
超过fr,关断电流变得大很多,因此在关断时开关损耗增大。为了对此进行补偿,可以使用缓冲电容器限制器件电压,以实现关断时接近零电压的开关。
谐振电路的品质因数
Figure BDA0001313356230000105
其中,ZC是变换器特征阻抗,
Figure BDA0001313356230000106
Rac是串联谐振变换器的等效负载电阻,
Figure BDA0001313356230000107
从增益特性看,低品质因数在fr以下时提供高增益选择性,在超过fr时提供基本上平坦的增益特性。低的品质因数还导致谐振电容器两端的低电压,这反映到关断时的二极管电压。改变电感比率
Figure BDA0001313356230000108
还对变换器增益特性有显著影响。低电感比率产生高频灵敏性,但导致更多的循环电流。高电感比率产生低循环电流,因此有更好的效率,但与开关频率相比,增益特性是平坦的。由此,变压器应当具有低品质因数和高电感比率,以实现较高效率和低的部件应力。
对于其它类型的谐振回路,增益会相应变化,但分析类似于如上文描述的LLC谐振变换器拓扑。对于LC串联谐振变换器,增益(Gain)等于:
Figure BDA0001313356230000111
对于LC并联谐振变换器,增益(Gain)等于:
Figure BDA0001313356230000112
对于LCC串-并联谐振变换器,增益(Gain)等于:
Figure BDA0001313356230000113
图3是根据本发明的实施例的脉冲序列图180,其图解说明在放电期间步降模式的门控序列。在步降模式中,输入电压大于期望的输出电压。脉冲序列图168示出在单个周期T期间的各个波形。
在步降模式中,在能量储存装置102放电期间,第一桥接电路106作为全波二极管整流器操作,第二桥接电路138作为PWM变换器操作。因此,开关108-114和144-146关断,而开关140-142是如图3所示的脉冲宽度调制的。在步降操作中,变压器126的二次绕组136充当一次绕组,而变压器126的一次绕组124充当二次绕组。
第二桥接电路138的输出电压再循环回到第一桥接电路106。改变开关140-142的占空比会控制第二桥接电路138的输入和输出电压之间的比率。由于能量储存装置102的输入电压会确定第二桥接电路138的输出电压,所以改变占空比的效应是改变第一桥接电路106和输出电压之间的电压降。开关140-142被控制,使得任一或两个开关总是被接通,即便在开关周期中它们也从来不会同时关断。当两个开关都导通时,在第二桥接电路138的输入两端没有电压降,所以输出电压等于其输入电压。当一个开关打开时,变压器126两端的电压将等于能量储存装置102的输入电压,原因是其被第一桥接电路106钳制到该值。因此,第二桥接电路138两端的输入电压将等于能量储存装置102的输入电压除以变压器匝数比。改变占空比会控制第二桥接电路138两端降低的平均电压,因此控制输出电压。输出电压因此将是Vout=Vin-2*Vin*(1-D)*(Ns/Np)。
第二桥接电路还可以作为变频变换器操作。对于利用LLC谐振变换器的变频操作,增益(Gain)等于:
Figure BDA0001313356230000121
图4是根据本发明的实施例的脉冲序列图182,其图解说明通过步升来自DC母线162的输入电压对能量储存装置102充电的门控序列。在这种情况下,第一桥接电路106作为全波整流器操作,第二桥接电路138作为PWM变换器操作。因此,开关108-114关断,开关140-142接通,开关144-146是如图4所示的脉冲宽度调制的。
第一桥接电路106的输出电压再循环回到第二桥接电路138。改变开关144-146的占空比会控制第一桥接电路106的输入和输出电压之间的比率。由于DC母线162的输入电压会确定第一桥接电路106的输出电压,所以改变占空比的效应是改变第二桥接电路138和输出电压之间的电压降。开关144-146被控制,使得任一或两个开关总是接通;即便在开关周期中它们也从来不会同时关断。当两个开关都导通时,在第二桥接电路138的输入两端没有电压降,所以输出电压等于其输入电压。当一个开关打开时,变压器126两端的电压将等于DC母线162的输入电压,原因是其被第二桥接电路138钳制到该值。因此,第一桥接电路106两端的输入电压将等于DC母线162的输入电压除以变压器匝数比。通过改变PWM占空比,对能量储存装置102充电的平均电压输出可以被控制在输入电压的最小值和输入电压的最大值加上由变压器126输出的电压提供的增压之间。输出电压因此会是Vout=Vin+2*D*(Ns/Np)*Vin
第二桥接电路还可以作为变频变换器操作。对于利用LLC谐振变换器的变频操作,增益(Gain)等于:
Figure BDA0001313356230000131
如果以PWM和频率控制的组合操作第一桥接电路,则电压增益会是组合值。
图5是根据本发明的实施例的脉冲序列图184,其图解说明通过步降输入电压对能量储存装置充电的门控序列。在这种情况下,桥接电路106和138都作为变频变换器操作。同样地,开关140-142关断,开关108-114和144-146是如图4所示的相移的。使用可变频率来调节两个桥106和138之间的增益。两个桥106和138之间的相移调整在两侧之间流动的电流的量。这种操作模式类似于谐振双有源桥。开关140-142被关断以便保持功率流动方向,以对能量储存装置102充电。软开关仍会出现,其中,第一桥接电路106在零电流开关下操作,而第二桥接电路138以零电压开关操作。增益(Gain)等于:
Figure BDA0001313356230000132
图6是根据本发明的替代性实施例的牵引系统186的示意图。与牵引系统100共同的元件和部件在本文中根据情况以相似的零件编号引用。在此半桥实施例中,开关108-110用第一半桥192中的电容器188-190取代。变压器126的二次绕组136经由结点196和198耦连至第二半桥194。第二半桥194包括由结点196耦连的四个开关200-206,每个开关与对应的二极管208-214并联耦连。第二半桥194还包括经由结点198耦连的两个电容器216-218。谐振电路170同样可以包括于第一半桥192和变压器126的一次绕组124之间。
牵引系统186类似于之前讨论的实施例工作。对于与图2对应的放电步升模式,在第一桥192上,开关112和114会开关(经由或者PWM或者变频控制)。在第二桥194上,开关200和204被关断,而开关202和206被接通。对于与图3对应的放电步降模式,开关112-114、200和204被关断,而开关202和206(经由或者PWM或者变频控制)开关。对于与图4对应的充电步升模式,开关112-114、202和206关断,而开关200和204(经由或者PWM或者变频控制以调整充电电流和增益)开关。对于与图5对应的充电步降模式,开关202和206关断,而开关112-114、200和204(经由或者PWM或者变频控制)开关。变频控制调整增益,第一和第二桥192和194之间的相移调整充电电流。在此实施例中,第二桥194作为倍压整流器操作,同样地可以用于需要较高电压增益的应用。
图7是根据本发明的另一替代性实施例的牵引系统222的示意图。与牵引系统100共同的元件和部件在本文中根据情况以相似零件编号引用。在此全桥实施例中,附加的电容器224包括于第一全桥226中。变压器126的二次绕组136经由结点230和232耦连至第二全桥228。第二全桥228包括经由结点230耦连的四个开关234-240,每个开关与对应的二极管242-248并联耦连。第二全桥228还包括经由结点232耦连的四个开关250-256,每个开关与对应的二极管258-264并联耦连。谐振电路170同样可以包括于第一全桥226和变压器126的一次绕组124之间。
牵引系统222类似于之前讨论的实施例工作,但更适合较高功率的应用。对于与图2对应的放电步升模式,开关108-114(经由PWM或变频控制)进行开关操作。第二桥228以整流器模式操作,使得开关234、238、250和254关断,而开关236、240、252和256接通。对于与图3对应的放电步降模式,开关108-114关断。开关234、238、250和254也关断,而开关236、240、252和256(经由PWM或变频控制以调整电压增益)进行开关操作。对于与图4对应的充电步升模式,开关108-114关断。开关236、240、252和256关断,而开关234、238、250和254(经由PWM或变频控制以调整电压增益和充电电流)进行开关操作。对于与图5对应的充电步降模式,开关108-114(经由PWM和/或变频控制)开关。开关236、240、252和256关断,而开关234、238、250和254(经由PWM和/或变频控制以调整电压增益)进行开关操作。充电电流由开关234、238、250和254和第一桥开关108-114之间的相移控制。
要理解上文描述的实施例只是本发明原理的应用的示意。在不偏离其精神或基本特性下,本发明可以以其它特定的形式体现。落入权利要求的等同物的含义和范围内的所有变化也包括在其范围内。因此,尽管关于目前认为是本发明的最实用和优选的实施例在上文具体和详细地全面描述了本发明,但对本领域技术人员显然的是在不偏离权利要求中陈述的本发明的原理和构思下,可以进行各种修改。

Claims (20)

1.一种电子驱动电路,包括:
能量储存装置;
第一桥接电路,所述第一桥接电路耦连至所述能量储存装置,所述第一桥接电路包括至少一个具有两个开关装置的臂;
变压器,所述变压器包括:
耦连至所述第一桥接电路的第一绕组;以及
通过中心抽头耦连至所述能量储存装置的第二绕组;
第二桥接电路,所述第二桥接电路耦连至所述变压器的第二绕组,所述第二桥接电路包括:至少一对串联连接的开关装置,所述一对开关装置能够操作以允许电流在双方向上流动;
耦连至所述第二桥接电路的DC母线;以及
控制器,所述控制器被配置成:
将来自所述能量储存装置的DC电压降低或升高,以供应至所述DC母线;以及
将来自所述DC母线的DC电压降低或升高,以供应至所述能量储存装置。
2.根据权利要求1所述的电子驱动电路,还包括耦连于所述第一桥接电路和所述变压器的第一绕组之间的谐振电路。
3.根据权利要求2所述的电子驱动电路,其特征在于,所述谐振电路包括耦连至电容器的电感器。
4.根据权利要求1所述的电子驱动电路,其特征在于,所述控制器被配置成操作所述第一桥接电路作为脉冲宽度调制变换器、变频变换器或相移变换器,操作所述第二桥接电路作为整流器。
5.根据权利要求1所述的电子驱动电路,其特征在于,所述控制器被配置成操作所述第一桥接电路作为全波二极管整流器,操作所述第二桥接电路作为脉冲宽度调制的变换器。
6.根据权利要求1所述的电子驱动电路,其特征在于,所述控制器被配置成用与变频和脉冲宽度调制控制结合的桥-桥相移控制操作两个桥接电路。
7.根据权利要求1所述的电子驱动电路,还包括:耦连于所述第二桥接电路和DC母线之间的滤波电容器和电感器。
8.根据权利要求1所述的电子驱动电路,其特征在于,所述DC母线耦连至包括逆变器和牵引电动机的牵引驱动器。
9.根据权利要求1所述的电子驱动电路,其特征在于,所述DC电压通过再生制动供应至所述能量储存装置。
10.一种用于操作电子驱动电路的方法,包括:
将能量储存装置耦连至第一桥接电路,所述第一桥接电路包括至少一个具有两个开关装置的臂;
将变压器的第一绕组耦连至所述第一桥接电路;
将所述变压器的第二绕组通过中心抽头耦连至所述能量储存装置;
将第二桥接电路耦连至所述变压器的第二绕组,所述第二桥接电路包括至少一对串联连接的开关装置,所述一对开关装置能够操作以允许电流在双方向上流动;
将DC母线耦连至所述第二桥接电路;以及
配置控制器以:
将所述能量储存装置输出的DC电压降低或升高,以供应至所述DC母线;以及
将所述DC母线输出的DC电压降低或升高,以供应至所述能量储存装置。
11.根据权利要求10所述的方法,还包括将谐振电路耦连于所述第一桥接电路和变压器之间。
12.根据权利要求11所述的方法,其特征在于,所述谐振电路包括耦连至电容器的电感器。
13.根据权利要求10所述的方法,还包括配置所述控制器以操作所述第一桥接电路作为脉冲宽度调制变换器、变频变换器或相移变换器,操作所述第二桥接电路作为整流器。
14.根据权利要求10所述的方法,还包括配置所述控制器以操作所述第一桥接电路作为全波二极管整流器,操作所述第二桥接电路作为脉冲宽度调制的变换器。
15.一种电动车辆,包括:
能量储存装置;
第一桥接电路,所述第一桥接电路耦连至所述能量储存装置,所述第一桥接电路包括至少一个具有两个开关装置的臂;
谐振电路,所述谐振电路耦连至所述第一桥接电路;
变压器,所述变压器包括:
耦连至所述谐振电路的第一绕组;以及
通过中心抽头耦连至所述能量储存装置的第二绕组;
第二桥接电路,所述第二桥接电路耦连至所述变压器的第二绕组,所述第二桥接电路包括至少一对串联连接的开关装置,所述一对开关装置能够操作以允许电流在双方向上流动;
耦连至所述第二桥接电路的DC母线;
耦连至所述DC母线的车辆的牵引驱动器;以及
控制器,所述控制器被配置成:
将来自所述能量储存装置的DC电压降低或升高,以供应至所述DC母线;以及
将来自所述DC母线的DC电压降低或升高,以供应至所述能量储存装置。
16.根据权利要求15所述的车辆,其特征在于,所述谐振电路包括耦连至电容器的电感器。
17.根据权利要求15所述的车辆,其特征在于,所述控制器被配置成操作所述第一桥接电路作为脉冲宽度调制的变频或相移变换器,操作所述第二桥接电路作为整流器。
18.根据权利要求15所述的车辆,其特征在于,所述控制器被配置成操作所述第一桥接电路作为全波二极管整流器,操作所述第二桥接电路作为脉冲宽度调制的变换器。
19.根据权利要求15所述的车辆,还包括耦连于所述第二桥接电路和DC母线之间的滤波电容器和电感器。
20.根据权利要求15所述的车辆,其特征在于,所述DC电压通过再生制动供应至所述能量储存装置。
CN201710416430.5A 2016-06-06 2017-06-05 用于dc/dc变换器的系统和方法 Active CN107465345B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/174042 2016-06-06
US15/174,042 US9960687B2 (en) 2016-06-06 2016-06-06 System and method for a DC/DC converter

Publications (2)

Publication Number Publication Date
CN107465345A CN107465345A (zh) 2017-12-12
CN107465345B true CN107465345B (zh) 2021-02-26

Family

ID=59021359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710416430.5A Active CN107465345B (zh) 2016-06-06 2017-06-05 用于dc/dc变换器的系统和方法

Country Status (5)

Country Link
US (1) US9960687B2 (zh)
EP (1) EP3255772B1 (zh)
JP (1) JP7005178B2 (zh)
KR (1) KR102368860B1 (zh)
CN (1) CN107465345B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534398B (zh) * 2015-01-29 2019-11-26 汪洪亮 半桥逆变器单元及逆变器
CN107408889B (zh) * 2015-03-03 2020-05-19 三菱电机株式会社 功率转换器
EP3504782B1 (en) * 2016-08-26 2021-10-06 Esab Ab Improved power supply having two quadrant converter and techniques for operation
KR102243561B1 (ko) * 2017-11-28 2021-04-23 에스케이이노베이션 주식회사 슈퍼커패시터를 이용한 배터리관리시스템의 전원 안정화 장치
JP6962233B2 (ja) * 2018-02-22 2021-11-05 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
EP3588736A1 (en) * 2018-06-29 2020-01-01 Koninklijke Philips N.V. Wireless power transfer
WO2020056534A1 (es) 2018-09-21 2020-03-26 Universidad Técnica Federico Santa María Un convertidor de potencia parcial sin transformador (ppc) para la etapa dc-dc de estaciones de carga rápida de vehículos eléctricos (ev)
CN112997391A (zh) * 2018-11-12 2021-06-18 住友电气工业株式会社 用于半导体开关的驱动设备和驱动方法、功率转换设备以及车辆
WO2020235197A1 (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 インバータ溶接機
WO2020242444A1 (en) 2019-05-24 2020-12-03 Huawei Technologies Co., Ltd. Integrated charger and motor control system comprising a transformer and multi-level power converters
FR3096847B1 (fr) 2019-05-29 2021-04-30 Renault Sas Procédé de commande d’un Convertisseur continu-continu pour un chargeur de batterie d’accumulateurs électriques bidirectionnel
US11081968B2 (en) * 2019-06-12 2021-08-03 Delta Electronics, Inc. Isolated boost converter
US11142075B2 (en) 2019-08-08 2021-10-12 Hamilton Sundstrand Corporation Efficient regenerative electrical braking
TW202121811A (zh) * 2019-11-15 2021-06-01 國立臺灣科技大學 具有寬輸出電壓範圍的全橋轉換器
US20230246555A1 (en) * 2020-06-08 2023-08-03 Foundation For Research And Business, Seoul National University Of Science And Technology Unitary charging device for low and high voltages
US11557978B2 (en) 2020-07-31 2023-01-17 Lear Corporation Converter module with phase shift
CN114362533A (zh) * 2020-09-30 2022-04-15 台达电子工业股份有限公司 Llc谐振转换器、控制单元及其控制方法
CN114362532A (zh) * 2020-09-30 2022-04-15 台达电子工业股份有限公司 Llc谐振转换器及其控制方法
EE05872B1 (et) * 2020-12-15 2024-08-15 Tallinna Tehnikaülikool Süsteem võimsuse edastamiseks kahe alalispingeallika vahel
CL2020003441A1 (es) 2020-12-30 2021-04-30 Univ Tecnica Federico Santa Maria Utfsm Convertidor de potencia parcial dc-dc de topología controlable
CL2020003436A1 (es) 2020-12-30 2022-07-22 Univ Tecnica Federico Santa Maria Utfsm Convertidor de potencia parcial dc-dc de topología controlable
US11509253B2 (en) * 2021-02-25 2022-11-22 GM Global Technology Operations LLC Electric drive assembly with dynamic control of pulse width modulation switching
DE102021108250A1 (de) 2021-03-31 2022-10-06 KEBA Energy Automation GmbH Ladestation und Verfahren zum Betreiben einer Ladestation
DE102021108278A1 (de) 2021-03-31 2022-10-06 Keba Industrial Automation Germany Gmbh Bidirektionaler DC/DC-Wandler
KR102554948B1 (ko) * 2021-06-23 2023-07-13 경북대학교 산학협력단 직류단 가변 전압 출력이 가능한 양방향 전력변환 시스템
CN115459596B (zh) * 2022-11-09 2023-02-17 西南交通大学 抑制脉冲负载电源输出电压波动的准比例谐振控制方法
CN118413120B (zh) * 2024-06-26 2024-09-06 惠州市乐亿通科技股份有限公司 并联逆变器与并联逆变控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772994A (en) * 1987-09-10 1988-09-20 Nishimu Electronics Industries, Co., Ltd. Power source using high-frequency phase control
CN1387306A (zh) * 2001-03-29 2002-12-25 台达电子工业股份有限公司 三级软切换变换器
CN101926086A (zh) * 2008-07-31 2010-12-22 爱信艾达株式会社 旋转电机控制系统以及车辆驱动系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136870A (en) 1979-04-10 1980-10-25 Toshiba Corp Voltage conversion type power supply
JPH07239725A (ja) * 1994-02-25 1995-09-12 Japan Storage Battery Co Ltd 太陽電池の電力変換装置
US6606257B2 (en) * 2001-11-05 2003-08-12 Koninklijke Philips Electronics N.V. Independent regulation of multiple outputs in a soft-switching multiple-output flyback converter
US7042199B1 (en) 2003-07-28 2006-05-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Series connected buck-boost regulator
CN101361254B (zh) 2005-11-24 2012-05-30 株式会社小松制作所 Ac连接双方向dc—dc转换器、使用了该转换器的混合电源系统及混合动力车辆
US20080205109A1 (en) 2007-02-26 2008-08-28 Lear Corporation Energy distribution system for vehicle
JP4378400B2 (ja) * 2007-08-28 2009-12-02 日立コンピュータ機器株式会社 双方向dc−dcコンバータ及び双方向dc−dcコンバータの制御方法
US7889524B2 (en) 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
US8717783B2 (en) 2009-10-30 2014-05-06 Delta Electronics (Shanghai) Co., Ltd. Method and apparatus for regulating gain within a resonant converter
US8363427B2 (en) 2010-06-25 2013-01-29 Greecon Technologies Ltd. Bi-directional power converter with regulated output and soft switching
CN103168414B (zh) * 2010-10-19 2016-03-02 松下知识产权经营株式会社 电源装置
US9290097B2 (en) 2010-11-05 2016-03-22 Robert Louis Steigerwald Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
US8330299B2 (en) * 2011-06-29 2012-12-11 General Electric Company DC to DC power converters and methods of controlling the same
US9520741B2 (en) 2011-11-28 2016-12-13 General Electric Company System for charging electrical storage device and method of making same
US9099938B2 (en) 2011-12-16 2015-08-04 Empower Micro Systems Bi-directional energy converter with multiple DC sources
WO2013125672A1 (ja) 2012-02-23 2013-08-29 日産自動車株式会社 電源装置及びその制御方法
US9859803B2 (en) * 2013-04-23 2018-01-02 Analog Devices Global Transformer-based isolated bi-directional DC-DC power converter, and method and controller for using same
US20150131328A1 (en) * 2013-11-08 2015-05-14 General Eectric Company System and method for power conversion
WO2015161138A1 (en) 2014-04-16 2015-10-22 The Regents Of The University Of Colorado, A Body Corporate Modular dc-dc converter
CA2946174A1 (en) 2014-05-16 2015-11-19 Solar Ship Inc. Four-quadrant partial power processing switched-mode converter for photovoltaic applications
JP2016178780A (ja) 2015-03-19 2016-10-06 Tdk株式会社 直列補償型電力伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772994A (en) * 1987-09-10 1988-09-20 Nishimu Electronics Industries, Co., Ltd. Power source using high-frequency phase control
CN1387306A (zh) * 2001-03-29 2002-12-25 台达电子工业股份有限公司 三级软切换变换器
CN101926086A (zh) * 2008-07-31 2010-12-22 爱信艾达株式会社 旋转电机控制系统以及车辆驱动系统

Also Published As

Publication number Publication date
US9960687B2 (en) 2018-05-01
KR20170138050A (ko) 2017-12-14
KR102368860B1 (ko) 2022-03-02
CN107465345A (zh) 2017-12-12
EP3255772A1 (en) 2017-12-13
US20170353111A1 (en) 2017-12-07
EP3255772B1 (en) 2022-12-14
JP2017221103A (ja) 2017-12-14
JP7005178B2 (ja) 2022-01-21

Similar Documents

Publication Publication Date Title
CN107465345B (zh) 用于dc/dc变换器的系统和方法
US9166415B2 (en) AC link bidirectional DC-DC converter, hybrid power supply system using the same and hybrid vehicle
US6370050B1 (en) Isolated and soft-switched power converter
Lee et al. Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers
US7408794B2 (en) Triple voltage dc-to-dc converter and method
US20220094274A1 (en) Single phase single stage bi-directional level 1 electric vehicle battery charger
Park et al. Design and control of a bidirectional resonant dc–dc converter for automotive engine/battery hybrid power generators
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US10574144B1 (en) System and method for a magnetically coupled inductor boost and multiphase buck converter with split duty cycle
US11962248B2 (en) Energy conversion system, energy conversion method, and power system
US11518246B2 (en) Electric drive system, powertrain, and electric vehicle
US10715042B2 (en) High gain DC-DC converter for electrified vehicles
Al-Sheikh et al. Power electronics interface configurations for hybrid energy storage in hybrid electric vehicles
Gu et al. High efficiency LLC DCX battery chargers with sinusoidal power decoupling control
Taraborrelli et al. Bidirectional dual active bridge converter using a tap changer for extended voltage ranges
Reddy et al. Novel wide voltage range multi-resonant bidirectional DC-DC converter
KR102479366B1 (ko) 배터리 충전 장치 및 제어 방법
Stanojević et al. Comparison of 2-stage isolated converters for fast EV charger, using partial power
CN112491157B (zh) 一种动态无线供电设备多接收端模块sipo电路拓扑控制方法
CN112491155B (zh) 磁并联式电动汽车大功率动态无线供电系统接收端多模块sipo电路拓扑及控制方法
Lei et al. Application of current-fed quasi-Z-Source Inverter for traction drive of hybrid electric vehicles
KR102644445B1 (ko) 충전 시 전기차용 배터리의 전류 리플 제거를 위한 위상 천이 풀 브릿지 컨버터 및 그 이용 방법
EP4098474B1 (en) Energy conversion system, energy conversion method, and power system
Varikuti et al. Design of Off Board Charger with Interleaved Full-Bridge LLC Converter for Electric Vehicle Applications
US20240072632A1 (en) Soft switching power converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant