CN107445593A - 纳米孔径多孔方镁石‑镁铝尖晶石陶瓷材料及其制备方法 - Google Patents

纳米孔径多孔方镁石‑镁铝尖晶石陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107445593A
CN107445593A CN201710632854.5A CN201710632854A CN107445593A CN 107445593 A CN107445593 A CN 107445593A CN 201710632854 A CN201710632854 A CN 201710632854A CN 107445593 A CN107445593 A CN 107445593A
Authority
CN
China
Prior art keywords
magnesia
ceramic material
nano aperture
spinel ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710632854.5A
Other languages
English (en)
Other versions
CN107445593B (zh
Inventor
鄢文
吴贵圆
马三宝
李楠
李亚伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710632854.5A priority Critical patent/CN107445593B/zh
Publication of CN107445593A publication Critical patent/CN107445593A/zh
Application granted granted Critical
Publication of CN107445593B publication Critical patent/CN107445593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种纳米孔径多孔方镁石‑镁铝尖晶石陶瓷材料及其制备方法。其技术方案是:将菱镁矿细粉依次升温至680~850℃和950~1250℃,分别保温,得到高孔隙率的氧化镁粉体。按高孔隙率的氧化镁粉体为70~98wt%、含Al3+溶液为0.1~25wt%和氢氧化铝微粉为0.1~10wt%,将高孔隙率的氧化镁粉体置于真空搅拌机中,在2.0kPa以下将含Al3+溶液和氢氧化铝微粉加入,搅拌,得到混合料。将混合料在110~220℃,保温,冷却,机压成型,干燥;然后在950~1250℃和1480~1620℃分别保温,即得纳米孔径多孔方镁石‑镁铝尖晶石陶瓷材料。本发明制备成本低和环境友好,所制备的制品的孔径为纳米级,具有透气度低、体积密度小、导热系数低和强度高的优点。

Description

纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法
技术领域
本发明属于多孔方镁石-镁铝尖晶石陶瓷材料技术领域。尤其涉及一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法。
背景技术
方镁石-镁铝尖晶石材料因其优异的化学稳定性和热震稳定性等高温性能,广泛运用于高温窑炉内村,但其导热系数较高,在使用过程中会产生较大的热量损失。随着能源与资源日益紧张,对低导热系数的方镁石-镁铝尖晶石陶瓷的研究越来越受到人们的重视,发展多孔方镁石-镁铝尖晶石陶瓷材料是解决这一问题的有效途径。
目前关于多孔方镁石-镁铝尖晶石陶瓷的制备方法有很多,包括添加造孔剂法、熔盐法和原位分解合成法等,如专利技术“一种反应合成多孔镁铝尖晶石制备方法(CN102795884A)”,以铝粉与氧化镁为原料,利用高分子氧化燃烧法在空气中氧化合成多孔镁铝尖晶石陶瓷,但是得到的镁铝尖晶石陶瓷气孔孔径较大,透气度大,强度较低,并且高分子氧化燃烧会产生大量的CO2,形成二次污染;又如文献技术(陈浩.熔盐法制备氧化镁及含镁尖晶石粉体的研究.博士学位论文,武汉科技大学,2010)以MgCl2、CaCO3、α-Al2O3、NaCl、KCl为原料,采用熔盐法制备出了多孔镁铝尖晶石材料,一方面在洗滤过程中浪费大量水资源,另一方面仍会引入Na+、K+、Cl-等杂质;又如专利技术“原位分解制备轻质方镁石-镁铝尖晶石复合材料(CN103553672A)”,以镁铝水滑石为原料利用原位分解技术制备出多孔方镁石-尖晶石陶瓷材料,但材料气孔的孔径较大,透气度较高,高温性能较差。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种制备成本低和环境友好的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的制备方法,所制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的孔径为纳米级,透气度低、体积密度小、导热系数低和强度高。
为实现上述目的,本发明采用的技术方案是的步骤是:
步骤一、先将菱镁矿细粉以0.5~1.5℃/min的速率升温至680~850℃,保温2~5小时;再以2~2.5℃/min的速率升温至950~1250℃,保温2~6小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为70~98wt%、含Al3+溶液为0.1~25wt%和氢氧化铝微粉为0.1~28wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将所述含Al3+溶液和所述氢氧化铝微粉倒入真空搅拌机中,搅拌20~40分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在30~100MPa条件下机压成型,成型后的坯体于100~130℃条件下干燥12~36小时;然后以1~2℃/min的速率升温至950~1250℃,保温2~6小时,再以4~6℃/min的速率升温至1480~1620℃,保温2~10小时,冷却,即得纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
所述菱镁矿细粉的粒径小于0.088mm,所述菱镁矿细粉的MgO含量为44~50wt%。
所述含Al3+溶液为铝溶胶或为氯化铝溶液;所述铝溶胶固含量为20~30wt%,Al2O3含量为10~15wt%;所述氯化铝溶液AlCl3含量为11~15wt%。
所述氢氧化铝微粉的粒径小于0.006mm,所述氢氧化铝微粉的Al2O3含量为60~66wt%。
由于采用上述技术方案,本发明有如下积极效果:
本发明利用菱镁矿细粉在680~850℃℃条件下原位分解产生纳米级气孔,利用其在950~1250℃时表面扩散和蒸发-凝聚的物质传输过程,使氧化镁微晶之间产生颈部链接,限制烧结中后期的颗粒重排,得到了高孔隙率的氧化镁粉体,用它作为原料制备纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料会降低导热系数和体积密度。
本发明向高孔隙率的氧化镁粉体中引入含Al3+溶液,在真空条件下让含Al3+溶液中固相富集在颗粒颈部,在高温条件下原位反应生成体积膨胀较低的镁铝尖晶石,阻碍纳米孔合并长大。
本发明向高孔隙率的氧化镁粉体中加入氢氧化铝微粉以填充高孔隙率的氧化镁粉体间的空隙,一方面会使氧化镁粉体间的气孔纳米化,降低制品的透气度,另一方面与氧化镁原位反应形成的尖晶石颈部连接,以阻止氧化镁颗粒在高温烧结过程中的重排,不产生二次污染,环境友好且强度高;从而得到纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
本发明所制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料经检测:显气孔率为24~55%;体积密度为1.61~2.72g/cm3;平均孔径为300~1200nm;耐压强度为50~150MPa;物相组成为方镁石和镁铝尖晶石。
因此,本发明制备成本低和环境友好,所制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的孔径为纳米级,具有透气度低、体积密度小、导热系数低和强度高的优点。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将具体实施方式所涉及的物料统一描述如下,实施例中不再赘述:
所述菱镁矿细粉的MgO含量为44~50wt%。
所述铝溶胶固含量为20~30wt%,Al2O3含量为10~15wt%;
所述氯化铝溶液AlCl3含量为11~15wt%。
所述氢氧化铝微粉的Al2O3含量为60~66wt%。
实施例1
一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以0.5~1.5℃/min的速率升温至680~850℃,保温2~3小时;再以2~2.5℃/min的速率升温至950~1100℃,保温2~4小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为70~80wt%、含Al3+溶液为0.1~10wt%和氢氧化铝微粉为18~28wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将所述含Al3+溶液和所述氢氧化铝微粉倒入真空搅拌机中,搅拌20~40分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在30~60MPa条件下机压成型,成型后的坯体于100~130℃条件下干燥12~24小时;然后以1~2℃/min的速率升温至950~1100℃,保温2~4小时,再以4~5℃/min的速率升温至1480~1550℃,保温2~6小时,冷却,即得纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
本实施例中:所述含Al3+溶液为铝溶胶;所述菱镁矿细粉的粒径小于0.088mm;所述氢氧化铝微粉的粒径小于0.006mm。
本实施例制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料经检测:显气孔率为35~55%;体积密度为1.61~2.24g/cm3;平均孔径为900~1200nm;耐压强度为50~80MPa;物相组成为方镁石和镁铝尖晶石。
实施例2
一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以0.5~1.5℃/min的速率升温至680~850℃,保温3~4小时;再以2~2.5℃/min的速率升温至1100~1250℃,保温4~6小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为80~86wt%、含Al3+溶液为8~25wt%和氢氧化铝微粉为5~15wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至1.5kPa以下,再将所述含Al3+溶液和所述氢氧化铝微粉倒入真空搅拌机中,搅拌20~40分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在60~80MPa条件下机压成型,成型后的坯体于100~130℃条件下干燥16~28小时;然后以1~2℃/min的速率升温至1100~1250℃,保温4~6小时,再以4~5℃/min的速率升温至1550~1620℃,保温4~8小时,冷却,即得纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
本实施中:所述含Al3+溶液为氯化铝溶液;所述菱镁矿细粉的粒径小于0.044mm;所述氢氧化铝微粉的粒径小于0.004mm。
本实施例制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料:显气孔率为32~45%;体积密度为1.92~2.33g/cm3;平均孔径为600~900nm;耐压强度为80~120MPa;物相组成为方镁石和镁铝尖晶石。
实施例3
一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以0.5~1.5℃/min的速率升温至680~850℃,保温3~5小时;再以2~2.5℃/min的速率升温至950~1100℃,保温2~4小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为80~92wt%、含Al3+溶液为5~15wt%和氢氧化铝微粉为3~20wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至0.5kPa以下,再将所述含Al3+溶液和所述氢氧化铝微粉倒入真空搅拌机中,搅拌20~40分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在70~90MPa条件下机压成型,成型后的坯体于100~130℃条件下干燥20~32小时;然后以1~2℃/min的速率升温至950~1100℃,保温2~4小时,再以5~6℃/min的速率升温至1480~1550℃,保温5~10小时,冷却,即得纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
本实施例中:所述含Al3+溶液为铝溶胶;所述菱镁矿细粉的粒径为0.022~0.074mm;所述氢氧化铝微粉的粒径为0.002~0.004mm。
本实施例制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料:显气孔率为28~40%;体积密度为2.09~2.52g/cm3;平均孔径为500~800nm;耐压强度为60~140MPa;物相组成为方镁石和镁铝尖晶石。
实施例4
一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以0.5~1.5℃/min的速率升温至680~850℃,保温4~5小时;再以2~2.5℃/min的速率升温至1100~1250℃,保温4~6小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为90~98wt%、含Al3+溶液为0.1~10wt%和氢氧化铝微粉为0.1~10wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至1.0kPa以下,再将所述含Al3+溶液和所述氢氧化铝微粉倒入真空搅拌机中,搅拌20~40分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在80~100MPa条件下机压成型,成型后的坯体于100~130℃条件下干燥24~36小时;然后以1~2℃/min的速率升温至1100~1250℃,保温4~6小时,再以5~6℃/min的速率升温至1550~1620℃,保温6~10小时,冷却,即得纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
本实施例中:所述含Al3+溶液为氯化铝溶液;所述菱镁矿细粉的粒径小于0.074mm;所述氢氧化铝微粉的粒径小于0.002mm。
本实施例制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料:显气孔率为24~35%;体积密度为2.24~2.72g/cm3;平均孔径为300~600nm;耐压强度为80~150MPa;物相组成为方镁石和镁铝尖晶石。
由于采用上述技术方案,本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式利用菱镁矿细粉在680~850℃条件下原位分解产生纳米级气孔,利用其在1480~1620℃时表面扩散和蒸发-凝聚的物质传输过程使氧化镁微晶之间产生颈部链接,限制烧结中后期的颗粒重排,得到了高孔隙率的氧化镁粉体,用它作为原料制备纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料会降低导热系数和体积密度。
本具体实施方式向高孔隙率的氧化镁粉体中引入含Al3+溶液,在真空条件下让含Al3+溶液中固相富集在颗粒颈部,在高温条件下原位反应生成、体积膨胀较低的镁铝尖晶石,阻碍纳米孔合并长大。
本具体实施方式向高孔隙率的氧化镁粉体中加入氢氧化铝微粉以填充高孔隙率的氧化镁粉体间的空隙,一方面会使氧化镁粉体间的气孔纳米化,降低制品的透气度,另一方面与氧化镁原位反应形成的尖晶石颈部连接,以阻止氧化镁颗粒在高温烧结过程中的重排,不产生二次污染,环境友好且强度高;从而得到纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
本具体实施方式所制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料经检测:显气孔率为24~55%;体积密度为1.61~2.72g/cm3;平均孔径为300~1200nm;耐压强度为50~150MPa;物相组成为方镁石和镁铝尖晶石。
因此,本具体实施方式制备成本低和环境友好,所制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的孔径为纳米级,具有透气度低、体积密度小、导热系数低和强度高的优点。

Claims (5)

1.一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的制备方法,其特征在于所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以0.5~1.5℃/min的速率升温至680~850℃,保温2~5小时;再以2~2.5℃/min的速率升温至950~1250℃,保温2~6小时,冷却,得到高孔隙率的氧化镁粉体;
步骤二、按所述高孔隙率的氧化镁粉体为70~98wt%、含Al3+溶液为0.1~25wt%和氢氧化铝微粉为0.1~28wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将所述含Al3+溶液和所述氢氧化铝微粉倒入真空搅拌机中,搅拌20~40分钟,关闭抽真空系统,得到混合料;
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在30~100MPa条件下机压成型,成型后的坯体于100~130℃条件下干燥12~36小时;然后以1~2℃/min的速率升温至950~1250℃,保温2~6小时,再以4~6℃/min的速率升温至1480~1620℃,保温2~10小时,冷却,即得纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
2.根据权利要求1所述的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的制备方法,其特征在于所述菱镁矿细粉的粒径小于0.088mm,所述菱镁矿细粉的MgO含量为44~50wt%。
3.根据权利要求1所述的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的制备方法,其特征在于所述含Al3+溶液为铝溶胶或为氯化铝溶液;所述铝溶胶固含量为20~30wt%,Al2O3含量为10~15wt%;所述氯化铝溶液AlCl3含量为11~15wt%。
4.根据权利要求1所述的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的制备方法,其特征在于所述氢氧化铝微粉的粒径小于0.006mm,所述氢氧化铝微粉的Al2O3含量为60~66wt%。
5.一种纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料,其特征在于所述纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料是根据权利要求1~4项中任一项所述纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料的制备方法所制备的纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料。
CN201710632854.5A 2017-07-28 2017-07-28 纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法 Active CN107445593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710632854.5A CN107445593B (zh) 2017-07-28 2017-07-28 纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710632854.5A CN107445593B (zh) 2017-07-28 2017-07-28 纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107445593A true CN107445593A (zh) 2017-12-08
CN107445593B CN107445593B (zh) 2019-08-02

Family

ID=60489685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710632854.5A Active CN107445593B (zh) 2017-07-28 2017-07-28 纳米孔径多孔方镁石-镁铝尖晶石陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107445593B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409308A (zh) * 2018-04-18 2018-08-17 武汉科技大学 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN112661531A (zh) * 2021-01-08 2021-04-16 武汉科技大学 氮化硅晶须增强方镁石-尖晶石-碳过滤器及其制备方法
CN112794728A (zh) * 2021-01-08 2021-05-14 武汉科技大学 碳化硅晶须增强多孔方镁石-尖晶石-碳过滤器及其制备方法
CN112811928A (zh) * 2021-01-08 2021-05-18 武汉科技大学 一种轻量化方镁石-碳化硅-碳耐火材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323245A (ja) * 2003-04-21 2004-11-18 Itochu Ceratech Corp ポーラスプラグ用耐火物及びそれを用いて得られるポーラスプラグ
CN101544505A (zh) * 2009-03-20 2009-09-30 高树森 纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料及其制备方法
CN103864434A (zh) * 2014-02-21 2014-06-18 武汉科技大学 水泥回转窑用轻量化方镁石-镁铝尖晶石耐火材料及其制备方法
CN104086206A (zh) * 2014-07-28 2014-10-08 武汉科技大学 多孔方镁石-镁橄榄石-尖晶石复合陶瓷材料及其制备方法
CN104129983A (zh) * 2014-07-07 2014-11-05 山东理工大学 高强度块状多孔镁铝尖晶石纳米陶瓷的制备方法
CN106946585A (zh) * 2017-03-23 2017-07-14 雷法技术控股有限公司 一种利用人工合成的微孔尖晶石制备低导热镁铝尖晶石耐火砖的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323245A (ja) * 2003-04-21 2004-11-18 Itochu Ceratech Corp ポーラスプラグ用耐火物及びそれを用いて得られるポーラスプラグ
CN101544505A (zh) * 2009-03-20 2009-09-30 高树森 纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料及其制备方法
CN103864434A (zh) * 2014-02-21 2014-06-18 武汉科技大学 水泥回转窑用轻量化方镁石-镁铝尖晶石耐火材料及其制备方法
CN104129983A (zh) * 2014-07-07 2014-11-05 山东理工大学 高强度块状多孔镁铝尖晶石纳米陶瓷的制备方法
CN104086206A (zh) * 2014-07-28 2014-10-08 武汉科技大学 多孔方镁石-镁橄榄石-尖晶石复合陶瓷材料及其制备方法
CN106946585A (zh) * 2017-03-23 2017-07-14 雷法技术控股有限公司 一种利用人工合成的微孔尖晶石制备低导热镁铝尖晶石耐火砖的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOLI LIN等: "Corrosion and adherence properties of cement clinker on porous periclase-spinel refractory aggregates with varying spinel content", 《CERAMICS INTERNATIONAL》 *
王婷婷等: "尖晶石含量对轻量化方镁石-尖晶石浇注料显微结构和性能的影响", 《陶瓷学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108409308A (zh) * 2018-04-18 2018-08-17 武汉科技大学 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN108409308B (zh) * 2018-04-18 2021-06-04 武汉科技大学 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN112661531A (zh) * 2021-01-08 2021-04-16 武汉科技大学 氮化硅晶须增强方镁石-尖晶石-碳过滤器及其制备方法
CN112794728A (zh) * 2021-01-08 2021-05-14 武汉科技大学 碳化硅晶须增强多孔方镁石-尖晶石-碳过滤器及其制备方法
CN112811928A (zh) * 2021-01-08 2021-05-18 武汉科技大学 一种轻量化方镁石-碳化硅-碳耐火材料及其制备方法
CN112661531B (zh) * 2021-01-08 2023-03-10 武汉科技大学 氮化硅晶须增强方镁石-尖晶石-碳过滤器及其制备方法

Also Published As

Publication number Publication date
CN107445593B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN107445593A (zh) 纳米孔径多孔方镁石‑镁铝尖晶石陶瓷材料及其制备方法
CN107285806B (zh) 纳米孔径的多孔刚玉-镁铝尖晶石陶瓷及其制备方法
Ma et al. Preparation and properties of Al2O3–MgAl2O4 ceramic foams
Yuan et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process
CN104446635B (zh) 一种闭孔型多孔氧化铝隔热陶瓷的制备方法
Xu et al. Preparation of porous mullite–corundum ceramics with controlled pore size using bioactive yeast as pore-forming agent
CN107337437B (zh) 轻量化方镁石-铁铝尖晶石耐火材料及其制备方法
CN103588482B (zh) 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法
CN105503254A (zh) 一种钛酸钡泡沫陶瓷及其制备方法
CN107337438A (zh) 轻量化方镁石‑镁铝尖晶石耐火材料及其制备方法
JP5703420B2 (ja) 層状複水酸化物緻密体及びその製造方法
JP2012229139A (ja) 多孔体セラミックスとその製造方法
CN101823884B (zh) 一种用浸渍裂解法制备高密度再结晶碳化硅制品的方法
CN103833383B (zh) 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料的制备方法
Wang et al. Microstructure control of ceramic membrane support from corundum-rutile powder mixture
CN108409308B (zh) 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN107445594B (zh) 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法
CN104418608B (zh) 碳化硅多孔陶瓷的低温烧成方法
Xu et al. Stability, microstructure and mechanical properties of (Al, Fe) 2TiO5 porous ceramic reinforced by in-situ mullite
CN104129983A (zh) 高强度块状多孔镁铝尖晶石纳米陶瓷的制备方法
CN108191400B (zh) 一种工业矿渣基烧结砖的制备方法
CN108002851A (zh) 含莫来石的耐火砖及其制备方法
CN115353372A (zh) 一种锂电正极材料烧结用匣钵及其制备方法
Deng et al. Synthesis and characterization of magnesium aluminate spinel porous ceramics by novel molten salt method
Li et al. Effects of sintering temperature on properties of green porous mullite ceramics fabricated by insulators waste

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant