CN107456944B - 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 - Google Patents

一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 Download PDF

Info

Publication number
CN107456944B
CN107456944B CN201710878231.6A CN201710878231A CN107456944B CN 107456944 B CN107456944 B CN 107456944B CN 201710878231 A CN201710878231 A CN 201710878231A CN 107456944 B CN107456944 B CN 107456944B
Authority
CN
China
Prior art keywords
composite material
inorganic composite
product
heavy metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710878231.6A
Other languages
English (en)
Other versions
CN107456944A (zh
Inventor
朱阳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Letousi High Tech Materials Technology Co ltd
Original Assignee
Nanjing Lotus Environmental Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Lotus Environmental Science & Technology Co ltd filed Critical Nanjing Lotus Environmental Science & Technology Co ltd
Priority to CN201710878231.6A priority Critical patent/CN107456944B/zh
Publication of CN107456944A publication Critical patent/CN107456944A/zh
Application granted granted Critical
Publication of CN107456944B publication Critical patent/CN107456944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/09Inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种无机复合材料,主要由石灰石、菱镁石、白云石、水镁石、磷灰石复合制备得到,其具有片层的沸石状结构,颗粒大小为1微米到5000微米,比表面积200‑500m2/g。本发明还公开了该复合材料的制备方法及其在污水处理中用于去除重金属离子的用途。本发明通过多种材料的组合,获得表面具有较高离子交换活性的类似沸石的多层微结构材料,从而大幅度增加微粒的表面积,提高离子交换的效率。本发明获得了结构稳定,可高效吸附重金属离子的微粒。微粒不仅可以直接用于污水的处理,也可作为填充材料配合特定污水处理设备使用。另外该材料内不含任何环境主管部门规定的环境污染物,在使用过程中不产生新的环境污染。

Description

一种无机复合材料、制备方法及其在污水处理中用于去除重 金属离子的用途
技术领域
本发明主要涉及污水处理。具体而言,本发明涉及一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途。
背景技术
重金属离子是工业污水的处理重点对象。传统的处理方案主要是加入化学药剂进行沉淀,由于去除效率低,产生污泥量大,处理设施占地大,维护困难,因此处理成本很高,成为相关企业的沉重负担。因此需要新的技术产品用于重金属离子的集约化处理,提高处理效率,减少污泥产量,压缩处理流程,简化处理设施,最终达到降低处理成本的目的。
发明内容
为解决上述所述技术问题,本发明提供了一种结构稳定,可高效吸附重金属离子的无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途。
本发明所提供的的一种无机复合材料,主要由石灰石、菱镁石、白云石、水镁石、磷灰石复合制备得到,其具有片层状结构,颗粒大小为1微米到5000微米,比表面积200-500m2/g;颗粒优选10微米到100微米。
本发明所提供的一种无机复合材料的制备方法,包括下述步骤:
(1)将石灰石、菱镁石、白云石、水镁石、磷灰石,混合均匀,在200℃-900℃下加热反应6-8小时;
(2)将步骤(1)的反应产物混匀,在180-350℃充入空气,持续吹空气10-60分钟;
(3)将步骤(2)所得产物再进行高温煅烧,温度600℃-900℃;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过筛网,即获得最终所需材料。
上述所述无机复合材料的制备方法中,优选的,步骤(1)在300℃-500℃下加热反应6-8小时。
上述所述无机复合材料的制备方法中,优选的,步骤(1)中,以石灰石质量为1计,所述菱镁石的量为0.3-1.5,所述白云石用量为0.2-0.5,水镁石用量为0.2-0.5,磷灰石用量为0.01-0.06。
上述所述无机复合材料的制备方法中,优选的,步骤(3)中,在温度700℃-800℃高温煅烧30-60分钟。
上述所述无机复合材料的制备方法中,优选的,步骤(4)中,在3-5个大气压、120℃-180℃下水化。
上述所述无机复合材料的制备方法中,优选的,步骤(6)中,超声粉碎后过150-300目筛网。
本发明还提供了所述无机复合材料作为重金属离子吸附材料的用途,尤其是在污水处理中用于去除重金属离子的用途。
优选的,在污水处理中用于去除重金属离子的用途时,其可直接用于污水的处理,也可作为填充材料配合污水处理设备使用。
本发明的无机复合材料可通过离子交换作用将重金属离子吸附在其表面。以含铜酸性污水为例:Cu2++Ca(OH)2+CaCO3→Cu2(OH)2CO3在颗粒表面形成碱式碳酸铜沉淀。
本发明所述材料的使用方法为直接添加至污水中,进行机械搅拌或曝气混匀,或作为填充材料,配合特定水处理设备使用,反应时间视具体情况而定。
本发明所述材料由于其层状构造(类沸石状结构),比表面积大,反应活性高,处理效率高。所述材料可高效去除污水中的铜,铅,镉,镍,铬,锌等污染物,处理效率可达99.99%。
本发明所述材料通过离子交换作用吸附重金属离子到颗粒表面,几乎不产生污泥,所述材料吸附重金属离子后可进一步通过常规洗脱进行重金属回收处理,使用后的材料作为废弃物与传统化学法处理所产生的污泥比体积和质量大幅度降低。因而,该材料可用于提高污水重金属离子的去除效率,减少重金属污泥的产生,简化处理工艺,降低处理成本。
本发明所述材料作为填充材料,配合特定污水处理设备使用,可达到污水处理集约化的要求,大幅度缩小水处理设施的占地面积,简化处理流程和管理成本。
本发明通过多种材料的组合,制备获得表面具有较高离子交换活性的类似沸石的多层微结构材料,大幅度增加微粒的表面积,提高离子交换的效率。因此,利用微粒表面的离子交换效应对重金属离子吸附处理是一种可行的处理策略。本发明获得了结构稳定,可高效吸附重金属离子的微粒。微粒不仅可以直接用于污水的处理,也可作为填充材料配合特定污水处理设备使用。另外该材料内不含任何环境主管部门规定的环境污染物,在使用过程中不产生新的环境污染。
附图说明
图1是本发明的无机复合材料的合成制备流程图。
图2是本发明无机复合材料的扫描电子显微镜照片。
具体实施方式
下述实施例是对于本发明内容的进一步说明以作为对本发明技术内容的阐释,但本发明的实质内容并不仅限于下述实施例所述,本领域的普通技术人员可以且应当知晓任何基于本发明实质精神的简单变化或替换均应属于本发明所要求的保护范围。
实施例1:材料的合成
(1)将100克石灰石,30克菱镁石,30克白云石,30克水镁石,2克磷灰石混合均匀,在450℃下密闭反应6小时;
(2)将步骤(1)的反应产物混匀,在200℃充入空气,持续吹空气30分钟;
(3)将步骤(2)所得产物进行高温煅烧,温度750℃,煅烧时间为30分钟;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压(3个大气压,120℃)进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过200筛网,即获得最终所需材料。
上述合成步骤获得的材料颗粒大小为10-30微米,比表面积通过BET法测定为295m2/g。通过扫描电子显微镜成像分析,所述材料具有片层结构,如图2。所述材料通过调整水化程度和微波干燥过程可获得不同比表面积的材料。所述材料通过调整超声破碎和所过筛网的目数,可获得不同尺寸大小的材料微粒。
实施例2:典型重金属污水的直接处理
将1g所述材料加入100ml含有不同重金属污染物的实验自制污水水样(纯水中配制含重金属离子的溶液)中,室温进行匀速搅拌,搅拌速度为每分钟100转。搅拌反应6小时后,对污水的主要污染物指标进行检测。处理前后的主要指标如下表所示:
Figure BDA0001418551710000041
从表中可以看出处理后污水的各项指标均显著下降,参考国家环保相关规定,处理后的污水上述指标达到《中华人民共和国污水综合排放标准》(GB8978——1996)的要求。
实施例3:作为填充材料配合设备使用
将100g所述材料加入填充成为直径10cm,长度15cm的柱状物,通过液体输送设备,按照每小时1000立方厘米的速度循环输送含有不同金属的污水500ml,处理时间为6小时,之后对污水的主要污染物指标进行检测。处理前后的主要指标如下表所示:
Figure BDA0001418551710000042
从表中可以看出处理后污水的各项指标均显著下降,参考国家环保相关规定,处理后的污水上述指标全部达国家特别限定标准。

Claims (8)

1.一种无机复合材料,由石灰石、菱镁石、白云石、水镁石、磷灰石复合制备得到, 其具有片层状结构,颗粒大小为1微米到5000微米,比表面积200-500m2/g;
所述无机复合材料通过以下步骤制备:
(1)将石灰石、菱镁石、白云石、水镁石、磷灰石,混合均匀,在200℃-900℃下加热反应6-8小时;
(2)将步骤(1)的反应产物混匀,在180-350℃充入空气,持续吹空气10-60分钟; (3)将步骤(2)所得产物再进行高温煅烧,温度600℃-900℃;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过筛网,即获得最终所需材料;
其中,步骤(1)中,以石灰石质量为1计,所述菱镁石的量为0 .3-1 .5,所述白云石用量为0 .2-0 .5,水镁石用量为0 .2-0 .5,磷灰石用量为0 .01- 0 .06;
步骤(4)中,在3-5个大气压、120℃-180℃下水化。
2.一种如权利要求1所述的无机复合材料的制备方法,包括下述步骤:
(1)将石灰石、菱镁石、白云石、水镁石、磷灰石,混合均匀,在200℃-900℃下加热反应6-8小时;
(2)将步骤(1)的反应产物混匀,在180-350℃充入空气,持续吹空气10-60分钟; (3)将步骤(2)所得产物再进行高温煅烧,温度600℃-900℃;
(4)将步骤(3)的煅烧产物充入水蒸气,在高温高压进行水化;
(5)将步骤(4)的水化产物进行微波干燥处理;
(6)将微波干燥处理后的产物进行超声粉碎,并过筛网,即获得最终所需材料;
其中,步骤(1)中,以石灰石质量为1计,所述菱镁石的量为0 .3-1 .5,所述白云石用量为0 .2-0 .5,水镁石用量为0 .2-0 .5,磷灰石用量为0 .01- 0 .06;
步骤(4)中,在3-5个大气压、120℃-180℃下水化。
3.如权利要求2所述制备方法,其特征在于,步骤(1)在300℃-500℃下加热反应6-8 小时。
4.如权利要求2所述制备方法,其特征在于,步骤(3)中,在温度700℃-800℃高温煅烧30-60分钟。
5.如权利要求2所述制备方法,其特征在于,步骤(6)中,超声粉碎后过150-300目筛网。
6.权利要求1所述无机复合材料或者由权利要求2-5任一项所述制备方法得到的无机复合材料作为重金属离子吸附材料的用途。
7.如权利要求6所述用途,其特征在于,在污水处理中用于去除重金属离子。
8.如权利要求7所述用途,其特征在于,直接用于污水的处理,或者作为填充材料配合污水处理设备使用。
CN201710878231.6A 2017-09-26 2017-09-26 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途 Active CN107456944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710878231.6A CN107456944B (zh) 2017-09-26 2017-09-26 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710878231.6A CN107456944B (zh) 2017-09-26 2017-09-26 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途

Publications (2)

Publication Number Publication Date
CN107456944A CN107456944A (zh) 2017-12-12
CN107456944B true CN107456944B (zh) 2020-11-06

Family

ID=60552907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710878231.6A Active CN107456944B (zh) 2017-09-26 2017-09-26 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途

Country Status (1)

Country Link
CN (1) CN107456944B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511694B (zh) * 2021-05-21 2022-12-27 南京乐透思高新材料科技有限公司 一种复合海绵材料及其制备方法和在处理高盐、高热值废水中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658082B (zh) * 2012-04-25 2013-10-02 武汉理工大学 一种用于吸附净化多金属离子工业废水的无机复合材料及其应用方法
CN104028213B (zh) * 2014-06-26 2016-07-13 张玉雯 一种凹凸棒土的改性方法
JP6380206B2 (ja) * 2015-03-31 2018-08-29 住友大阪セメント株式会社 高比表面積を有するドロマイト系材料の品質管理方法
CN105110445B (zh) * 2015-09-11 2017-09-22 合肥工业大学 一种处理重金属废水的方法
CN105858832A (zh) * 2016-04-12 2016-08-17 合肥工业大学 一种处理重金属废水的材料及方法
CN106268634A (zh) * 2016-08-09 2017-01-04 江苏陆博环保科技有限公司 用于重金属离子废水深度处理的无机复合颗粒的制备方法

Also Published As

Publication number Publication date
CN107456944A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
Wu et al. Adsorption of copper to different biogenic oyster shell structures
Tangsir et al. Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method
Natarajan et al. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism
Xu et al. Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres
Musyoka et al. Synthesis of hydroxy sodalite from coal fly ash using waste industrial brine solution
Li et al. Arsenic (V) removal from aqueous system using adsorbent developed from a high iron-containing fly ash
Vu et al. Photocatalytic degradation of methylene blue (MB) over α-Fe2O3 nanospindles prepared by a hydrothermal route
Cao et al. Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater
Li et al. Deep eutectic solvents assisted synthesis of MgAl layered double hydroxide with enhanced adsorption toward anionic dyes
CN111617742B (zh) 一种生物炭负载铁锰材料的制备方法和应用
JP6671343B2 (ja) 水溶液中のルテニウム吸着剤、及び水溶液中のルテニウムの吸着処理方法
Huh et al. Use of calcined oyster shell powders as CO 2 adsorbents in algae-containing water
Badri et al. Mg-Al/biochar composite with stable structure for malachite green adsorption from aqueous solutions
Zhang et al. Removal of Cd2+ from water by Friedel's salt (FS: 3CaO· A12O3· CaCl2· 10H2· O): Sorption characteristics and mechanisms
Zhang et al. Adsorption of uranium onto modified rice straw grafted with oxygen-containing groups
Marthi et al. Role of stacking faults and hydroxyl groups on the lithium adsorption/desorption properties of layered H2TiO3
CN107456944B (zh) 一种无机复合材料、制备方法及其在污水处理中用于去除重金属离子的用途
Qian et al. Extraction of rubidium and cesium from a leach solution of lepidolite with biomass carbon adsorbents
Nayeem et al. Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater
Navaei Diva et al. Removal of Cd2+ from aqueous solution by nickel oxide/CNT nanocomposites
Li et al. Green and Efficient Al-Doped LaFe x Al1–x O3 Perovskite Oxide for Enhanced Phosphate Adsorption with Creation of Oxygen Vacancies
Huyen et al. Bone-char from various food-waste: Synthesis, characterization, and removal of fluoride in groundwater
CN105664839B (zh) 一种载镧二氧化钛砷氟共除吸附材料及其制备方法
CN106673161B (zh) 一种活化蛇纹石及其制备方法
Zhu et al. A novel approach to recycle waste serpentine tailing for Mg/Al layered double hydroxide used as adsorption material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Building 4, Phase II, Innovation and Entrepreneurship Education Park, Nanda Science Park, Yuanhua Road, Xianlin University Town, Xianlin Street, Qixia District, Nanjing, Jiangsu Province, 210000

Patentee after: Nanjing Letousi High tech Materials Technology Co.,Ltd.

Address before: 210000 Room 197, Building 8, Yuanhua Road, Xianlin University, Xianlin Street, Qixia District, Nanjing City, Jiangsu Province

Patentee before: NANJING LOTUS ENVIRONMENTAL SCIENCE & TECHNOLOGY CO.,LTD.

CP03 Change of name, title or address