CN115459596B - 抑制脉冲负载电源输出电压波动的准比例谐振控制方法 - Google Patents

抑制脉冲负载电源输出电压波动的准比例谐振控制方法 Download PDF

Info

Publication number
CN115459596B
CN115459596B CN202211396964.3A CN202211396964A CN115459596B CN 115459596 B CN115459596 B CN 115459596B CN 202211396964 A CN202211396964 A CN 202211396964A CN 115459596 B CN115459596 B CN 115459596B
Authority
CN
China
Prior art keywords
voltage
quasi
output voltage
current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211396964.3A
Other languages
English (en)
Other versions
CN115459596A (zh
Inventor
杨平
陈曦
王昊
王晋峰
刘凡
许建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202211396964.3A priority Critical patent/CN115459596B/zh
Publication of CN115459596A publication Critical patent/CN115459596A/zh
Application granted granted Critical
Publication of CN115459596B publication Critical patent/CN115459596B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法,具体为:采样储能电容电压值进入数字控制器当中并转化为数字量,通过数字控制器使储能电容电压参考与储能电容电压采样值相减得出差值,并进入电压补偿器得到电压环调制波;引入谐振频率在脉冲频率处的准比例谐振算法,对输出电压增益放大得到数字量V qpr;通过数字控制器使电压环调制波与V qpr、端口电流参考值、端口电流采样值相加后,得到的差值进入电流补偿器得到电流环调制波;将得到的电流环调制波送入数字控制器中的比较器中,得到驱动开关管的驱动信号。本发明通过在传统电压电流双环控制中增加输出电压准比例谐振方法,实现更低的输出电压波动与输入电流脉动。

Description

抑制脉冲负载电源输出电压波动的准比例谐振控制方法
技术领域
本发明属于脉冲控制技术,尤其涉及一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法。
背景技术
采用双向变换器抑制输出电压波动的脉冲负载电源电路结构如图1所示。其中DC/DC电源可根据功率等级采用多种功率拓扑,双向变换器具有双向功率传输功能。当脉冲负载为重载状态时,储能电容C s放电提供脉冲功率,电容电压v Cs下降至V Csmin,减少DC/DC电源的功率输出,实现抑制输出电压V o的波动;当脉冲负载为轻载状态时,为了保证在下一个重载状态时,储能电容C s中具有足够的能量,双向变换器给储能电容C s充电至设定电压V Csmax;相关的关键运行波形如图2所示(当双向变换器采用双向Buck/Boost变换器,储能电容C s置于高压端),其中p o是脉冲负载瞬时功率,i p是脉冲负载电流,i b是双向变换器端口电流,D p是脉冲负载的脉冲占空比,f p是脉冲负载工作频率。
对于采用双向变换器抑制输出电压波动的脉冲负载电源电路结构中,双向变换器的控制方法是重点研究对象,具有优秀动态性能的双向变换器,能够更好的抑制输出电压波动。此外,脉冲负载电源系统输出电压波动决定了脉冲负载工作性能,特别是在相控阵雷达供电系统应用当中。
双向变换器的控制方法一般常采用储能电容电压作为电压外环,双向变换器端口电流作为电流内环,如图3所示。电压外环不仅保证储能电容具有足够的能量,而且能维持具有升降压功能的双向变换器正常工作;电流内环保证双向变换器端口电流能够跟踪脉冲电流中的交流量,进而实现双向变换器对输出电压波动的抑制。
传统的电压电流双环控制中比例-积分调节算法或电路常作为电压外环与电流内环中的补偿器,其中比例与积分参数的选择往往决定了双向变换器对输出电压波动的抑制性能。因此,传统的电压电流双环控制不但增加了对参数设计的困难,而且对于一个具有负载工况的脉冲负载来说,固定的比例与积分参数难以保证双向变换器对输出电压波动的抑制性能。
由于输出电压中含有脉冲频率波动的信息,因此,将输出电压中的脉冲频率波动信息通过准比例谐振电路或算法放大后引入到电压电流双环当中,能够提高双向变换器动态响应速度,实现提升双向变换器对输出电压波动的敏感度。而且通过引入输出电压波动信息,即使比例与积分参数不理想,双向变换器也具有良好的性能,更好地实现对输出电压波动的抑制。
发明内容
为抑制并联结构脉冲负载电源的输出电压波动,本发明提供一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法。
本发明的一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法,在电压电流双环数字控制方法上,引入输出电压,具体包括以下步骤:
步骤1:采样储能电容电压值进入数字控制器当中,并转化为数字量;通过数字控制器使储能电容电压参考与储能电容电压采样值相减得出差值,并进入电压补偿器得到电压环调制波V gv
步骤2:引入谐振频率在脉冲频率处的准比例谐振算法,对输出电压V o增益放大得到数字量V qpr
准比例谐振算法的准比例谐振传递函数为:
Figure 100002_DEST_PATH_IMAGE002
(1)
其中,
Figure 100002_DEST_PATH_IMAGE003
为截止频率,
Figure 100002_DEST_PATH_IMAGE004
为谐振频率,k pk r分别是比例增益和谐振增益。
为了通过C语言将频域的传递函数表示出来,采用双线性变换将频域传递函数转换为离散域的传递函数,数字控制器双线性变换表示为:
Figure 100002_DEST_PATH_IMAGE006
(2)
其中,T是数字信号处理器采样周期,等于开关周期,Z表示离散量。
因此,准比例谐振函数的离散表达式为:
Figure 100002_DEST_PATH_IMAGE008
(3)
根据式(3)将准比例谐振算法转化为数字控制器能识别的C语言。
步骤3:通过数字控制器使电压环调制波V gvV qpr、端口电流参考值、端口电流采样值相加后,得到的差值进入电流补偿器得到电流环调制波V gc
步骤4:将得到的电流环调制波V gc送入数字控制器中的比较器中,得到驱动开关管的驱动信号。
进一步的,数字控制器采用数字信号处理器TMS320F28335。
进一步的,步骤2中,谐振频率
Figure 100002_DEST_PATH_IMAGE004A
等于脉冲频率,截止频率
Figure 100002_DEST_PATH_IMAGE003A
设置为脉冲频率的1%。
本发明的有益技术效果为:
本发明通过在传统电压电流双环控制中增加输出电压准比例谐振方法,实现更低的输出电压波动与输入电流脉动。有利于减小脉冲负载电源对供电系统的影响以及提升对负载的供电质量。
附图说明
图1为脉冲负载电源电路结构图。
图2为脉冲负载电源电路关键波形。
图3为传统电压电流双环控制方法框图。
图4为本发明抑制脉冲负载电源输出电压波动的准比例谐振控制方法框图。
图5为脉冲负载电源实验平台示意图。
图6为无准比例谐振控制的实验波形。
图7为增加准比例谐振控制的实验波形。
具体实施方式
下面结合附图和具体实施方法对本发明做进一步详细说明。
本发明的一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法,在电压电流双环数字控制方法上,引入输出电压,如图4所示,具体包括以下步骤:
步骤1:采样储能电容电压值进入数字控制器当中,并转化为数字量;通过数字控制器使储能电容电压参考与储能电容电压采样值相减得出差值,并进入电压补偿器得到电压环调制波V gv
数字控制器采用数字信号处理器TMS320F28335。
步骤2:由于输出电压的波动频率与脉冲负载频率相同,为了实现对输出电压信息的放大,引入谐振频率在脉冲频率处的准比例谐振算法,对输出电压V o增益放大得到数字量V qpr
准比例谐振算法的准比例谐振传递函数为:
Figure 696066DEST_PATH_IMAGE002
(1)
其中,
Figure DEST_PATH_IMAGE003AA
为截止频率,
Figure DEST_PATH_IMAGE004AA
为谐振频率,k pk r分别是比例增益和谐振增益。
为了实现对输出电压信息的放大,谐振频率
Figure DEST_PATH_IMAGE004AAA
等于脉冲频率,截止频率
Figure DEST_PATH_IMAGE003AAA
设置为脉冲频率的1%,以容纳一定的脉冲频率误差。
采用双线性变换将频域传递函数转换为离散域的传递函数,双线性变换表示为:
Figure 385935DEST_PATH_IMAGE006
(2)
其中,T是数字信号处理器采样周期,等于开关周期。
因此,准比例谐振函数的离散表达式为:
Figure 519589DEST_PATH_IMAGE008
(3)
根据式(3)将准比例谐振算法转化为数字控制器能识别的C语言。
步骤3:通过数字控制器使电压环调制波V gvV qpr、端口电流参考值、端口电流采样值相加后,得到的差值进入电流补偿器得到电流环调制波V gc
步骤4:将得到的电流环调制波V gc送入数字控制器中的比较器中,得到驱动开关管的驱动信号。
为了验证准比例谐振控制方法的有效性,搭建了相应的实验平台,如图5所示。其中DC/DC电源由同步整流Buck变换器组成,双向变换器为双向Buck/Boost变换器,L in是输入电感,C in是输入电容,L f是输出滤波电感,C f是输出滤波电容,L b是双向变换器的升压电感,C s是储能电容。数字控制器通过传感器采样输出电压V o,储能电容电压v Cs,负载电流i p,端口电流i b,对采样后的数字量进行算法处理。
实验参数如表1所示:
表1 脉冲负载电源实验平台参数
Figure DEST_PATH_IMAGE010
实验给出了在同一比例-积分参数下,有无增加准比例谐振控制的实验波形,无准比例谐振控制的实验波形如图6所示,增加准比例谐振控制的实验波形如图7所示。其中通道1:端口电流;通道2:输出电压;通道3:储能电容电压;通道4:输入电流。
从图6、图7的实验波形可以清晰的看出在同一个比例-积分参数下,增加了准比例谐振控制后,对输出电压的波动具有更好的抑制效果,同时对输入电流的脉动也具有较好的抑制效果。足以证明本发明抑制脉冲负载电源输出电压波动的准比例谐振控制方法的优势。

Claims (3)

1.一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法,采用双向变换器抑制脉冲负载电源的输出电压波动,其特征在于,在电压电流双环数字控制方法上,引入输出电压,具体包括以下步骤:
步骤1:采样双向变换器储能电容电压值进入数字控制器当中,并转化为数字量;通过数字控制器使储能电容电压参考与储能电容电压采样值相减得出差值,并进入电压补偿器得到电压环调制波V gv
步骤2:引入谐振频率在脉冲频率处的准比例谐振算法,对输出电压V o增益放大得到数字量V qpr
准比例谐振算法的准比例谐振传递函数为:
Figure DEST_PATH_IMAGE002
(1)
其中,
Figure DEST_PATH_IMAGE003
为截止频率,
Figure DEST_PATH_IMAGE004
为谐振频率,k pk r分别是比例增益和谐振增益;
采用双线性变换将频域传递函数转换为离散域的传递函数,双线性变换表示为:
Figure DEST_PATH_IMAGE006
(2)
其中,T是数字信号处理器采样周期,等于开关周期;Z表示离散量;
因此,准比例谐振函数的离散表达式为:
Figure DEST_PATH_IMAGE008
(3)
根据式(3)将准比例谐振算法转化为数字控制器能识别的C语言;
步骤3:通过数字控制器使电压环调制波V gvV qpr、双向变换器端口电流参考值相加后再与端口电流采样值相减,得到的差值进入电流补偿器得到电流环调制波V gc
步骤4:将得到的电流环调制波V gc送入数字控制器中的比较器中,得到驱动双向变换器中开关管的驱动信号。
2.根据权利要求1所述的一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法,其特征在于,所述数字控制器采用数字信号处理器TMS320F28335。
3.根据权利要求1所述的一种抑制脉冲负载电源输出电压波动的准比例谐振控制方法,其特征在于,所述步骤2中,谐振频率
Figure DEST_PATH_IMAGE004A
等于脉冲频率,截止频率
Figure DEST_PATH_IMAGE003A
设置为脉冲频率的1%。
CN202211396964.3A 2022-11-09 2022-11-09 抑制脉冲负载电源输出电压波动的准比例谐振控制方法 Active CN115459596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211396964.3A CN115459596B (zh) 2022-11-09 2022-11-09 抑制脉冲负载电源输出电压波动的准比例谐振控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211396964.3A CN115459596B (zh) 2022-11-09 2022-11-09 抑制脉冲负载电源输出电压波动的准比例谐振控制方法

Publications (2)

Publication Number Publication Date
CN115459596A CN115459596A (zh) 2022-12-09
CN115459596B true CN115459596B (zh) 2023-02-17

Family

ID=84310038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211396964.3A Active CN115459596B (zh) 2022-11-09 2022-11-09 抑制脉冲负载电源输出电压波动的准比例谐振控制方法

Country Status (1)

Country Link
CN (1) CN115459596B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312136A (zh) * 2013-06-14 2013-09-18 西南交通大学 一种工频纹波电流的抑制方法及其装置
CN206099799U (zh) * 2016-09-08 2017-04-12 西南交通大学 一种双向ac‑dc‑dc单相变换器
CN106981865A (zh) * 2017-05-11 2017-07-25 湖南大学 一种直流微电网双向ac/dc变换器并联系统控制方法
CN108377102A (zh) * 2018-03-30 2018-08-07 南京航空航天大学 一种减小单相脉冲负载ac-dc电源中电容的方法
CN108667337A (zh) * 2018-05-31 2018-10-16 西南交通大学 具有快速动态响应的大功率脉冲负载电源装置及其控制方法
CN110572018A (zh) * 2019-09-24 2019-12-13 湖南大学 一种直流电源二次纹波电流抑制方法
CN113328610A (zh) * 2021-07-09 2021-08-31 南通大学 一种基于双谐振控制器的二次谐波电流抑制系统及方法
CN114865932A (zh) * 2022-07-06 2022-08-05 哈尔滨工业大学 脉冲负载供电系统及控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140266073A1 (en) * 2013-03-15 2014-09-18 Silver Spring Networks Energy storage circuit
CN105048463B (zh) * 2015-07-09 2017-04-19 泰州学院 基于电容电流反馈的hapf谐振抑制方法
US9960687B2 (en) * 2016-06-06 2018-05-01 General Electric Company System and method for a DC/DC converter
CN106329969B (zh) * 2016-09-14 2018-08-21 南京航空航天大学 适用于Vienna整流器的输出电压动态响应优化控制

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312136A (zh) * 2013-06-14 2013-09-18 西南交通大学 一种工频纹波电流的抑制方法及其装置
CN206099799U (zh) * 2016-09-08 2017-04-12 西南交通大学 一种双向ac‑dc‑dc单相变换器
CN106981865A (zh) * 2017-05-11 2017-07-25 湖南大学 一种直流微电网双向ac/dc变换器并联系统控制方法
CN108377102A (zh) * 2018-03-30 2018-08-07 南京航空航天大学 一种减小单相脉冲负载ac-dc电源中电容的方法
CN108667337A (zh) * 2018-05-31 2018-10-16 西南交通大学 具有快速动态响应的大功率脉冲负载电源装置及其控制方法
CN110572018A (zh) * 2019-09-24 2019-12-13 湖南大学 一种直流电源二次纹波电流抑制方法
CN113328610A (zh) * 2021-07-09 2021-08-31 南通大学 一种基于双谐振控制器的二次谐波电流抑制系统及方法
CN114865932A (zh) * 2022-07-06 2022-08-05 哈尔滨工业大学 脉冲负载供电系统及控制方法

Also Published As

Publication number Publication date
CN115459596A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN110212767B (zh) 实现llc谐振变换器多步调频的数字控制方法
CN107769556B (zh) 同步整流boost变换器、同步整流控制电路
CN107947588A (zh) 具有自然均压特性的isop系统及其控制方法
CN110912405B (zh) 一种基于电压模式控制的四开关buck-boost变换器
CN108736701A (zh) 一种新型的功率因数校正装置
CN106712522A (zh) 半有源桥dc‑dc变换器的pwm‑移相复合控制方法
CN102843020A (zh) 两级式逆变器中前级变换器二次谐波电流的抑制方法及其控制电路
CN102403901A (zh) 用于功率转换器的控制器及控制方法
CN116015047B (zh) 基于混合模式的单相功率因数校正变换器和控制方法
CN114884046B (zh) 一种基于阻抗编辑的多低次谐波电流自适应抑制方法
CN112217194B (zh) 一种基于干扰观测器前馈电流控制的直流电压偏差抑制方法
CN111293869A (zh) 一种两级式逆变电源的电感电流反馈路径二次谐波电流抑制方法
CN117595644B (zh) 一种基于纹波反向补偿的无电解电容v2g变换器
CN115459596B (zh) 抑制脉冲负载电源输出电压波动的准比例谐振控制方法
CN109980941A (zh) Lcc谐振的dcdc变换器的开关控制单元及变换器
CN104578766B (zh) 一种桥式多电平开关电容变换器
CN115995955B (zh) 基于固定关断时间的功率因数校正变换器及其控制方法
CN112865510A (zh) 一种脉宽周期控制系统及方法
CN116613993A (zh) 一种谐振变换器的控制方法、电路及谐振变换器
CN110677024A (zh) 一种用于抑制数字变换器的工频纹波的装置
CN114362544B (zh) 电荷控制llc谐振变换器的拓扑结构及其负载前馈方法
CN115360918A (zh) 基于原边采样电阻的原边反馈反激变换器恒流控制系统、方法及介质
CN112701890B (zh) 一种降低dc输出低频纹波的装置
CN114665502A (zh) 基于前馈补偿的lcl型光伏并网逆变器控制方法和装置
CN114039492A (zh) 一种不对称半桥反激变换器改进型峰值电流控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant