CN107456944A - 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 - Google Patents
一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 Download PDFInfo
- Publication number
- CN107456944A CN107456944A CN201710878231.6A CN201710878231A CN107456944A CN 107456944 A CN107456944 A CN 107456944A CN 201710878231 A CN201710878231 A CN 201710878231A CN 107456944 A CN107456944 A CN 107456944A
- Authority
- CN
- China
- Prior art keywords
- preparation
- metal ion
- composite materials
- inorganic composite
- purposes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/043—Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/048—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/09—Inorganic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
本发明公开了一种无机复合材料,主要由石灰石、菱镁石、白云石、水镁石、磷灰石复合制备得到,其具有片层的沸石状结构,颗粒大小为1微米到5000微米,比表面积200‑500m2/g。本发明还公开了该复合材料的制备方法及其在污水处理中用于去除重金属离子的用途。本发明通过多种材料的组合,获得表面具有较高离子交换活性的类似沸石的多层微结构材料,从而大幅度增加微粒的表面积,提高离子交换的效率。本发明获得了结构稳定,可高效吸附重金属离子的微粒。微粒不仅可以直接用于污水的处理,也可作为填充材料配合特定污水处理设备使用。另外该材料内不含任何环境主管部门规定的环境污染物,在使用过程中不产生新的环境污染。
Description
技术领域
本发明主要涉及污水处理。具体而言,本发明涉及一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途。
背景技术
重金属离子是工业污水的处理重点对象。传统的处理方案主要是加入化学药剂进行沉淀,由于去除效率低,产生污泥量大,处理设施占地大,维护困难,因此处理成本很高,成为相关企业的沉重负担。因此需要新的技术产品用于重金属离子的集约化处理,提高处理效率,减少污泥产量,压缩处理流程,简化处理设施,最终达到降低处理成本的目的。
发明内容
为解决上述所述技术问题,本发明提供了一种结构稳定,可高效吸附重金属离子的无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途。
本发明所提供的的一种无机复合材料,主要由石灰石、菱镁石、白云石、水镁石、磷灰石复合制备得到,其具有片层状结构,颗粒大小为1微米到5000微米,比表面积200-500m2/g;颗粒优选10微米到100微米。
本发明所提供的一种无机复合材料的制备方法,包括下述步骤:
(1)将石灰石、菱镁石、白云石、水镁石、磷灰石,混合均匀,在200℃-900℃下加热反应6-8小时;
(2)将步骤(1)的反应产物混匀,在180-350℃充入空气,持续吹空气10-60分钟;
(3)将步骤(2)所得产物再进行高温煅烧,温度600℃-900℃;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过筛网,即获得最终所需材料。
上述所述无机复合材料的制备方法中,优选的,步骤(1)在300℃-500℃下加热反应6-8小时。
上述所述无机复合材料的制备方法中,优选的,步骤(1)中,以石灰石质量为1计,所述菱镁石的量为0.3-1.5,所述白云石用量为0.2-0.5,水镁石用量为0.2-0.5,磷灰石用量为0.01-0.06。
上述所述无机复合材料的制备方法中,优选的,步骤(3)中,在温度700℃-800℃高温煅烧30-60分钟。
上述所述无机复合材料的制备方法中,优选的,步骤(4)中,在3-5个大气压、120℃-180℃下水化。
上述所述无机复合材料的制备方法中,优选的,步骤(6)中,超声粉碎后过150-300目筛网。
本发明还提供了所述无机复合材料作为重金属离子吸附材料的用途,尤其是在污水处理中用于去除重金属离子的用途。
优选的,在污水处理中用于去除重金属离子的用途时,其可直接用于污水的处理,也可作为填充材料配合污水处理设备使用。
本发明的无机复合材料可通过离子交换作用将重金属离子吸附在其表面。以含铜酸性污水为例:Cu2++Ca(OH)2+CaCO3→Cu2(OH)2CO3在颗粒表面形成碱式碳酸铜沉淀。
本发明所述材料的使用方法为直接添加至污水中,进行机械搅拌或曝气混匀,或作为填充材料,配合特定水处理设备使用,反应时间视具体情况而定。
本发明所述材料由于其层状构造(类沸石状结构),比表面积大,反应活性高,处理效率高。所述材料可高效去除污水中的铜,铅,镉,镍,铬,锌等污染物,处理效率可达99.99%。
本发明所述材料通过离子交换作用吸附重金属离子到颗粒表面,几乎不产生污泥,所述材料吸附重金属离子后可进一步通过常规洗脱进行重金属回收处理,使用后的材料作为废弃物与传统化学法处理所产生的污泥比体积和质量大幅度降低。因而,该材料可用于提高污水重金属离子的去除效率,减少重金属污泥的产生,简化处理工艺,降低处理成本。
本发明所述材料作为填充材料,配合特定污水处理设备使用,可达到污水处理集约化的要求,大幅度缩小水处理设施的占地面积,简化处理流程和管理成本。
本发明通过多种材料的组合,制备获得表面具有较高离子交换活性的类似沸石的多层微结构材料,大幅度增加微粒的表面积,提高离子交换的效率。因此,利用微粒表面的离子交换效应对重金属离子吸附处理是一种可行的处理策略。本发明获得了结构稳定,可高效吸附重金属离子的微粒。微粒不仅可以直接用于污水的处理,也可作为填充材料配合特定污水处理设备使用。另外该材料内不含任何环境主管部门规定的环境污染物,在使用过程中不产生新的环境污染。
附图说明
图1是本发明的无机复合材料的合成制备流程图。
图2是本发明无机复合材料的扫描电子显微镜照片。
具体实施方式
下述实施例是对于本发明内容的进一步说明以作为对本发明技术内容的阐释,但本发明的实质内容并不仅限于下述实施例所述,本领域的普通技术人员可以且应当知晓任何基于本发明实质精神的简单变化或替换均应属于本发明所要求的保护范围。
实施例1:材料的合成
(1)将100克石灰石,30克菱镁石,30克白云石,30克水镁石,2克磷灰石混合均匀,在450℃下密闭反应6小时;
(2)将步骤(1)的反应产物混匀,在200℃充入空气,持续吹空气30分钟;
(3)将步骤(2)所得产物进行高温煅烧,温度750℃,煅烧时间为30分钟;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压(3个大气压,120℃)进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过200筛网,即获得最终所需材料。
上述合成步骤获得的材料颗粒大小为10-30微米,比表面积通过BET法测定为295m2/g。通过扫描电子显微镜成像分析,所述材料具有片层结构,如图2。所述材料通过调整水化程度和微波干燥过程可获得不同比表面积的材料。所述材料通过调整超声破碎和所过筛网的目数,可获得不同尺寸大小的材料微粒。
实施例2:典型重金属污水的直接处理
将1g所述材料加入100ml含有不同重金属污染物的实验自制污水水样(纯水中配制含重金属离子的溶液)中,室温进行匀速搅拌,搅拌速度为每分钟100转。搅拌反应6小时后,对污水的主要污染物指标进行检测。处理前后的主要指标如下表所示:
从表中可以看出处理后污水的各项指标均显著下降,参考国家环保相关规定,处理后的污水上述指标达到《中华人民共和国污水综合排放标准》(GB8978——1996)的要求。
实施例3:作为填充材料配合设备使用
将100g所述材料加入填充成为直径10cm,长度15cm的柱状物,通过液体输送设备,按照每小时1000立方厘米的速度循环输送含有不同金属的污水500ml,处理时间为6小时,之后对污水的主要污染物指标进行检测。处理前后的主要指标如下表所示:
从表中可以看出处理后污水的各项指标均显著下降,参考国家环保相关规定,处理后的污水上述指标全部达国家特别限定标准。
Claims (10)
1.一种无机复合材料,主要由石灰石、菱镁石、白云石、水镁石、磷灰石复合制备得到,其具有片层状结构,颗粒大小为1微米到5000微米,比表面积200-500m2/g。
2.一种无机复合材料的制备方法,包括下述步骤:
(1)将石灰石、菱镁石、白云石、水镁石、磷灰石,混合均匀,在200℃-900℃下加热反应6-8小时;
(2)将步骤(1)的反应产物混匀,在180-350℃充入空气,持续吹空气10-60分钟;
(3)将步骤(2)所得产物再进行高温煅烧,温度600℃-900℃;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过筛网,即获得最终所需材料。
3.如权利要求2所述制备方法,其特征在于,步骤(1)在300℃-500℃下加热反应6-8小时。
4.如权利要求2所述制备方法,其特征在于,步骤(1)中,以石灰石质量为1计,所述菱镁石的量为0.3-1.5,所述白云石用量为0.2-0.5,水镁石用量为0.2-0.5,磷灰石用量为0.01-0.06。
5.如权利要求2所述制备方法,其特征在于,步骤(3)中,在温度700℃-800℃高温煅烧30-60分钟。
6.如权利要求2所述制备方法,其特征在于,步骤(4)中,在3-5个大气压、120℃-180℃下水化。
7.如权利要求2所述制备方法,其特征在于,步骤(6)中,超声粉碎后过150-300目筛网。
8.权利要求1所述无机复合材料或者由权利要求2-7任一项所述制备方法得到的无机复合材料作为重金属离子吸附材料的用途。
9.如权利要求8所述用途,其特征在于,在污水处理中用于去除重金属离子。
10.如权利要求9所述用途,其特征在于,直接用于污水的处理,或者作为填充材料配合污水处理设备使用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710878231.6A CN107456944B (zh) | 2017-09-26 | 2017-09-26 | 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710878231.6A CN107456944B (zh) | 2017-09-26 | 2017-09-26 | 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107456944A true CN107456944A (zh) | 2017-12-12 |
CN107456944B CN107456944B (zh) | 2020-11-06 |
Family
ID=60552907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710878231.6A Active CN107456944B (zh) | 2017-09-26 | 2017-09-26 | 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107456944B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113511694A (zh) * | 2021-05-21 | 2021-10-19 | 南京乐透思环保科技有限公司 | 一种复合海绵材料及其制备方法和在处理高盐、高热值废水中的应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658082A (zh) * | 2012-04-25 | 2012-09-12 | 武汉理工大学 | 一种用于吸附净化多金属离子工业废水的无机复合材料及其应用方法 |
CN104028213A (zh) * | 2014-06-26 | 2014-09-10 | 张玉雯 | 一种凹凸棒土的改性方法 |
CN105858832A (zh) * | 2016-04-12 | 2016-08-17 | 合肥工业大学 | 一种处理重金属废水的材料及方法 |
US20160288085A1 (en) * | 2015-03-31 | 2016-10-06 | Sumitomo Osaka Cement Co., Ltd. | Dolomite-based material having high specific surface area, a method for preparing thereof, a method for controlling a quality thereof, and a method for adsorbing heavy metal, halogen and metalloid |
CN106268634A (zh) * | 2016-08-09 | 2017-01-04 | 江苏陆博环保科技有限公司 | 用于重金属离子废水深度处理的无机复合颗粒的制备方法 |
CN105110445B (zh) * | 2015-09-11 | 2017-09-22 | 合肥工业大学 | 一种处理重金属废水的方法 |
-
2017
- 2017-09-26 CN CN201710878231.6A patent/CN107456944B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658082A (zh) * | 2012-04-25 | 2012-09-12 | 武汉理工大学 | 一种用于吸附净化多金属离子工业废水的无机复合材料及其应用方法 |
CN104028213A (zh) * | 2014-06-26 | 2014-09-10 | 张玉雯 | 一种凹凸棒土的改性方法 |
US20160288085A1 (en) * | 2015-03-31 | 2016-10-06 | Sumitomo Osaka Cement Co., Ltd. | Dolomite-based material having high specific surface area, a method for preparing thereof, a method for controlling a quality thereof, and a method for adsorbing heavy metal, halogen and metalloid |
CN105110445B (zh) * | 2015-09-11 | 2017-09-22 | 合肥工业大学 | 一种处理重金属废水的方法 |
CN105858832A (zh) * | 2016-04-12 | 2016-08-17 | 合肥工业大学 | 一种处理重金属废水的材料及方法 |
CN106268634A (zh) * | 2016-08-09 | 2017-01-04 | 江苏陆博环保科技有限公司 | 用于重金属离子废水深度处理的无机复合颗粒的制备方法 |
Non-Patent Citations (1)
Title |
---|
何志成等: "《化工原理》", 31 August 2015 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113511694A (zh) * | 2021-05-21 | 2021-10-19 | 南京乐透思环保科技有限公司 | 一种复合海绵材料及其制备方法和在处理高盐、高热值废水中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107456944B (zh) | 2020-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | MgFe2O4-biochar based lanthanum alginate beads for advanced phosphate removal | |
He et al. | Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: characteristics and mechanism | |
Lei et al. | Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance | |
Chen et al. | Fluoride removal from water by granular ceramic adsorption | |
Dhanasekaran et al. | Arsenate and fluoride removal from groundwater by sawdust impregnated ferric hydroxide and activated alumina (SFAA) | |
Li et al. | Mechanism study on manganese (II) removal from acid mine wastewater using red mud and its application to a lab-scale column | |
CN105251445A (zh) | 一种多孔碳吸附剂及其制备方法与应用 | |
CN101920191B (zh) | 一种活性炭改性材料及在水除砷中的用途 | |
CN110193342A (zh) | 一种改性凹凸棒土吸附剂及其制备方法 | |
Shan et al. | Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation | |
Martemianov et al. | Cellular concrete-supported cost-effective adsorbents for aqueous arsenic and heavy metals abatement | |
Zeng et al. | Removal of fluoride from aqueous solution by TiO2 and TiO2–SiO2 nanocomposite | |
Sha et al. | Removal of fluoride using platanus acerifoli leaves biochar–an efficient and low-cost application in wastewater treatment | |
CN105709684B (zh) | 一种铁锰复合氧化物除砷材料及其制备和应用方法 | |
Sun et al. | Facile preparation of hydroxyl‑rich mesoporous magnesium silicate with excellent adsorption performance | |
Xie et al. | Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment | |
Raghav et al. | Fabrication of aluminium and iron impregnated pectin biopolymeric material for effective utilization of fluoride adsorption studies | |
Li et al. | Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles | |
CN108187604A (zh) | 一种同时去除水体中阴离子和硬度的方法 | |
Zhao et al. | Rational design of the nanocomposite by in-situ sub-10 nm La (OH) 3 formation for selective phosphorus removal in waters | |
Liu et al. | Removal of iodate from aqueous solution using diatomite/nano titanium dioxide composite as adsorbent | |
CN107456944A (zh) | 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 | |
CN112844309B (zh) | 一种多效功能的生物炭基复合材料及其制备方法与应用 | |
CN105854821B (zh) | 一种具有污水净化功能的多孔磁性球状材料及其制备方法 | |
CN108383540A (zh) | 一种改性粉煤灰陶瓷及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Building 4, Phase II, Innovation and Entrepreneurship Education Park, Nanda Science Park, Yuanhua Road, Xianlin University Town, Xianlin Street, Qixia District, Nanjing, Jiangsu Province, 210000 Patentee after: Nanjing Letousi High tech Materials Technology Co.,Ltd. Address before: 210000 Room 197, Building 8, Yuanhua Road, Xianlin University, Xianlin Street, Qixia District, Nanjing City, Jiangsu Province Patentee before: NANJING LOTUS ENVIRONMENTAL SCIENCE & TECHNOLOGY CO.,LTD. |