WO2013125672A1 - 電源装置及びその制御方法 - Google Patents

電源装置及びその制御方法 Download PDF

Info

Publication number
WO2013125672A1
WO2013125672A1 PCT/JP2013/054471 JP2013054471W WO2013125672A1 WO 2013125672 A1 WO2013125672 A1 WO 2013125672A1 JP 2013054471 W JP2013054471 W JP 2013054471W WO 2013125672 A1 WO2013125672 A1 WO 2013125672A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
power
dcdc converter
inverter
Prior art date
Application number
PCT/JP2013/054471
Other languages
English (en)
French (fr)
Inventor
篤男 河村
祐輔 図子
孝志 福重
渋川 祐一
佐々木 健介
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/379,656 priority Critical patent/US9559620B2/en
Priority to EP13751598.7A priority patent/EP2819291B1/en
Priority to JP2014500943A priority patent/JP5759060B2/ja
Priority to CN201380010558.1A priority patent/CN104145411B/zh
Publication of WO2013125672A1 publication Critical patent/WO2013125672A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power supply device that supplies power to a vehicle drive motor and a control method thereof.
  • the power supply device of Patent Document 1 includes a switch that switches whether a battery capable of charging / discharging power and a capacitor are connected in series to the inverter or only a battery is connected. When the capacitor voltage is lower than the predetermined value, connect the battery and capacitor in series to supply regenerative power to both the battery and the capacitor. When the capacitor voltage is higher than the predetermined value, connect only the battery. The regenerative power is supplied only to the battery.
  • Patent Document 1 when the vehicle continues to run, the voltage of the capacitor disappears before the battery, and the vehicle driving motor must be driven only by the power of the battery. Therefore, in order to guarantee the maximum output value of the vehicle drive motor even when the state of charge of the battery is low, the inverter must use a semiconductor element having a large electric capacity, so that the problem of increasing the size of the inverter was there.
  • the present invention has been made in view of the above problems, and its purpose is to reduce the current capacity of the semiconductor elements used in the inverter and to reduce the size of the inverter by maintaining a high DC voltage input to the inverter. It is an object to provide a power supply apparatus and a control method thereof.
  • a power supply apparatus includes a first power supply capable of charging and discharging power, a second power supply connected in series to the first power supply and capable of charging and discharging power.
  • An isolated DCDC converter in which a first power supply is connected to the primary side terminal and a second power supply is connected to the secondary side terminal, and a power supply control unit that controls the voltage of the second power supply using the isolated DCDC converter.
  • the DC voltage output from the first power supply and the second power supply connected in series is input to the first inverter, converted into an AC voltage by the first inverter, and then supplied to the vehicle drive motor.
  • the control method of the power supply device includes the first power supply, the second power supply, and the isolated DCDC converter, and outputs from the first power supply and the second power supply connected in series.
  • a control method for a power supply apparatus in which a DC voltage is input to a first inverter, converted into an AC voltage by the first inverter, and then supplied to a vehicle driving motor, using an isolated DCDC converter Control the voltage of the second power source.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply apparatus according to the first embodiment of the present invention, and a first inverter 5 and a vehicle drive motor 6 connected to the power supply apparatus.
  • FIG. 2 is a graph showing how the DC voltage Vdc and the first power supply voltage Vbat change with time according to the control procedure of the isolated DCDC converter 3a by the power supply control unit 4 shown in FIG.
  • FIG. 3 is a flowchart showing an example of a control procedure of the isolated DCDC converter 3a by the power supply control unit 4 of FIG.
  • FIG. 4 is a circuit diagram showing a configuration of an insulation type DCDC converter 3b according to the second embodiment.
  • FIG. 5 is a circuit diagram showing a configuration of an insulation type DCDC converter 3c according to the third embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a power supply device according to the fourth embodiment.
  • the power supply device includes a first power source 1a capable of charging and discharging power, a second power source 2 connected in series to the first power source 1a and capable of charging and discharging power, and a first terminal connected to the primary side terminal.
  • connection means electrical connection, and does not mean mechanical connection.
  • the positive terminal of the first power source 1a and one terminal of the second power source 2 are connected, and the negative terminal of the first power source 1a and the other terminal of the second power source 2 are connected to a pair of DC side terminals of the first inverter 5, respectively.
  • the first inverter 5 includes switching elements on the upper and lower arms, respectively, and converts the DC voltage Vdc into a three-phase AC voltage by PWM control of on / off of the switching elements.
  • the AC side terminal of the first inverter 5 is connected to the vehicle driving motor 6.
  • the DC voltage Vdc output from the first power supply 1 a and the second power supply 2 connected in series is converted into a three-phase AC voltage by the first inverter 5 and then supplied to the vehicle drive motor 6. .
  • the vehicle driving motor 6 can be driven by a three-phase AC voltage to drive the vehicle.
  • the first power source 1a and the second power source 2 are charged / discharged such as a lithium (Li) ion battery, a battery (secondary battery) including a nickel metal hydride battery, an electric double layer capacitor, a Li ion capacitor, and a capacitive element including a capacitor. Possible power storage elements can be applied.
  • a lithium (Li) ion battery is used as the first power source 1 a and a capacitor is used as the second power source 2 will be described.
  • the power supply apparatus measures a DC voltage measurement unit 11 that measures a DC voltage Vdc output from a first power supply 1a and a second power supply 2 connected in series, and measures a first power supply voltage Vbat output from the first power supply 1a. And a first power supply voltage measurement unit 12.
  • the values of the DC voltage Vdc and the first power supply voltage Vbat measured by the DC voltage measurement unit 11 and the first power supply voltage measurement unit 12 are transmitted to the power supply control unit 4, respectively.
  • the insulated DCDC converter 3a has a pair of primary terminals and a pair of secondary terminals.
  • the primary side terminal of the insulated DCDC converter 3 a is connected to the positive electrode and the negative electrode of the first power source 1 a, and the secondary side terminal is connected to both terminals of the second power source 2.
  • the insulated DCDC converter 3a further includes an insulated transformer 31, switching elements 32a to 32d forming a primary full bridge circuit, switching elements 34a to 34d forming a secondary full bridge circuit, and an input side Smoothing capacitor 33.
  • the primary side full bridge circuit is connected to the primary side of the insulating transformer 31, and the secondary side full bridge circuit is connected to the secondary side of the insulating transformer 31.
  • the insulated DCDC converter 3a further includes capacitors connected in parallel to the switching elements 32a to 32d and 34a to 34d that form the primary and secondary full bridge circuits. Thereby, the insulation type DCDC converter 3a can perform soft switching.
  • the power supply device further includes a Zener diode 7 connected in parallel to the second power supply 2.
  • a Zener diode 7 connected in parallel to the second power supply 2.
  • the power supply controller 4 individually controls the switching operations of the switching elements 32a to 32d and 34a to 34d forming the primary side and secondary side full bridge circuits to thereby turn on / off the isolated DCDC converter 3a. Switch.
  • the power supply control unit 4 alternately turns on and off the switching elements 32a to 32d located at the diagonals of the primary-side full bridge circuit in the on state of the isolated DCDC converter 3a with a duty ratio of 50%. Specifically, the switching element 32a and the switching element 32d are turned on, and the switching element 32b and the switching element 32c are turned off. Then, the switching element 32a and the switching element 32d are turned off, and the switching element 32b and the switching element 32c are turned on. This is repeated alternately.
  • the switching elements 34a to 34d positioned diagonally are alternately turned on and off at a duty ratio of 50%.
  • the switching frequency is the same on the primary side and the secondary side, and a phase difference ⁇ is provided between the carrier phases on the primary side and the secondary side.
  • the electric power (transmission power P) transmitted from the primary side to the secondary side is expressed by Expression (1).
  • E 1 represents the first power supply voltage Vbat
  • E 2 represents the second power supply voltage Vcap
  • represents the switching frequency of the isolated DCDC converter 3 a
  • L represents the leakage inductance of the insulated transformer 31.
  • the insulated DCDC converter 3a is preferably a bidirectional insulated DCDC converter capable of transmitting power in both directions between the primary side and the secondary side. Thereby, not only can the voltage of the second power supply 2 be raised, it can also be lowered.
  • the power supply control unit 4 always controls all the switching elements 32a to 32d and 34a to 34d of the primary and secondary full bridge circuits to be off in the off state of the isolated DCDC converter 3a. At this time, no current flows through the primary side full bridge circuit, and the output voltage of the secondary side full bridge circuit is zero. The electric power (transmission power P) transmitted from the primary side to the secondary side is zero.
  • the power supply control unit 4 switches the on / off state of the isolated DCDC converter 3a based on the voltage values measured by the DC voltage measurement unit 11 and the first power supply voltage measurement unit 12. Details will be described later with reference to FIGS.
  • the power supply control unit 4 installs a computer program in which a control procedure described later is installed in an information processing unit such as a microcomputer provided with a processing unit, a storage unit, and a communication control unit, and uses the information processing unit to store the computer program. It is realized by executing.
  • step S01 the power supply controller 4 determines whether the vehicle driving motor 6 is performing a regenerative operation or a powering operation. For example, if the first power supply voltage Vbat measured by the first power supply voltage measuring unit 12 tends to decrease, it is determined that the powering operation is performed, and if the first power supply voltage Vbat tends to increase, the regenerative operation is performed. It can be determined that it is done. In addition to this, the determination may be made based on a signal indicating the power running operation or the regenerative operation output from the first inverter 5 or the vehicle drive motor 6.
  • step S02 the power supply control unit 4 determines that the DC voltage Vdc measured by the DC voltage measurement unit 11 is lower than the lower limit value Vdcmin that can be input to the first inverter 5. Judge whether it is large or not.
  • the process proceeds to step S04, and the power supply control unit 4 causes the isolated DCDC converter so that the DC voltage Vdc becomes larger than the lower limit value Vdcmin.
  • the second power supply voltage Vcap of the second power supply 2 is controlled using 3a.
  • the power supply control unit 4 controls the insulated DCDC converter 3a to be in an ON state, and transmits power from the first power supply 1a connected to the primary side to the second power supply 2 connected to the secondary side.
  • the second power supply voltage Vcap of the second power supply 2 rises, the DC voltage Vdc also rises, and becomes larger than the lower limit value Vdcmin.
  • Vbat: Vcap is equal to X: Y (YES in S03)
  • the process proceeds to step S06, and the power supply control unit 4 controls the second power supply voltage Vcap using the insulated DCDC converter 3a.
  • the switching elements 32a to 32d and 34a to 34d of the insulated DCDC converter 3a can be soft-switched so that the switching loss is reduced and the power running efficiency is improved.
  • the second power supply voltage Vcap can be obtained by subtracting the first power supply voltage Vbat from the DC voltage Vdc.
  • step S05 the power supply control unit 4 controls the isolated DCDC converter 3a to be in an off state.
  • step S07 the power supply control unit 4 causes the DC voltage Vdc measured by the DC voltage measurement unit 11 to be applied to the first inverter 5. It is determined whether or not the upper limit value Vdcmax that can be input is smaller. When it is determined that the DC voltage Vdc is not smaller than the upper limit value Vdcmax (NO in S07), the process proceeds to step S11, and the power supply control unit 4 determines that the DC voltage Vdc is smaller than the upper limit value Vdcmax.
  • the second power supply voltage Vcap is controlled using 3a.
  • the power supply control unit 4 controls the insulated DCDC converter 3a to be in an ON state, and transmits power from the second power supply 2 connected to the secondary side to the first power supply 1a connected to the primary side.
  • the second power supply voltage Vcap decreases
  • the DC voltage Vdc also decreases, and becomes smaller than the upper limit value Vdcmax.
  • step S07 If it is determined that the DC voltage Vdc is smaller than the upper limit value Vdcmax (YES in S07), the process proceeds to step S08, and the power supply control unit 4 performs the same process as in step S03 described above. If it is determined that Vbat: Vcap is equal to X: Y (YES in S08), the process proceeds to step S09, and the power supply control unit 4 performs the same process as in step S06 described above.
  • the switching elements 32a to 32d and 34a to 34d of the insulated DCDC converter 3a can be soft-switched, so that the switching loss is reduced and the regeneration efficiency is improved.
  • step S10 the power supply control unit 4 controls the isolated DCDC converter 3a to be in an off state.
  • the DC voltage Vdc output from the first power supply 1a and the second power supply 2 connected in series and the first power supply voltage Vbat output from the first power supply 1a decrease with time.
  • DC voltage Vdc is larger than lower limit value Vdcmin
  • insulated DCDC converter 3a is controlled to be in an off state. That is, the power supply control unit 4 does not control the second power supply voltage Vcap using the isolated DCDC converter 3a (S05 in FIG. 3).
  • the notations S04 to S06 and S09 to S11 in FIG. 2 correspond to the processing contents in the flowchart of FIG.
  • the power supply control unit 4 controls the second power supply voltage Vcap using the isolated DCDC converter 3a so that the DC voltage Vdc does not become the lower limit value Vdcmin or less (FIG. 3 S04).
  • the power supply control unit 4 controls the second power supply voltage Vcap using the isolated DCDC converter 3a so that the DC voltage Vdc does not exceed the upper limit value Vdcmax (FIG. 3 S11). Specifically, power is transmitted from the second power source 2 connected to the secondary side to the first power source 1a connected to the primary side. As a result, the second power supply voltage Vcap decreases, the DC voltage Vdc also decreases, and becomes smaller than the upper limit value Vdcmax.
  • a first power source 1a and a second power source 2 capable of charging and discharging power are connected in series, the first power source 1a is connected to the primary side terminal of the isolated DCDC converter 3a, and the power control unit 4 is connected to the isolated DCDC converter.
  • the second power supply 2 is connected to the secondary side terminal of 3a, and the voltage of the second power supply 2 (second power supply voltage Vcap) is controlled using the isolated DCDC converter 3a.
  • the DC voltage Vdc output from the first power supply 1 a and the second power supply 2 connected in series is input to the first inverter 5, converted into an AC voltage by the first inverter 5, and then the vehicle drive motor 6. Supplied to.
  • the DC voltage Vdc can be kept high by controlling the second power supply voltage Vcap using the isolated DCDC converter 3a. Therefore, the current capacity of the semiconductor element used in the first inverter 5 can be reduced, and the first inverter 5 can be downsized.
  • the power supply control unit 4 uses the insulated DCDC converter 3 a to perform the second operation.
  • the power supply voltage Vcap is not controlled. If the DC voltage Vdc is larger than the lower limit value Vdcmin in the power running state, the isolated DCDC converter 3a does not operate, so that the power running efficiency is improved.
  • the power supply control unit 4 controls the second power supply voltage Vcap so that the DC voltage Vdc does not fall below the lower limit value Vdcmin.
  • the power running efficiency is improved by ensuring the lower limit value Vdcmin of the DC voltage Vdc.
  • the power supply control unit 4 uses the insulated DCDC converter 3a to The power supply voltage Vcap is not controlled. If the DC voltage Vdc is smaller than the upper limit value Vdcmax in the regenerative state, the insulation type DCDC converter 3a does not operate and the regenerative efficiency is improved.
  • the power supply control unit 4 controls the second power supply voltage Vcap so that the DC voltage Vdc does not exceed the upper limit value Vdcmax. Operational safety is improved by suppressing the destruction of the semiconductor element included in the first inverter 5.
  • the insulated DCDC converter 3a is a bidirectional insulated DCDC converter capable of transmitting power in both directions between the primary side and the secondary side. Since the bidirectional insulation type DCDC converter has high power conversion efficiency, excessive power consumption by the insulation type DCDC converter 3a is suppressed and the control efficiency of the second power supply voltage Vcap is improved.
  • the power supply control unit 4 When the transformation ratio between the primary side and the secondary side of the isolated DCDC converter 3a is X: Y, when the ratio of the first power supply voltage Vbat and the second power supply voltage Vcap is X: Y, the power supply control unit 4 Then, control of the second power supply voltage Vcap using the isolated DCDC converter 3a is started. Since the isolated DCDC converter 3a can be operated by soft switching, unnecessary power consumption by the isolated DCDC converter 3a is suppressed, and the control efficiency of the second power supply voltage Vcap is improved.
  • the second power supply 2 is a capacitive element, and the power supply apparatus further includes a Zener diode 7 connected in parallel to the capacitive element.
  • the structure of the insulation type DCDC converter 3b concerning 2nd Embodiment is demonstrated.
  • the insulation type DCDC converter 3a using MOS type field effect transistors is exemplified as the switching elements 32a to 32d and 34a to 34d.
  • the switching elements 32a to 32d and 34a to 34d are not limited to MOS field effect transistors, and for example, bipolar transistors may be used.
  • the power supply apparatus according to the second embodiment includes an insulation type DCDC converter 3b using bipolar transistors as switching elements 42a to 42d and 44a to 44d.
  • the insulated DCDC converter 3b is different from the insulated DCDC converter 3a in that it further includes a secondary-side smoothing capacitor 45.
  • the configurations of the primary and secondary full bridge circuits and the transformation ratio of the insulating transformer 41 are the same as those in the first embodiment, and a description thereof is omitted.
  • the isolated DCDC converter 3 c As shown in FIG. 5, the isolated DCDC converter 3 c according to the third embodiment has a configuration in which a resonant capacitor 46 is connected to the primary side of the insulated transformer 41.
  • the soft switching operation of the primary side switching elements 42a to 42d becomes possible, and the switching loss can be reduced.
  • the other points are the same as in FIG.
  • the power supply apparatus includes a second inverter 8 having a DC side terminal connected to the first power supply 1 b and an AC side terminal of the second inverter 8. Is different from the generator 9 to which is connected. Other configurations are the same, and a description thereof will be omitted.
  • the first power source 1b is not a battery such as a lithium (Li) ion battery, but an electrostatic capacitance element such as an electric double layer capacitor, a Li ion capacitor, or a capacitor.
  • the power supply controller 4 monitors the charging state of the first power supply 1b from the first power supply voltage Vbat. When the charging state of the first power source 1b is lowered, the generator 9 is operated, the generated AC power is converted into DC power by the second inverter 8, and the first power source 1b is charged. In this way, by supplying the power generated by the generator 9 to the first power source 1b via the second inverter 8, it is possible to suppress the decrease in the charging state of the first power source 1b and The input DC voltage Vdc can be kept high.
  • the present invention since the DC voltage input to the first inverter 5 can be maintained high, the current capacity of the semiconductor element used in the first inverter 5 is reduced and the first inverter is reduced. 5 can be reduced in size. Therefore, the present invention has industrial applicability.
  • Vbat ... 1st power supply voltage
  • Vcap ... 2nd power supply voltage
  • Vdc DC voltage
  • Vdcmax Upper limit value
  • Vdcmin Lower limit value 1a, 1b . 1st power supply 2 ... 2nd power supply 3a-3c ... Insulation type DCDC converter 4 ...
  • Power supply control part 5 ... First inverter 6 ... Vehicle drive motor 7 ... Zener diode 8 ... Second inverter 9 ... Generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 電源装置は、電力を充放電可能な第1電源1aと、第1電源1aに直列に接続された、電力を充放電可能な第2電源2と、一次側端子に第1電源1aが接続され、二次側端子に第2電源2が接続された絶縁型DCDCコンバータ3aとを備え、絶縁型DCDCコンバータ3aを用いて第2電源2の電圧を制御する。直列に接続された第1電源1a及び第2電源2から出力される直流電圧は、第1のインバータ5に入力され、第1のインバータ5により交流電圧に変換されてから車両駆動用モータ6へ供給される。

Description

電源装置及びその制御方法
 本発明は、車両駆動用モータに電力を供給する電源装置及びその制御方法に関する。
 例えば電気自動車(EV)やハイブリッド電気自動車(HEV)等の車両に用いられる電源装置が車両駆動用モータにより回生された電力を有効に回収するための技術が従来から提案されている(例えば、特許文献1参照)。
 特許文献1の電源装置は、インバータに対して電力を充放電可能な電池とコンデンサとを直列に接続するか、或いは電池のみを接続するかを切り替えるスイッチを備える。そして、コンデンサの電圧が所定値よりも低い場合、電池とコンデンサとを直列に接続して回生電力を電池及びコンデンサの両方に供給し、コンデンサの電圧が所定値よりも高い場合、電池のみを接続して回生電力を電池のみに供給している。
特開2002-330545号公報
 しかし、特許文献1では、車両が力行を続けた場合、コンデンサの電圧が電池よりも先に無くなり、電池の電力のみで車両駆動用モータを駆動しなければならない。したがって、電池の充電状態が低い時であっても車両駆動用モータの最大出力値を保障するために、インバータは電気容量の大きな半導体素子を使用しなければならないので、インバータが大型化するという課題があった。
 本発明は上記課題に鑑みて成されたものであり、その目的は、インバータに入力される直流電圧を高く維持することにより、インバータ内で使用する半導体素子の電流容量を削減してインバータを小型化することができる電源装置及びその制御方法を提供することである。
 上記目的を達成するため、本発明の第1態様に係わる電源装置は、電力を充放電可能な第1電源と、第1電源に直列に接続された、電力を充放電可能な第2電源と、一次側端子に第1電源が接続され、二次側端子に第2電源が接続された絶縁型DCDCコンバータと、絶縁型DCDCコンバータを用いて第2電源の電圧を制御する電源制御部とを備える。直列に接続された第1電源及び第2電源から出力される直流電圧は、第1のインバータに入力され、第1のインバータにより交流電圧に変換されてから車両駆動用モータへ供給される。
 本発明の第2態様に係わる電源装置の制御方法は、前記第1電源と、前記第2電源と、前記絶縁型DCDCコンバータとを備え、直列に接続された第1電源及び第2電源から出力される直流電圧が、第1のインバータに入力され、第1のインバータにより交流電圧に変換されてから車両駆動用モータへ供給される電源装置の制御方法であって、絶縁型DCDCコンバータを用いて第2電源の電圧を制御する。
図1は、本発明の第1実施形態に係わる電源装置の構成、及び電源装置に接続される第1のインバータ5及び車両駆動用モータ6を示す回路図である。 図2は、図3に示した電源制御部4による絶縁型DCDCコンバータ3aの制御手順による直流電圧Vdc及び第1電源電圧Vbatの時間変化の様子を示すグラフである。 図3は、図1の電源制御部4による絶縁型DCDCコンバータ3aの制御手順の一例を示すフローチャートである。 図4は、第2実施形態に係わる絶縁型DCDCコンバータ3bの構成を示す回路図である。 図5は、第3実施形態に係わる絶縁型DCDCコンバータ3cの構成を示す回路図である。 図6は、第4実施形態に係わる電源装置の構成を示す回路図である。
 以下図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付している。
(第1実施形態)
[電源装置の構成]
 図1を参照して、第1実施形態に係わる電源装置の構成、及び電源装置に接続される第1のインバータ5及び車両駆動用モータ6について説明する。第1実施形態に係わる電源装置は、電力を充放電可能な第1電源1aと、第1電源1aに直列に接続された、電力を充放電可能な第2電源2と、一次側端子に第1電源1aが接続され、二次側端子に第2電源2が接続された絶縁型DCDCコンバータ3aと、絶縁型DCDCコンバータ3aを用いて第2電源2の電圧を制御する電源制御部4とを備える。なお、本明細書において「接続」とは、電気的な接続を意味し、機械的な接続を意味していない。
 第1電源1aの正極と第2電源2の一方の端子は接続され、第1電源1aの負極と第2電源2の他方の端子は、第1のインバータ5の一対の直流側端子にそれぞれ接続されている。よって、直列に接続された第1電源1a及び第2電源2から出力される直流電圧Vdcは、第1のインバータ5の直流側端子に入力される。第1のインバータ5は、上下アームにそれぞれスイッチング素子を備え、スイッチング素子のオン/オフをPWM制御することにより、直流電圧Vdcを3相の交流電圧へ変換する。第1のインバータ5の交流側端子は車両駆動用モータ6にそれぞれ接続されている。よって、直列に接続された第1電源1a及び第2電源2から出力される直流電圧Vdcは、第1のインバータ5により3相の交流電圧に変換されてから車両駆動用モータ6へ供給される。車両駆動用モータ6は3相の交流電圧により駆動し、車両を走行させることができる。
 第1電源1a及び第2電源2は、リチウム(Li)イオンバッテリー、ニッケル水素バッテリーを含む電池(二次電池)、電気2重層キャパシタ、Liイオンキャパシタ、コンデンサを含む静電容量素子など、充放電可能な蓄電素子を適用することができる。第1実施形態では、第1電源1aとしてリチウム(Li)イオンバッテリーを使用し、第2電源2としてキャパシタを使用した場合について説明する。
 電源装置は、直列に接続された第1電源1a及び第2電源2から出力される直流電圧Vdcを測定する直流電圧測定部11と、第1電源1aから出力される第1電源電圧Vbatを測定する第1電源電圧測定部12とを更に備える。直流電圧測定部11及び第1電源電圧測定部12により測定される直流電圧Vdc及び第1電源電圧Vbatの値は、それぞれ電源制御部4に伝達される。
 絶縁型DCDCコンバータ3aは1対の一次側端子及び1対の二次側端子を有する。絶縁型DCDCコンバータ3aの一次側端子は、第1電源1aの正極及び負極にそれぞれ接続され、二次側端子は、第2電源2の両端子にそれぞれ接続されている。絶縁型DCDCコンバータ3aは、更に、絶縁型トランス31と、一次側のフルブリッジ回路を形成するスイッチング素子32a~32dと、二次側のフルブリッジ回路を形成するスイッチング素子34a~34dと、入力側の平滑コンデンサ33とを備える。絶縁型DCDCコンバータの一次側と二次側の変圧比はX:Yである。つまり、絶縁型トランス31の変圧比は、一次側:二次側=X:Yである。一次側のフルブリッジ回路は、絶縁型トランス31の一次側に接続され、二次側のフルブリッジ回路は、絶縁型トランス31の二次側に接続されている。
 絶縁型DCDCコンバータ3aは、一次側及び二次側のフルブリッジ回路を形成するスイッチング素子32a~32d、34a~34dに並列に接続されたコンデンサを更に備える。これにより、絶縁型DCDCコンバータ3aはソフトスイッチングを行うことができる。
 電源装置は、第2電源2に対して並列に接続されたツェナーダイオード7を更に備える。絶縁型DCDCコンバータ3aがオープンモードで停止した場合、車両駆動用モータ6が回生動作を行っていれば、第2電源2の過充電によって第2電源2の耐圧を超えてしまう前にツェナーダイオード7を降伏させる。これにより、第2電源2の故障を抑制することができる。一方、車両が力行していれば、ツェナーダイオード7を第2電源2を通らない電流経路として動作させることができる。
 電源制御部4は、一次側及び二次側のフルブリッジ回路を形成するスイッチング素子32a~32d、34a~34dのスイッチ動作を個別に制御することにより、絶縁型DCDCコンバータ3aのオン状態/オフ状態を切り替える。電源制御部4は、絶縁型DCDCコンバータ3aのオン状態において、一次側のフルブリッジ回路の対角に位置するスイッチング素子32a~32dをデューティー比50%で交互にオン・オフさせる。具体的には、スイッチング素子32a及びスイッチング素子32dをオンし、スイッチング素子32b及びスイッチング素子32cをオフする。そして、スイッチング素子32a及びスイッチング素子32dをオフし、スイッチング素子32b及びスイッチング素子32cをオンする。これを交互に繰り返し行う。二次側のフルブリッジ回路についても同様にして、対角に位置するスイッチング素子34a~34dをデューティー比50%で交互にオン・オフさせる。なお、一次側と二次側でスイッチング周波数は同じであり、一次側と二次側のキャリア位相に位相差φを設ける。この時、一次側から二次側へ伝達される電力(伝達パワーP)は、式(1)により表される。ここで、Eは第1電源電圧Vbatを示し、Eは第2電源電圧Vcapを示し、ωは絶縁型DCDCコンバータ3aのスイッチング周波数を示し、Lは絶縁型トランス31の漏れインダクタンスを示す。
Figure JPOXMLDOC01-appb-M000001
 絶縁型DCDCコンバータ3aは、一次側と二次側の間の双方向に電力を伝達することができる双方向絶縁型DCDCコンバータであることが望ましい。これにより、第2電源2の電圧を上げることのみならず、下げることも可能となる。
 一方、電源制御部4は、絶縁型DCDCコンバータ3aのオフ状態において、一次側及び二次側のフルブリッジ回路の総てのスイッチング素子32a~32d、34a~34dを常時オフに制御する。この時、一次側のフルブリッジ回路に電流は流れず、二次側のフルブリッジ回路の出力電圧は0である。一次側から二次側へ伝達される電力(伝達パワーP)は0である。
 また、電源制御部4は、直流電圧測定部11及び第1電源電圧測定部12により測定される電圧値に基づいて、絶縁型DCDCコンバータ3aのオン状態/オフ状態を切り替える。詳細は、図2及び図3を参照して後述する。なお、電源制御部4は、演算処理部、記憶部、及び通信制御部を備えるマイコン等の情報演算装置に、後述する制御手順を記述したコンピュータプログラムをインストールし、情報演算装置を用いてコンピュータプログラムを実行することにより実現される。
[電源装置の制御方法]
 図3を参照して、図1の電源制御部4による絶縁型DCDCコンバータ3aの制御手順をの一例を説明する。図3の処理は、予め定めた周期で繰り返し実施されるものである。
 先ず、ステップS01において、電源制御部4は、車両駆動用モータ6が回生動作を行っているのか、或いは、力行動作を行っているのかを判断する。例えば、第1電源電圧測定部12により測定された第1電源電圧Vbatが減少傾向にあれば、力行動作を行っていると判断し、第1電源電圧Vbatが増加傾向にあれば、回生動作を行っていると判断すればよい。これ以外にも、第1のインバータ5或いは車両駆動用モータ6から出力される、力行動作或いは回生動作を示す信号に基づいて判断しても構わない。
 力行動作を行っていると判断した場合、ステップS02へ進み、電源制御部4は、直流電圧測定部11により測定された直流電圧Vdcが、第1のインバータ5に入力可能な下限値Vdcminよりも大きいか否かを判断する。直流電圧Vdcが下限値Vdcminよりも大きくないと判断した場合(S02でNO)、ステップS04へ進み、電源制御部4は、直流電圧Vdcが下限値Vdcminよりも大きくなるように、絶縁型DCDCコンバータ3aを用いて第2電源2の第2電源電圧Vcapを制御する。例えば、電源制御部4は、絶縁型DCDCコンバータ3aをオン状態に制御して、一次側に接続された第1電源1aから二次側に接続された第2電源2へ電力を伝達する。これにより、第2電源2の第2電源電圧Vcapが上昇し、直流電圧Vdcも上昇して下限値Vdcminよりも大きくなる。
 直流電圧Vdcが下限値Vdcminよりも大きいと判断した場合(S02でYES)、ステップS03へ進み、電源制御部は4は、第1電源1aの第1電源電圧Vbatと第2電源2の第2電源電圧Vcapの比が、絶縁型DCDCコンバータ3aの一次側と二次側の変圧比(=X:Y)に等しいか否かを判断する。Vbat:VcapがX:Yに等しいと判断した場合(S03でYES)、ステップS06に進み、電源制御部4は、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御する。これにより、絶縁型DCDCコンバータ3aのスイッチング素子32a~32d、34a~34dをソフトスイッチング動作させることができるので、スイッチング損失が低減して力行効率が向上する。なお、第2電源電圧Vcapは、直流電圧Vdcから第1電源電圧Vbatを減じることにより求めることができる。
 Vbat:VcapがX:Yに等しくないと判断した場合(S03でNO)、ステップS05に進み、電源制御部4は、絶縁型DCDCコンバータ3aをオフ状態に制御する。
 一方、車両駆動用モータ6が回生動作を行っていると判断した場合、ステップS07へ進み、電源制御部4は、直流電圧測定部11により測定された直流電圧Vdcが、第1のインバータ5に入力可能な上限値Vdcmaxよりも小さいか否かを判断する。直流電圧Vdcが上限値Vdcmaxよりも小さくないと判断した場合(S07でNO)、ステップS11へ進み、電源制御部4は、直流電圧Vdcが上限値Vdcmaxよりも小さくなるように、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御する。例えば、電源制御部4は、絶縁型DCDCコンバータ3aをオン状態に制御して、二次側に接続された第2電源2から一次側に接続された第1電源1aへ電力を伝達する。これにより、第2電源電圧Vcapが減少し、直流電圧Vdcも減少して上限値Vdcmaxよりも小さくなる。
 直流電圧Vdcが上限値Vdcmaxよりも小さいと判断した場合(S07でYES)、ステップS08へ進み、電源制御部4は、上記したステップS03と同じ処理を実施する。Vbat:VcapがX:Yに等しいと判断した場合(S08でYES)、ステップS09に進み、電源制御部4は、上記したステップS06と同じ処理を実施する。これにより、絶縁型DCDCコンバータ3aのスイッチング素子32a~32d、34a~34dをソフトスイッチング動作させることができるので、スイッチング損失が低減して回生効率が向上する。
 Vbat:VcapがX:Yに等しくないと判断した場合(S08でNO)、ステップS10に進み、電源制御部4は、絶縁型DCDCコンバータ3aをオフ状態に制御する。
 ステップS04~S06、S09~S11の後は再びステップS01に戻る。
 図2を参照して、図3に示した電源制御部4による絶縁型DCDCコンバータ3aの制御手順による直流電圧Vdc及び第1電源電圧Dbatの時間変化の様子を説明する。
 先ず、力行状態においては、直列に接続された第1電源1a及び第2電源2から出力される直流電圧Vdc、及び第1電源1aから出力される第1電源電圧Vbatは、時間の経過と共に減少する。直流電圧Vdcが下限値Vdcminよりも大きい場合、絶縁型DCDCコンバータ3aはオフ状態に制御される。すなわち、電源制御部4は、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御しない(図3のS05)。なお、図2中のS04~S06、S09~S11の表記は、図3のフローチャートにおける処理内容に対応している。
 力行状態において、Vbat:VcapがX:Yに等しくなった時、電源制御部4は、絶縁型DCDCコンバータ3aをオン状態に切り替えることにより、絶縁型DCDCコンバータ3aを用いた第2電源電圧Vcapの制御を開始する(図3のS06)。
 直流電圧Vdcが下限値Vdcminに近づいてくると、電源制御部4は、直流電圧Vdcが下限値Vdcmin以下にならないように、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御する(図3のS04)。
 次に、力行状態から回生状態へ移行すると、回生された電力は、直列に接続された第1電源1a及び第2電源2へそれぞれ充電されるので、直流電圧Vdc及び第1電源電圧Vbatが、時間の経過と共に上昇する。直流電圧Vdcが上限値Vdcmaxよりも小さい場合、絶縁型DCDCコンバータ3aはオフ状態に制御される。すなわち、電源制御部4は、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御しない(図3のS10)。
 回生状態において、Vbat:VcapがX:Yに等しくなった時、電源制御部4は、絶縁型DCDCコンバータ3aをオン状態に切り替えることにより、絶縁型DCDCコンバータ3aを用いた第2電源電圧Vcapの制御を開始する(図3のS09)。
 直流電圧Vdcが上限値Vdcmaxに近づいてくると、電源制御部4は、直流電圧Vdcが上限値Vdcmax以上にならないように、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御する(図3のS11)。具体的には、二次側に接続された第2電源2から一次側に接続された第1電源1aへ電力を伝達する。これにより、第2電源電圧Vcapが減少し、直流電圧Vdcも減少して上限値Vdcmaxよりも小さくなる。
 再び、回生状態から力行状態へ移行すると、上記した処理を繰り返し実行する。
 以上説明したように、本発明の第1実施形態によれば、以下の作用効果が得られる。
 電力を充放電可能な第1電源1aと第2電源2とに直列に接続し、絶縁型DCDCコンバータ3aの一次側端子に第1電源1aを接続し、電源制御部4が、絶縁型DCDCコンバータ3aの二次側端子に第2電源2を接続して、絶縁型DCDCコンバータ3aを用いて第2電源2の電圧(第2電源電圧Vcap)を制御する。直列に接続された第1電源1a及び第2電源2から出力される直流電圧Vdcは、第1のインバータ5に入力され、第1のインバータ5により交流電圧に変換されてから車両駆動用モータ6へ供給される。第1電源1aの充電状態が低い時でも、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御することにより、直流電圧Vdcを高く維持することができる。よって、第1のインバータ5内で使用する半導体素子の電流容量を削減して、第1のインバータ5を小型化することができる。
 車両駆動用モータ6により車両が力行する場合において、直流電圧Vdcが第1のインバータ5に入力可能な下限値Vdcminよりも大きければ、電源制御部4は、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御しない。力行状態において直流電圧Vdcが下限値Vdcminよりも大きければ、絶縁型DCDCコンバータ3aは動作しないので力行効率が向上する。
 車両駆動用モータ6を用いて車両が力行する場合において、電源制御部4は、直流電圧Vdcが下限値Vdcminを下回らないように第2電源電圧Vcapを制御する。直流電圧Vdcの下限値Vdcminを保障して力行効率が向上する。
 車両駆動用モータ6が電力を回生する場合において、直流電圧Vdcが第1のインバータ5に入力可能な上限値Vdcmaxよりも小さければ、電源制御部4は、絶縁型DCDCコンバータ3aを用いて第2電源電圧Vcapを制御しない。回生状態において直流電圧Vdcが上限値Vdcmaxよりも小さければ、絶縁型DCDCコンバータ3aは動作しないので回生効率が向上する。
 車両駆動用モータ6が電力を回生する場合において、電源制御部4は、直流電圧Vdcが上限値Vdcmaxを上回らないように第2電源電圧Vcapを制御する。第1のインバータ5が備える半導体素子の破壊を抑制して動作安全性が向上する。
 絶縁型DCDCコンバータ3aは、一次側と二次側の間の双方向に電力を伝達することができる双方向絶縁型DCDCコンバータである。双方向絶縁型DCDCコンバータは電力の変換効率が高いため、絶縁型DCDCコンバータ3aによる余計な電力消費を抑えて第2電源電圧Vcapの制御効率が向上する。
 絶縁型DCDCコンバータ3aの一次側と二次側の変圧比をX:Yとした場合、第1電源電圧Vbatと第2電源電圧Vcapの比がX:Yとなった時に、電源制御部4は、絶縁型DCDCコンバータ3aを用いた第2電源電圧Vcapの制御を開始する。絶縁型DCDCコンバータ3aをソフトスイッチングで動作させることができるので、絶縁型DCDCコンバータ3aによる余計な電力消費を抑えて第2電源電圧Vcapの制御効率が向上する。
 第2電源2は静電容量素子であり、電源装置は、当該静電容量素子に対して並列に接続されたツェナーダイオード7を更に備える。絶縁型DCDCコンバータ3aがオープンモードで故障した時に静電容量素子に過電圧が加わることを抑制して安全性を向上させることができる。
(第2実施形態)
 図4を参照して、第2実施形態に係わる絶縁型DCDCコンバータ3bの構成を説明する。第1実施形態では、図1に示したように、スイッチング素子32a~32d、34a~34dとして、MOS型電界効果トランジスタを用いた絶縁型DCDCコンバータ3aを例示した。しかし、スイッチング素子32a~32d、34a~34dは、MOS型電界効果トランジスタに限ることなく、例えば、バイポーラトランジスタを用いても構わない。図4に示すように、第2実施形態に係わる電源装置は、スイッチング素子42a~42d、44a~44dとして、バイポーラトランジスタを用いた絶縁型DCDCコンバータ3bを備える。更に、絶縁型DCDCコンバータ3bは、絶縁型DCDCコンバータ3aに比べて、更に二次側の平滑コンデンサ45を備える点が相違する。その他、一次側及び二次側のフルブリッジ回路の構成、絶縁型トランス41の変圧比については第1実施形態と同じであり説明を省略する。
(第3実施形態)
 図5に示すように、第3実施形態に係わる絶縁型DCDCコンバータ3cは、絶縁型トランス41の一次側に共振キャパシタ46が接続された構成を有する。一次側のスイッチング素子42a~42dのソフトスイッチング動作が可能となり、スイッチング損失を軽減することができる。その他の点は、図4と同じであり説明を省略する。
(第4実施形態)
 図6を参照して、第4実施形態に係わる電源装置の構成を説明する。第4実施形態に係わる電源装置は、図1に示した電源装置に比して、直流側端子が第1電源1bに接続された第2のインバータ8と、第2のインバータ8の交流側端子が接続された発電機9と、を更に備える点が相違する。その他の構成は同じであり説明を省略する。
 第1電源1bは、リチウム(Li)イオンバッテリーなどの電池ではなく、電気2重層キャパシタ、Liイオンキャパシタ、コンデンサなどの静電容量素子からなる。電源制御部4は、第1電源電圧Vbatから第1電源1bの充電状態をモニターする。第1電源1bの充電状態が低下した場合に、発電機9を動作させ、発生した交流電力を第2のインバータ8で直流電電力へ変換し、第1電源1bを充電する。このように、発電機9が発電する電力を第2のインバータ8を介して第1電源1bに供給することにより、第1電源1bの充電状態の低下を抑制して、第1のインバータ5に入力される直流電圧Vdcを高く維持することができる。
 特願2012-037636号(出願日:2012年2月23日)の全内容は、ここに援用される。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本実施形態に係わる電源装置によれば、第1のインバータ5に入力される直流電圧を高く維持できるので、第1のインバータ5内で使用する半導体素子の電流容量を削減して第1のインバータ5を小型化することができる。よって、本発明は、産業上の利用可能性を有する。
 Vbat…第1電源電圧
 Vcap…第2電源電圧
 Vdc…直流電圧
 Vdcmax…上限値
 Vdcmin…下限値
 1a、1b…第1電源
 2…第2電源
 3a~3c…絶縁型DCDCコンバータ
 4…電源制御部
 5…第1のインバータ
 6…車両駆動用モータ
 7…ツェナーダイオード
 8…第2のインバータ
 9…発電機

Claims (10)

  1.  電力を充放電可能な第1電源と、
     前記第1電源に直列に接続された、電力を充放電可能な第2電源と、
     一次側端子に前記第1電源が接続され、二次側端子に前記第2電源が接続された絶縁型DCDCコンバータと、
     前記絶縁型DCDCコンバータを用いて前記第2電源の電圧を制御する電源制御部と、
     を備え、
     直列に接続された前記第1電源及び前記第2電源から出力される直流電圧は、第1のインバータに入力され、前記第1のインバータにより交流電圧に変換されてから車両駆動用モータへ供給される
     ことを特徴とする電源装置。
  2.  前記車両駆動用モータにより車両が力行する場合において、前記直流電圧が前記第1のインバータに入力可能な下限値よりも大きければ、前記電源制御部は、前記絶縁型DCDCコンバータを用いて前記第2電源の電圧を制御しないことを特徴とする請求項1に記載の電源装置。
  3.  前記車両駆動用モータにより車両が力行する場合において、前記電源制御部は、前記直流電圧が前記下限値を下回らないように前記第2電源の電圧を制御することを特徴とする請求項2に記載の電源装置。
  4.  前記車両駆動用モータが電力を回生する場合において、前記直流電圧が前記第1のインバータに入力可能な上限値よりも小さければ、前記電源制御部は、前記絶縁型DCDCコンバータを用いて前記第2電源の電圧を制御しないことを特徴とする請求項1~3のいずれか一項に記載の電源装置。
  5.  前記車両駆動用モータが電力を回生する場合において、前記電源制御部は、前記直流電圧が前記上限値を上回らないように前記第2電源の電圧を制御することを特徴とする請求項4に記載の電源装置。
  6.  前記絶縁型DCDCコンバータは、一次側と二次側の間の双方向に電力を伝達することができる双方向絶縁型DCDCコンバータであることを特徴とする請求項1~5のいずれか一項に記載の電源装置。
  7.  前記絶縁型DCDCコンバータの一次側と二次側の変圧比をX:Yとした場合、前記第1電源の電圧と前記第2電源の電圧の比がX:Yとなった時に、前記電源制御部は、前記絶縁型DCDCコンバータを用いた前記第2電源の電圧の制御を開始することを特徴とする請求項1~6のいずれか一項に記載の電源装置。
  8.  前記第2電源は静電容量素子であり、
     当該静電容量素子に対して並列に接続されたツェナーダイオードを更に備える
     ことを特徴とする請求項1~7のいずれか一項に記載の電源装置。
  9.  直流側端子が前記第1電源に接続された第2のインバータと、
     前記第2のインバータの交流側端子が接続された発電機と、
     を更に備えることを特徴とする請求項1~8のいずれか一項に記載の電源装置。
  10.  電力を充放電可能な第1電源と、前記第1電源に直列に接続された、電力を充放電可能な第2電源と、一次側端子に前記第1電源が接続され、二次側端子に前記第2電源が接続された絶縁型DCDCコンバータとを備え、直列に接続された前記第1電源及び前記第2電源から出力される直流電圧が、第1のインバータに入力され、前記第1のインバータにより交流電圧に変換されてから車両駆動用モータへ供給される電源装置の制御方法であって、前記絶縁型DCDCコンバータを用いて前記第2電源の電圧を制御することを特徴とする電源装置の制御方法。
PCT/JP2013/054471 2012-02-23 2013-02-22 電源装置及びその制御方法 WO2013125672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/379,656 US9559620B2 (en) 2012-02-23 2013-02-22 Power supply device and method of controlling the same
EP13751598.7A EP2819291B1 (en) 2012-02-23 2013-02-22 Power-supply device and control method therefor
JP2014500943A JP5759060B2 (ja) 2012-02-23 2013-02-22 電源装置及びその制御方法
CN201380010558.1A CN104145411B (zh) 2012-02-23 2013-02-22 电源装置及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012037636 2012-02-23
JP2012-037636 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125672A1 true WO2013125672A1 (ja) 2013-08-29

Family

ID=49005849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054471 WO2013125672A1 (ja) 2012-02-23 2013-02-22 電源装置及びその制御方法

Country Status (5)

Country Link
US (1) US9559620B2 (ja)
EP (1) EP2819291B1 (ja)
JP (1) JP5759060B2 (ja)
CN (1) CN104145411B (ja)
WO (1) WO2013125672A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490614A (zh) * 2013-09-13 2014-01-01 嘉兴凯希电子有限公司 最大功率跟踪器
JP2016131486A (ja) * 2015-01-13 2016-07-21 ゼネラル・エレクトリック・カンパニイ 車両システム用双方向dc/dc電力コンバータ
EP2930835B1 (en) * 2012-12-04 2021-02-24 Volvo Truck Corporation Power supply apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115882A (ja) * 2012-12-11 2014-06-26 Denso Corp 車載用緊急通報装置
JP5812040B2 (ja) * 2013-05-21 2015-11-11 トヨタ自動車株式会社 電力変換装置
JP5928519B2 (ja) * 2014-04-09 2016-06-01 トヨタ自動車株式会社 電力変換装置及び電力変換方法
CN105790628B (zh) * 2016-03-29 2018-04-10 浙江大学 一种基于功能集成式变换器的开关磁阻电机系统
US9960687B2 (en) * 2016-06-06 2018-05-01 General Electric Company System and method for a DC/DC converter
US9851770B1 (en) 2017-01-08 2017-12-26 ANEWCOM, Inc. Network devices with multi-level electrical isolation
WO2019076874A1 (en) * 2017-10-16 2019-04-25 Danmarks Tekniske Universitet DC-DC CONVERTER ASSEMBLY
EP3670239A1 (en) * 2018-12-20 2020-06-24 Vitesco Technologies GmbH Power supply network and hybrid vehicle
CN113412566A (zh) 2019-05-24 2021-09-17 华为技术有限公司 包括变压器和多电平功率变换器的集成充电和电机控制系统
CN110829850B (zh) * 2019-11-14 2021-11-26 中车永济电机有限公司 车载变流器电路及其控制方法
DE102020131537A1 (de) 2020-11-27 2022-06-02 ACD Antriebstechnik GmbH Energiespeicherung mit Stromquellenschaltung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330545A (ja) 2001-04-27 2002-11-15 Nissan Motor Co Ltd 電源装置
JP2004015895A (ja) * 2002-06-05 2004-01-15 Toyota Motor Corp 電気負荷駆動装置
JP2005020824A (ja) * 2003-06-24 2005-01-20 Denso Corp 電源システム
JP2012037636A (ja) 2010-08-05 2012-02-23 Seiko Epson Corp プロジェクターおよびその制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956167A (ja) * 1995-08-11 1997-02-25 Denso Corp 電動機制御装置
JP3746334B2 (ja) * 1996-08-22 2006-02-15 トヨタ自動車株式会社 永久磁石型同期モータの駆動制御装置及び方法
JPH10164862A (ja) * 1996-12-02 1998-06-19 Toshiba Corp 電力変換装置
DE19921450C5 (de) * 1999-05-08 2006-08-03 Daimlerchrysler Ag Elektrischer Fahrzeugantrieb
JP4797476B2 (ja) * 2005-07-12 2011-10-19 トヨタ自動車株式会社 二次電池の制御装置
JP4841636B2 (ja) * 2007-02-16 2011-12-21 株式会社小松製作所 電圧制御装置および電圧制御方法
US8080973B2 (en) * 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
JP4977165B2 (ja) * 2009-04-01 2012-07-18 トヨタ自動車株式会社 3相ブラシレスモータのノイズ低減構造
JP5250915B2 (ja) 2009-04-03 2013-07-31 株式会社小松製作所 トランス結合型昇圧器の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330545A (ja) 2001-04-27 2002-11-15 Nissan Motor Co Ltd 電源装置
JP2004015895A (ja) * 2002-06-05 2004-01-15 Toyota Motor Corp 電気負荷駆動装置
JP2005020824A (ja) * 2003-06-24 2005-01-20 Denso Corp 電源システム
JP2012037636A (ja) 2010-08-05 2012-02-23 Seiko Epson Corp プロジェクターおよびその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819291A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930835B1 (en) * 2012-12-04 2021-02-24 Volvo Truck Corporation Power supply apparatus
CN103490614A (zh) * 2013-09-13 2014-01-01 嘉兴凯希电子有限公司 最大功率跟踪器
JP2016131486A (ja) * 2015-01-13 2016-07-21 ゼネラル・エレクトリック・カンパニイ 車両システム用双方向dc/dc電力コンバータ

Also Published As

Publication number Publication date
JPWO2013125672A1 (ja) 2015-07-30
JP5759060B2 (ja) 2015-08-05
EP2819291A4 (en) 2015-12-30
CN104145411B (zh) 2016-12-07
US20150002057A1 (en) 2015-01-01
CN104145411A (zh) 2014-11-12
US9559620B2 (en) 2017-01-31
EP2819291A1 (en) 2014-12-31
EP2819291B1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5759060B2 (ja) 電源装置及びその制御方法
US9616760B2 (en) Inverter-charger integrated device for electric vehicle
JP6736370B2 (ja) 電力変換システム
WO2013129231A1 (ja) 電源装置
WO2012144045A1 (ja) 電動車両の電源装置およびその制御方法
JP6736369B2 (ja) 電力変換システム
KR20190133396A (ko) 차량 배터리 충전용 전력 변환 장치 및 이의 제어 방법
JP6708259B2 (ja) 電源システム
JP5680050B2 (ja) 充電装置
WO2015004948A1 (ja) 放電制御装置
JP2013038910A (ja) 電源システムおよびそれを備える車両
KR100999969B1 (ko) 배터리 충전 장치
KR20150080917A (ko) 하이브리드 또는 전기 자동차의 이중 전력-저장 장치를 구비하는 전기 공급 시스템
WO2011004588A1 (ja) 電気車制御装置
US11097620B2 (en) Circuit system for railroad vehicle
JP2014110666A (ja) 放電制御システム及び放電装置
JP2011004507A (ja) 車両用多機能コンバータ
JP2011091889A (ja) 充電装置
JP2013027236A (ja) バッテリの充電システムおよび車両の充電システム
JP5540872B2 (ja) 電源装置
JP5389221B2 (ja) 車両用電源装置
JP2017225323A (ja) 蓄電システム
JP5069363B1 (ja) 充電器
JP2017225321A (ja) 電力変換システム
JP2015149802A (ja) バッテリ制御装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500943

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013751598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013751598

Country of ref document: EP