CN107462149B - A phase shift interferometry system and its wave plate phase shift method - Google Patents
A phase shift interferometry system and its wave plate phase shift method Download PDFInfo
- Publication number
- CN107462149B CN107462149B CN201710533969.9A CN201710533969A CN107462149B CN 107462149 B CN107462149 B CN 107462149B CN 201710533969 A CN201710533969 A CN 201710533969A CN 107462149 B CN107462149 B CN 107462149B
- Authority
- CN
- China
- Prior art keywords
- wave plate
- light
- phase
- polarizer
- phase shift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010363 phase shift Effects 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005305 interferometry Methods 0.000 title claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 27
- 230000010287 polarization Effects 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000021615 conjugation Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 23
- 230000033001 locomotion Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学干涉测量及数字全息测量技术领域,具体涉及一种相移干涉测量系统及其波片相移方法。The invention relates to the technical field of optical interferometry and digital holographic measurement, in particular to a phase shift interferometry system and a wave plate phase shift method thereof.
背景技术Background technique
相移干涉测量术是一种具有非接触、全场性、非破坏、测量快速、测量精度高、能够对不规则对象进行测量等特点的光学相位测量技术,现已广泛应用于光学表面检测、三维形貌测量、生物细胞成像和数字全息等领域。近年来,随着计算机技术和数字图像处理技术的不断发展,使干涉测量这种以光波作为测量尺度和测量基准的技术得到更为广泛的应用。Phase-shift interferometry is an optical phase measurement technology with the characteristics of non-contact, full-field, non-destructive, fast measurement, high measurement accuracy, and the ability to measure irregular objects. It has been widely used in optical surface inspection, Three-dimensional topography measurement, biological cell imaging and digital holography and other fields. In recent years, with the continuous development of computer technology and digital image processing technology, the technology of interferometry, which uses light waves as the measurement scale and measurement benchmark, has been widely used.
在实际的相移干涉测量中,相移器的相移误差和机械震动等都会直接影响相位的测量精度。因此,相移量的准确性和稳定性在相移干涉测量中起着至关重要的作用。传统的时域相移方法主要包括有:压电陶瓷(PZT)法、移动光栅法、拉伸光纤法、液晶相移法、偏振相移法、空气相移法等。但是,这些方法都存在以下缺点:(1)由于需要有能够精确进行移动或旋转的驱动装置,因此系统比较复杂;(2)相移器都需要放置在干涉光路中,因此系统容易受到机械运动的影响,系统稳定性较差;(3)传统的波片相移方法虽然能实现简单相移,但是只能获得一些特殊相移值,没办法实现任意相移,因此只能与一些特定的算法结合使用,精度以及应用范围受限。In the actual phase shift interferometry, the phase shift error and mechanical vibration of the phase shifter will directly affect the phase measurement accuracy. Therefore, the accuracy and stability of the phase shift amount play a crucial role in phase shift interferometry. The traditional time-domain phase shift methods mainly include: piezoelectric ceramic (PZT) method, moving grating method, stretched fiber method, liquid crystal phase shift method, polarization phase shift method, air phase shift method, etc. However, these methods all have the following disadvantages: (1) the system is complicated due to the need for a driving device that can move or rotate accurately; (2) the phase shifters all need to be placed in the interference optical path, so the system is susceptible to mechanical motion (3) Although the traditional wave plate phase shift method can achieve simple phase shift, it can only obtain some special phase shift values, and there is no way to achieve arbitrary phase shift, so it can only be combined with some specific phase shift values. Algorithms are used in combination with limited accuracy and application range.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供一种相移干涉测量系统及其波片相移方法,组合简单、操作简便且稳定,有效的解决了单通道以及多通道相移干涉测量系统中相移问题,实现简单、快速、高精度、稳定的相移。Aiming at the problems existing in the prior art, the present invention provides a phase shift interferometric measurement system and a wave plate phase shift method thereof, which are simple in combination, simple and stable in operation, and effectively solve the problem of phase shift interferometry in single-channel and multi-channel phase-shift interferometry systems. To solve the problem of shifting, realize simple, fast, high-precision and stable phase shifting.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种相移干涉测量系统,包括光源、滤光片、第一二分之一波片、偏振分光元件、第一分束镜、四分之一波片、第二二分之一波片、第一偏振片及第一单色黑白图像传感器,所述光源发出的光经所述滤光片和所述第一二分之一波片后进入所述偏振分光元件被分为第一束光和第二束光,所述第一束光的光路方向上设有第一平面反射镜和第一显微物镜,所述第二束光的光路方向上设有第二平面反射镜和第二显微物镜,待测物体放置于所述第二平面反射镜与所述第二显微物镜之间,被所述第一平面反射镜和所述第二平面反射镜反射的光分别经过所述第一显微物镜和所述第二显微物镜后进入所述第一分束镜,并经过所述四分之一波片和所述第二二分之一波片后进入所述第一偏振片,被所述第一单色黑白图像传感器采集。A phase shift interferometric measurement system, comprising a light source, an optical filter, a first half-wave plate, a polarization splitting element, a first beam splitter, a quarter-wave plate, a second half-wave plate, The first polarizer and the first monochrome black and white image sensor, the light emitted by the light source enters the polarization beam splitter element after passing through the filter and the first half-wave plate, and is divided into a first beam of light and a second beam of light, a first plane mirror and a first microscope objective lens are arranged on the optical path direction of the first beam of light, and a second plane mirror and a second plane mirror are arranged on the optical path direction of the second beam of light. Microscopic objective lens, the object to be measured is placed between the second flat mirror and the second microscopic objective, and the light reflected by the first flat mirror and the second flat mirror passes through the The first microscope objective lens and the second microscope objective lens enter the first beam splitter, and enter the first beam splitter after passing through the quarter wave plate and the second half wave plate The polarizer is collected by the first monochrome black and white image sensor.
进一步,所述第一偏振片和所述第一单色黑白图像传感器设置于所述第一束光的光路方向上,所述第一单色黑白图像传感器用于采集从第一偏振片出射的所述第一束光的光信号,所述第二束光的光路方向上还设有第二偏振片和第二单色黑白图像传感器,所述第二单色黑白图像传感器用于采集从所述第二偏振片出射的第二束光的光信号。Further, the first polarizer and the first monochrome black and white image sensor are arranged in the optical path direction of the first beam of light, and the first monochrome black and white image sensor is used to collect the light emitted from the first polarizer. The optical signal of the first beam of light, a second polarizer and a second monochrome black and white image sensor are also provided in the direction of the optical path of the second beam of light, and the second monochrome black and white image sensor is used to collect data from all sources. The optical signal of the second beam of light emitted from the second polarizer.
进一步,所述第一偏振片和所述第二偏振片的偏振方向成45°设置。Further, the polarization directions of the first polarizer and the second polarizer are set at 45°.
一种相移干涉测量系统的波片相移方法,包括:A wave plate phase shift method of a phase shift interferometry system, comprising:
步骤一:搭建上述相移干涉测量系统;Step 1: Build the above-mentioned phase-shift interferometric measurement system;
步骤二:调节步骤一中的所述滤光片和所述第一二分之一波片,以调节对比度;Step 2: Adjust the filter and the first half-wave plate in Step 1 to adjust the contrast;
步骤三:固定所述四分之一波片的角度不变,调节所述第二二分之一波片的旋转角度,以实现任意相移。Step 3: Fix the angle of the quarter wave plate unchanged, and adjust the rotation angle of the second half wave plate to achieve any phase shift.
进一步,以光源发出的光线方向为z轴方向,则x轴方向或y轴方向与z轴方向相垂直,步骤一中所述四分之一波片的快轴与x轴或y轴成45°。Further, taking the direction of the light emitted by the light source as the z-axis direction, then the x-axis direction or the y-axis direction is perpendicular to the z-axis direction, and the fast axis of the quarter-wave plate described in step 1 is 45° from the x-axis or the y-axis. °.
进一步,步骤三中调节所述第二二分之一波片的旋转角度以实现任意相移的具体方法为:Further, in
干涉仪的参考光和物光分别为偏振方向在水平和垂直方向上的一对正交偏振光,相位差为它们的琼斯矢量E1和E2分别为The reference light and the object light of the interferometer are a pair of orthogonally polarized lights whose polarization directions are in the horizontal and vertical directions, respectively, and the phase difference is Their Jones vectors E1 and E2 are respectively
透振方向在45°的第一偏振片或第二偏振片的琼斯矩阵,快轴与x轴成45°的四分之一波片的琼斯矩阵,以及快轴与x轴成θ的二分之一波片的琼斯矩阵分别为:The Jones matrix of the first polarizer or the second polarizer whose transmission direction is at 45°, the Jones matrix of a quarter-wave plate whose fast axis is 45° to the x-axis, and the fast axis that is bisected by θ with the x-axis The Jones matrices of one waveplate are:
则参考光、物光经过所述四分之一波片、所述第二二分之一波片和所述第一偏振片或所述第二偏振片后出射光的琼斯矢量表示为:Then the Jones vector of the outgoing light after the reference light and the object light pass through the quarter wave plate, the second half wave plate and the first polarizer or the second polarizer is expressed as:
最终在成像器件上形成的干涉图的光强I为:The light intensity I of the interferogram finally formed on the imaging device is:
其中符号*表示共轭,e为自然常数,i为虚数单位,A1,A2分别是参考光和物光的振幅,从以上公式(4)可以看出,干涉场中某点的光强,不仅与位相差有关,还与所述第二二分之一波片的放置角度θ有关,因此,当转动所述第二二分之一波片改变放置角度时,干涉条纹明暗发生变化。The symbol * represents conjugation, e is a natural constant, i is an imaginary unit, A 1 , A 2 are the amplitudes of the reference light and the object light, respectively. From the above formula (4), it can be seen that the light intensity of a certain point in the interference field , not only with the phase difference It is also related to the placement angle θ of the second half-wave plate. Therefore, when the second half-wave plate is rotated to change the placement angle, the light and dark of the interference fringes will change.
进一步,相移量为所述第二二分之一波片旋转角度的4倍。Further, the phase shift amount is 4 times the rotation angle of the second half-wave plate.
本发明的有益效果:Beneficial effects of the present invention:
本发明相移干涉测量系统的相移方法可以实现任意相移,不局限于与特定步长的相移算法结合,能与现在的任意相移量的相移算法相结合实现快速、高精度的相移干涉测量;且不需要能够精确进行移动或旋转的驱动装置,系统简洁、操作简便;第二二分之一波片相当于相移器,不需要放置在干涉光路中,因此系统不会受到机械运动的影响,系统稳定性更好。The phase shift method of the phase shift interferometric measurement system of the present invention can realize any phase shift, and is not limited to being combined with the phase shift algorithm of a specific step size, and can be combined with the current phase shift algorithm of any phase shift amount to realize fast and high-precision measurement. Phase-shift interferometry; and does not require a drive device that can move or rotate accurately, the system is simple and easy to operate; the second half-wave plate is equivalent to a phase shifter and does not need to be placed in the interference optical path, so the system will not Affected by mechanical movement, the system stability is better.
附图说明Description of drawings
图1为本发明第一实施例提供的一种双通道同时相移干涉系统的结构示意图;1 is a schematic structural diagram of a dual-channel simultaneous phase-shift interference system provided by a first embodiment of the present invention;
图2为本发明第二实施例提供的一种单通道相移干涉系统的结构示意图;2 is a schematic structural diagram of a single-channel phase-shift interference system provided by a second embodiment of the present invention;
图3为本发明第二实施例实验测量时采集的一幅相移干涉图;Fig. 3 is a phase shift interferogram collected during the experimental measurement of the second embodiment of the present invention;
图4为本发明第二实施例实验测量时采集的37幅相移干涉图对应的相移量分布曲线;Fig. 4 is the phase shift amount distribution curve corresponding to 37 phase shift interferograms collected during the experimental measurement according to the second embodiment of the present invention;
图中,1—光源、2—滤光片、3—第一二分之一波片、4—偏振分光元件、5—第一平面反射镜、6—第二平面反射镜、7—待测物体、8—第二显微物镜、9—第一显微物镜、10—第一分束镜、11—四分之一波片、12—第二二分之一波片、13—第二分束镜、14—第一偏振片、15—第二偏振片、16—第一单色黑白图像传感器、17—第二单色黑白图像传感器、101—光源、102—滤光片、103—第一二分之一波片、104—偏振分光元件、105—第一平面反射镜、106—第二平面反射镜、107—待测物体、108—第二显微物镜、109—第一显微物镜、110—第一分束镜、111—四分之一波片、112—第二二分之一波片、113—第一偏振片、114—第一单色黑白图像传感器。In the figure, 1-light source, 2-filter, 3-first half-wave plate, 4-polarization beam splitter, 5-first plane mirror, 6-second plane mirror, 7-to be measured Object, 8—second microscope objective, 9—first microscope objective, 10—first beam splitter, 11—quarter wave plate, 12—second half wave plate, 13—second Beam splitter, 14—first polarizer, 15—second polarizer, 16—first monochrome monochrome image sensor, 17—second monochrome monochrome image sensor, 101—light source, 102—filter, 103— The first half-wave plate, 104—polarizing beam splitting element, 105—first plane mirror, 106—second plane mirror, 107—object to be measured, 108—second microscope objective, 109—first display Micro-objective lens, 110—first beam splitter, 111—quarter wave plate, 112—second half wave plate, 113—first polarizer, 114—first monochrome black and white image sensor.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1,本发明第一实施例提供双通道同时相移干涉测量系统,包括光源1、滤光片2、第一二分之一波片3、偏振分光元件4、第一分束镜10、四分之一波片11、第二二分之一波片12和第二分束镜13,光源1发出的光经滤光片2和第一二分之一波片3后进入偏振分光元件4,入射光被偏振分光元件4分解为P偏振光和S偏振光,在P偏振光的光路方向上设有第一平面反射镜5和第一显微物镜9,在S偏振光的光路方向上设有第二平面反射镜6和第二显微物镜8,待测物体7放置在第二平面反射镜6与第二显微物镜8之间,P偏振光经第一平面反射镜5反射并经过第一显微物镜9后进入第一分束镜10,S偏振光经第二平面反射镜6反射并经过待测物体7和第二显微物镜8后进入第一分束镜10,然后P偏振光和S偏振光经过四分之一波片11和第二二分之一波片12后进入第二分束镜13,在P偏振光的光路方向上设有第一偏振片14和第一单色黑白图像传感器16,在S偏振光的光路方向上设有第二偏振片15和第二单色黑白图像传感器17,第一单色黑白图像传感器16用于采集从第一偏振片14出射的P偏振光的光信号,第二单色黑白图像传感器17用于采集从第二偏振片15出射的S偏振光的光信号。As shown in FIG. 1, the first embodiment of the present invention provides a dual-channel simultaneous phase-shift interferometric measurement system, including a light source 1, a
在本实施例中,所述光源1为一台波长为632.8nm的He-Ne激光器,所述滤光片2为中性密度滤光片。In this embodiment, the light source 1 is a He-Ne laser with a wavelength of 632.8 nm, and the
本发明双通道同时相移干涉测量系统通过旋转第二二分之一波片12即可实现任意相移。The dual-channel simultaneous phase-shift interferometric measurement system of the present invention can realize any phase shift by rotating the second half-
在本实施例中,以光源1发出的光线方向为z轴方向,x轴方向或y轴方向与z轴方向相垂直,则四分之一波片11的快轴要和x或者y成45°。In this embodiment, the direction of the light emitted by the light source 1 is the z-axis direction, and the x-axis direction or the y-axis direction is perpendicular to the z-axis direction, then the fast axis of the quarter-
第一偏振片14和第二偏振片15的参数相同。在本实施例中,第一偏振片14和第二偏振片15的偏振方向成45°设置。The parameters of the
第一单色黑白图像传感器16和第二单色黑白图像传感器17的规格相同。The first monochrome
如图2,本发明第二实施例提供单通道相移干涉测量系统,包括光源101、滤光片102、第一二分之一波片103、偏振分光元件104、第一分束镜110、四分之一波片111、第二二分之一波片112、第一偏振片113和第一单色黑白图像传感器114。光源101发出的光经滤光片102和第一二分之一波片103后进入偏振分光元件104,入射光被偏振分光元件104分解为P偏振光和S偏振光,在P偏振光的光路方向上设有第一平面反射镜105和第一显微物镜109,在S偏振光的光路方向上设有第二平面反射镜106和第二显微物镜108,待测物体107放置在第二平面反射镜106与第二显微物镜108之间,P偏振光经第一平面反射镜105反射并经过第一显微物镜109后进入第一分束镜110,S偏振光经第二平面反射镜106反射并经过待测物体107和第二显微物镜108后进入第一分束镜110,然后P偏振光和S偏振光经过四分之一波片111和第二二分之一波片112后进入第一偏振片113,并被第一单色黑白图像传感器114采集,第一单色黑白图像传感器114用于采集从第一偏振片113出射的P偏振光的光信号。As shown in FIG. 2, the second embodiment of the present invention provides a single-channel phase-shift interferometry system, including a
在本实施例中,所述光源101为一台波长为632.8nm的He-Ne激光器,所述滤光片2为中性密度滤光片。In this embodiment, the
本发明单通道相移干涉测量系统通过旋转第二二分之一波片112即可实现任意相移。The single-channel phase-shift interferometric measurement system of the present invention can realize any phase shift by rotating the second half-
在本实施例中,以光源101发出的光线方向为z轴方向,x轴方向或y轴方向与z轴方向相垂直,则四分之一波片111的快轴要和x或者y成45°。In this embodiment, the direction of the light emitted by the
本发明还提供一种相移干涉测量系统的波片相移方法,包括:The present invention also provides a wave plate phase shift method of the phase shift interferometric measurement system, comprising:
步骤一:搭建如图1或图2所示的相移干涉测量系统;Step 1: Build a phase-shift interferometric measurement system as shown in Figure 1 or Figure 2;
步骤二:通过调节步骤一中的滤光片2、102和第一二分之一波片3、103,以调节对比度;Step 2: Adjust the contrast by adjusting the
步骤三:固定四分之一波片11、111的角度不变,调节第二二分之一波片12、112的旋转角度,以实现任意相移。Step 3: Fix the angles of the
具体地,步骤一中四分之一波片11、111的快轴应该和图示中的x轴或者y轴成45°。Specifically, in step 1, the fast axis of the quarter-
具体地,第一实施例步骤一中第一偏振片14和第二偏振片15的偏振方向要成45°设置。Specifically, in step 1 of the first embodiment, the polarization directions of the
本发明中,步骤三中通过调节第二二分之一波片12、112的旋转角度以实现任意相移的具体方法为:In the present invention, the specific method for realizing any phase shift by adjusting the rotation angles of the second half-
干涉仪的参考光和物光分别为偏振方向在水平和垂直方向上的一对正交偏振光,相位差为它们的琼斯矢量E1和E2分别为The reference light and the object light of the interferometer are a pair of orthogonally polarized lights whose polarization directions are in the horizontal and vertical directions, respectively, and the phase difference is Their Jones vectors E1 and E2 are respectively
透振方向在45°的第一偏振片14或第二偏振片15的琼斯矩阵,快轴与x轴成45°的四分之一波片11的琼斯矩阵,以及快轴与x轴成θ的第二二分之一波片12的琼斯矩阵分别为:The Jones matrix of the
则参考光、物光经过四分之一波片11、第二二分之一波片12和第一偏振片14或第二偏振片15后出射光的琼斯矢量表示为:Then the reference light and the object light pass through the
最终在成像器件上形成的干涉图的光强I为:The light intensity I of the interferogram finally formed on the imaging device is:
其中符号*表示共轭,e为自然常数,i为虚数单位,A1,A2分别是参考光和物光的振幅,从以上公式(4)可以看出,干涉场中某点的光强,不仅与位相差有关,还与第二二分之一波片12的放置角度θ有关,因此,当转动第二二分之一波片12改变放置角度时,干涉条纹明暗发生变化。这里第二二分之一波片12相当于时域相移器,相移量为第二二分之一波片旋转角度的4倍。The symbol * represents conjugation, e is a natural constant, i is an imaginary unit, A 1 , A 2 are the amplitudes of the reference light and the object light, respectively. From the above formula (4), it can be seen that the light intensity of a certain point in the interference field , not only with the phase difference It is also related to the placement angle θ of the second half-
为了进一步论证本发明方法的实用性,本发明采用第二实施例如图2所示的测量光路系统进行实验测量。保持四分之一波片111的快轴与x方向成45°,间隔10°来旋转第二二分之一波片112,直至旋转一周360°,同时利用CCD来对应采集干涉图,最后利用改进的最小二乘迭代的方法(AIA)算出这37幅干涉图的相移量,其中采集的一幅相移干涉图如图3所示,37幅对应的相移量分布曲线如图4所示。从图4中的结果可以看出,通过旋转第二二分之一波片112可以实现系统的任意相移,且相移量为第二二分之一波片112旋转角度的4倍。In order to further demonstrate the practicability of the method of the present invention, the present invention adopts the second embodiment, such as the measurement optical path system shown in FIG. 2 , to perform experimental measurements. Keep the fast axis of the quarter-
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围内。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced without Deviating from the spirit and scope of the technical solution, all of them should be covered within the scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710533969.9A CN107462149B (en) | 2017-07-03 | 2017-07-03 | A phase shift interferometry system and its wave plate phase shift method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710533969.9A CN107462149B (en) | 2017-07-03 | 2017-07-03 | A phase shift interferometry system and its wave plate phase shift method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107462149A CN107462149A (en) | 2017-12-12 |
CN107462149B true CN107462149B (en) | 2020-08-11 |
Family
ID=60544328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710533969.9A Active CN107462149B (en) | 2017-07-03 | 2017-07-03 | A phase shift interferometry system and its wave plate phase shift method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107462149B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109186764A (en) * | 2018-09-11 | 2019-01-11 | 天津大学 | A kind of acousto-optic modulation phase conjugation method for realizing scattering medium internal focus |
CN109470173B (en) * | 2018-12-29 | 2021-01-26 | 华南师范大学 | Double-channel simultaneous phase shift interference microscope system |
CN110186388B (en) * | 2019-05-13 | 2021-04-06 | 天津大学 | Synchronous phase shift measurement system and method based on white light interference spectrum |
CN111443047A (en) * | 2020-05-09 | 2020-07-24 | 中国科学院上海技术物理研究所 | A device for characterizing reflected light phase information and its measurement method |
CN112945083A (en) * | 2021-01-29 | 2021-06-11 | 中国科学院长春光学精密机械与物理研究所 | Parallel phase shift digital holographic microscopic imaging system with optical fiber interconnection |
CN113405489B (en) * | 2021-08-19 | 2021-11-02 | 南京施密特光学仪器有限公司 | Method for inhibiting wave plate delay error interference in dynamic interferometer |
CN113899305B (en) * | 2021-09-30 | 2023-08-22 | 广东技术师范大学 | Improved phase shift phase measurement method and system |
CN114200723A (en) * | 2021-10-29 | 2022-03-18 | 华南师范大学 | Liquid crystal variable phase delay device without transverse deviation of light beam |
CN115289961B (en) * | 2021-11-25 | 2025-04-25 | 浙江理工大学 | Phase-shift digital holographic measurement device and method based on electro-optical modulation |
CN114459619B (en) * | 2022-01-27 | 2023-08-08 | 华南师范大学 | A real-time online measurement device and method for phase shift |
CN118130427B (en) * | 2024-02-29 | 2024-11-12 | 广东工业大学 | Polarization-splitting common-path spatial phase-shifting dual-channel digital holographic three-dimensional tomography system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914258A (en) * | 2012-09-29 | 2013-02-06 | 哈尔滨工程大学 | Synchronous phase shifting interference microscopy detection device and detection method based on orthogonal double-grating |
CN102944169A (en) * | 2012-11-26 | 2013-02-27 | 中国科学院长春光学精密机械与物理研究所 | Simultaneous polarization phase-shifting interferometer |
CN103712554A (en) * | 2013-12-27 | 2014-04-09 | 华南师范大学 | Dual-channel space-time mixing phase shifting Fizeau interferometer based on orthogonal polarized light |
CN203929011U (en) * | 2014-07-03 | 2014-11-05 | 佛山市南海区欧谱曼迪科技有限责任公司 | Hyperchannel white light common path interference micro tomography system based on crossed polarized light |
CN105300273A (en) * | 2015-10-27 | 2016-02-03 | 中国科学院上海光学精密机械研究所 | Dynamic point diffraction interferometer with adjustable fringe contrast |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7092100B2 (en) * | 2004-02-23 | 2006-08-15 | Seagate Technology Llc | Quadrature phase shift interferometer (QPSI) decoder and method of decoding |
-
2017
- 2017-07-03 CN CN201710533969.9A patent/CN107462149B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914258A (en) * | 2012-09-29 | 2013-02-06 | 哈尔滨工程大学 | Synchronous phase shifting interference microscopy detection device and detection method based on orthogonal double-grating |
CN102944169A (en) * | 2012-11-26 | 2013-02-27 | 中国科学院长春光学精密机械与物理研究所 | Simultaneous polarization phase-shifting interferometer |
CN103712554A (en) * | 2013-12-27 | 2014-04-09 | 华南师范大学 | Dual-channel space-time mixing phase shifting Fizeau interferometer based on orthogonal polarized light |
CN203929011U (en) * | 2014-07-03 | 2014-11-05 | 佛山市南海区欧谱曼迪科技有限责任公司 | Hyperchannel white light common path interference micro tomography system based on crossed polarized light |
CN105300273A (en) * | 2015-10-27 | 2016-02-03 | 中国科学院上海光学精密机械研究所 | Dynamic point diffraction interferometer with adjustable fringe contrast |
Also Published As
Publication number | Publication date |
---|---|
CN107462149A (en) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107462149B (en) | A phase shift interferometry system and its wave plate phase shift method | |
Brock et al. | Dynamic interferometry | |
CN203365108U (en) | Common-path interference measurement device for generated optical aberration of liquid-crystal spatial light modulator | |
CN102261985B (en) | Optical system wave aberration calibration apparatus and calibration method of using apparatus to test error | |
CN110716397B (en) | Exposure light beam phase measuring method in laser interference photoetching and photoetching system | |
CN102829903B (en) | MEMS (Micro Electro Mechanical System) scanning type laser heterodyne interferometer and method thereof in measuring glass stress | |
CN101788344B (en) | Instantaneous phase-shift transverse shear interferometer | |
BR102012030915A2 (en) | PORTABLE INDUSTRIAL INSTRUMENT FOR CARRYING OUT INTEGRATED AND BIDIRECTIONAL WAY DESIGN OF INTERFEROMETRIC FRENCHES AND SHEAROGRAPHY AND PROCESS FOR MEASURING THE THREE-DIMENSIONAL FORM OF AN OBJECT | |
Millerd et al. | Modern approaches in phase measuring metrology | |
CN110017793A (en) | A kind of Dual-channel type anti-vibration interferometric measuring means and method | |
CN103245423B (en) | Light path polarized point diffraction movable phase interfere Wavefront sensor altogether | |
CN101113927A (en) | phase-shifting transverse shear interferometer | |
CN105300273B (en) | Dynamic Point Diffraction Interferometer with Adjustable Fringe Contrast | |
CN107014784A (en) | A kind of measurement apparatus and method of scattering medium vector transmission matrix | |
CN106019913A (en) | System and method of utilizing two-step phase-shifting coaxial holographic technology to realize 90 DEG phase shift and calibration | |
Jeong et al. | Flexible lateral shearing interferometry based on polarization gratings for surface figure metrology | |
CN201795864U (en) | A Transient Shearing Interferometer with Instantaneous Phase Shift | |
Kim et al. | Measurement of surface profile and thickness of multilayer wafer using wavelength-tuning fringe analysis | |
CN101709956B (en) | Optical fiber point diffraction phase shifting interferometry of optical plane surface shape | |
CN107490947B (en) | Dual-channel common-path off-axis polarization holographic imaging system and method | |
CN110160624A (en) | A kind of optical fiber point-diffraction device and measurement method for three-dimensional vibrating measurement | |
CN114323312A (en) | A device and method for realizing simultaneous four-wave transverse shear interferometry | |
CN102980746B (en) | Crystal optical parameter measurement method based on digital holography | |
CN201096526Y (en) | phase-shifting transverse shear interferometer | |
CN104748946B (en) | Optical fiber point-diffraction interferometer optical fiber diffraction reference wavefront bias measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |