CN107442155A - 一种Silicalite‑1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用 - Google Patents

一种Silicalite‑1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用 Download PDF

Info

Publication number
CN107442155A
CN107442155A CN201710516963.0A CN201710516963A CN107442155A CN 107442155 A CN107442155 A CN 107442155A CN 201710516963 A CN201710516963 A CN 201710516963A CN 107442155 A CN107442155 A CN 107442155A
Authority
CN
China
Prior art keywords
sil
catalyst
silicalite
seeds
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710516963.0A
Other languages
English (en)
Other versions
CN107442155B (zh
Inventor
张雄福
刘存
刘海鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201710516963.0A priority Critical patent/CN107442155B/zh
Publication of CN107442155A publication Critical patent/CN107442155A/zh
Application granted granted Critical
Publication of CN107442155B publication Critical patent/CN107442155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种Silicalite‑1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用,属于新型催化材料领域。本发明利用3‑氨丙基三乙氧基硅烷与Silicalite‑1分子筛纳米晶种表面的羟基作用,将氨基修饰在分子筛纳米晶种的表面;然后通过Pd2+与修饰在Silicalite‑1外表面氨基的配位络合作用,将Pd2+均匀的固载在纳米晶种分子筛表面形成负载钯的纳米晶种Pd/Silicalite‑1,最后将Pd/Silicalite‑1纳米晶种加入到Silicalite‑1分子筛单晶的合成溶液中,诱导生长合成Pd@Silicalie‑1单晶包覆型核壳型催化剂。该发明具有制备简单高效,解决了现有催化剂单分散性差、需要多次焙烧、晶化或后处理样品耗时长等弊端。相比于传统的均相催化剂,该核壳催化剂具有择形性优异、抗金属流失及高温聚集等特点,具有广阔的应用前景。

Description

一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及 其催化应用
技术领域
本发明属于新型催化材料领域,具体涉及一种氨基修饰的纳米Silicalite-1(Sil-1)晶种吸附钯离子,并诱导生长形成Sil-1分子筛单晶包覆纳米钯结构核壳催化剂制备方法及其催化加氢应用。
背景技术
沸石是一类重要的多孔无机晶体材料,其种类繁多。由于具有丰富的骨架拓扑结构以及元素组成,沸石分子筛自从可人工合成以来,广泛用于离子交换、吸附分离以及催化等领域。将功能性纳米材料包覆于沸石分子筛晶粒内部,可以有效解决纳米材料的高温团聚、流失以及中毒等问题,并体现分子筛的择形功能。
Slicalite-1纯硅沸石(Sil-1)具有良好的热及水热稳定性,独特的孔道结构(0.53-0.56nm),是一种构建核壳催化剂的理想材料。将具有高催化活性的金属纳米颗粒封装在Sil-1内部形成的新型核壳结构催化剂具有择形性优异,有效防止纳米颗粒高温聚集等功能。
目前,将金属纳米颗粒封装在Sil-1中构建核壳结构催化剂主要有一步法和两步法两种方法:1)Wang等[Wang N.,Sun Q.,Bai R.,et al.In Situ Confinement ofUltrasmall Pd Clusters within Nanosized Silicalite-1Zeolite for HighlyEfficient Catalysis of Hydrogen Generation[J].J.AM.Chem.Soc.2016,138(24):7484-7487.]通过将有机模版剂四丙基氢氧化铵(TPAOH)、正硅酸乙酯(TEOS)、钯源[Pd(NH2CH2CH2NH2)2]Cl2一次性混合,陈化一定时间后直接晶化,一锅法制备了Pd@Sil-1催化剂。该催化剂应用于甲酸的分解,有着较高的活性及产氢率;2)Wang等[Wang C.,Wang L.,Zhang J.,et al.Product Selectivity Controlled by Zeolite Crystals in BiomassHydrogenation over a Palladium Catalyst[J].J.AM.Chem.Soc.2016,138(25):7880-7883.]将经过聚乙烯基吡咯烷酮(PVP)稳定的Pd纳米粒子包覆上一层SiO2(Pd@SiO2),后加入四丙基氢氧化铵(TPAOH)研磨并除去水分,利用无溶剂法将其转化为Pd@Sil-1催化剂。该催化剂在呋喃甲醛降解反应中有着很高的呋喃选择性;Liu等[Liu,C.,Liu,J.,ShuliangYang,S.,etal.PalladiumNanoparticles Encapsulated in a Silicalite-1ZeoliteShell for Size-Selective Catalysis in Liquid-Phase Solution,ChemCatChem 2016,8,1279–1282]采用焙烧后的分子筛经氨基功能修饰后与Pd2+结合形成负载型Pd/Sil-1催化剂,然后用四丙基氢氧化铵刻蚀产生介孔,同时再晶化包覆钯;Dai等[Dai C.,Li X.,ZhangA.,et al.Pd and Pd-CuO nanoparticles in hollow silicalite-1single crystalsfor enhancing selectivity and activity for the Suzuki-Miyaura reaction.RSCADVANCES[J].2015,5(50):40297-40302.]将金属前驱体溶液CuCl2和H2PdCl4浸渍到经过焙烧的Sil-1中,之后在TPAOH水溶液中对其进行刻蚀-二次结晶形成Pd-Cu@Sil-1催化剂。由于Sil-1孔道的择形作用,其在Suzuki–Miyaura反应中有着很高的对位和间位产物选择性。但是,上述方法中存在着催化剂单分散性差、需要多次焙烧、晶化或者二次晶化耗时长等弊端,不仅不利于催化剂的催化活性,对环境造成影响而且耗费人力物力。因此,开发新的制备方法具有重要意义和实际价值。
发明内容
本发明针对上述所提到的合成核壳型分子筛催化剂的弊端,提出了一种新颖的构建核壳催化剂的方法,并应用于液相择形加氢反应中。该核壳型催化剂具有单分散性好、制备过程耗时较短,简单高效的特点。
本发明的发明点是:首先合成具有单分散性、粒径均一的Sil-1纳米小晶种,不经过焙烧直接分散在乙醇中,然后通过3-氨丙基三乙氧基硅烷(APTES)与Sil-1分子筛纳米晶种表面的羟基作用,将氨基(-NH2)修饰在Sil-1分子筛纳米晶种表面,再引入钯前驱体溶液,通过Pd2+与修饰在Sil-1外表面氨基的配位络合作用,将Pd2+均匀的固载在纳米小晶种分子筛表面,形成Pd/Sil-1分子筛纳米晶种。最后将经过结合Pd2+的Sil-1纳米小晶种Pd/Sil-1投入到Sil-1分子筛单晶生长的合成液中,水热合成一定时间,获得单晶Sil-1分子筛包覆的核壳型Pd@Sil-1催化剂。上述制备的关键是,合成的Sil-1小晶种不经过焙烧而直接分散在乙醇中,从而保证了最后合成的Pd@Sil-1核壳型催化剂具有很好的单分散性;通过Pd2+与Sil-1分子筛表面的氨基的络合作用,可以稳定的将Pd2+均匀的固载在分子筛表面,防止Pd2+在合成的过程中脱落以及受到合成液的碱性条件影响形成钯的氢氧化物沉淀而不利于金属钯的包覆。
本发明的技术方案如下:
一种氨基修饰的Sil-1单晶包覆纳米钯核壳催化剂的制备,以粒径小于200nm而未经焙烧的Sil-1分子筛纳米颗粒为晶种;采用3-氨丙基三乙氧基硅烷作为改质剂,修饰Sil-1分子筛晶种表面后均匀稳定的固载Pd2+;然后将Pd/Sil-1分子筛纳米晶种投入到Sil-1分子筛单晶合成液以形成Pd@Sil-1核壳结构催化剂,合成出的催化剂粒径在400-500nm左右。
作为优选,本发明采用如下制备方法:
(1)Sil-1晶种的制备
按照TPAOH:TEOS:H2O=0.25:1:27的摩尔比配制Sil-1晶种合成液,室温搅拌陈化24h,静态烘箱中以80~100℃合成18~28h,获得大小为100-200nm的Sil-1分子筛晶种,洗涤后分散在乙醇中,配制成晶种含量为0.018g/mL~0.02g/mL的乙醇悬浊液。
(2)Sil-1晶种的氨基修饰
取步骤(1)中的Sil-1晶种悬浊液3.5~5mL,加入乙醇至20mL,并加入上述溶液质量分数2%的3-氨丙基三乙氧基硅烷,60℃水浴加热处理,搅拌6h,得到氨基修饰Sil-1晶种悬浊液。
(3)氨基修饰Sil-1晶种的Pd2+吸附固载
取步骤(2)中经过氨基修饰的Sil-1晶种悬浊液分散在6mL去离子水中,另将0.001-0.005gNa2PdCl4溶于4mL水中,形成Na2PdCl4水溶液。将Na2PdCl4水溶液在搅拌下逐渐滴加至经过氨基修饰的Sil-1晶种悬浊液中,30℃水浴搅拌处理2h,得到负载型Pd/Sil-1分子筛纳米晶种。
(4)Pd/Sil-1负载型纳米晶种的单晶生长包覆
按照TEOS:TPAOH:H2O=40:10:(5000~15000)的摩尔比配制Sil-1分子筛单晶合成液,将步骤(3)中得到的Pd/Sil-1分子筛纳米晶种加入到该合成液中,室温条件下,搅拌陈化1~2h。陈化完成后,将该合成液装入带有聚四氟乙烯内衬的合成釜中,于转动烘箱中以5r/min的转速,170℃水热合成24h,得到Pd@Sil-1单晶包覆钯核壳型催化剂。
(5)Pd@Sil-1核壳型催化剂的焙烧与还原
将步骤(4)中得到的Pd@Sil-1催化剂于马弗炉中以550℃焙烧6h后,用0.01M的NaBH4水溶液将Pd@Sil-1核壳催化剂中的钯还原,得到Sil-1单晶包覆纳米钯粒子的Pd@Sil-1核壳催化剂。
本发明另一个目的是请求保护上述Sil-1单晶包覆纳米钯粒子的Pd@Sil-1核壳催化剂在液相加氢中的应用,具体方法为:称取摩尔比nPd:n烯烃=(1:10000)~(1:2000)的催化剂和反应物,分散在一定量乙酸乙酯溶剂中。用氢气吹扫反应装置3次,35℃反应2~24h。反应结束后,将催化剂和料液离心分离,采用气相色谱检测结果。
本发明的效果和益处:本发明设计并制备了具有钯纳米颗粒分布均匀、择形性优异的Pd@Sil-1分子筛单晶包覆纳米钯核壳催化剂。制备方法简单、高效、可行,解决了现有催化剂单分散性差、需要多次焙烧、晶化或后处理样品耗时长等弊端。相比于传统的均相催化剂,该核壳催化剂具有择形性优异、抗金属流失及高温聚集等特点,具有广阔的应用前景。
附图说明
图1是Sil-1晶种的扫描电子显微镜图(SEM);
图2是Pd@Sil-1核壳催化剂的扫描电子显微镜图(SEM);
图3是Pd@Sil-1核壳催化剂的透射电镜图(TEM);
图4是Sil-1晶种、负载型催化剂Pd/Sil-1和核壳型催化剂Pd@Sil-1的粉末X射线衍射图(XRD);
图5是Pd/Sil-1和Pd@Sil-1对于不同烯烃液相加氢的转化率的三维柱状图。
具体实施方式
下面通过附图和具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从化学公司购买。
实施例1
(1)Sil-1纳米晶种的制备
按照TPAOH:TEOS:H2O=0.25:1:27的摩尔比,首先量取48.6mL去离子水,在剧烈搅拌下加入23.85mL的四丙基氢氧化铵(TPAOH)。保持剧烈搅拌30min。然后,以1mL/min的速度滴加正硅酸乙酯22.7mL。滴加完毕之后,室温下搅拌陈化24h。装入带有聚四氟乙烯内衬的合成釜中,于静态烘箱中90℃水热合成18h。合成完毕后,取出产物,离心洗涤并分散在乙醇中,配制成晶种密度为0.018g/mL的乙醇悬浊液。Sil-1晶种的形貌如图1所示,XRD如图4所示。
(2)氨基修饰Sil-1纳米晶种及其与Pd2+的固载结合
取步骤(1)中的晶种悬浊液3.5mL,加入乙醇至20mL,并加入上述溶液质量2%的3-氨丙基三乙氧基硅烷335μL,60℃水浴加热处理,搅拌6h。用去离子水洗涤样品2次,并分散于6mL去离子水中,形成分散均匀的经过氨基修饰的Sil-1晶种悬浊液。取0.001gNa2PdCl4固体粉末溶于4mL去离子水中,将该溶液滴加至上述经过氨基修饰的Sil-1晶种悬浊液中。滴加完毕后,30℃水浴搅拌处理2h,得到Pd/Sil-1纳米晶种。XRD如图4所示。
(3)Pd@Sil-1核壳催化剂的合成
按照TEOS:TPAOH:H2O=40:10:5000的摩尔比量取30.81mL去离子水,剧烈搅拌下加入3.17mL四丙基氢氧化铵,后加入3.50mL正硅酸乙酯,室温条件下搅拌陈化2h,制备合成液。在搅拌陈化的过程中,将步骤(2)中得到的Pd/Sil-1分子筛纳米晶种分散于2mL去离子水中,形成分散均匀的Pd/Sil-1分子筛纳米晶种悬浊液,于陈化结束前0.5h将该悬浊液逐滴滴加到上述合成液当中。陈化完毕后,将合成液装入带有聚四氟乙烯内衬的合成釜中,于转动烘箱中以5r/min的转速,170℃水热合成24h,得到Pd@Sil-1核壳型催化剂。将得到的产物于马弗炉中550℃焙烧6h。之后将0.02268gNaBH4加入60mL去离子水,配制0.01M的NaBH4水溶液,将Pd@Sil-1催化剂加入该水溶液中,室温下搅拌处理,直至无气泡产生。样品形貌如图2所示;样品中钯纳米颗粒形貌如图3所示;Pd@Sil-1的XRD如图4所示。
(4)Pd@Sil-1催化剂在烯烃液相加氢中的应用
按照摩尔比nPd:n烯烃=1:10000称取Pd/Sil-1催化剂0.0031g、Pd@Sil-1催化剂0.0394g,各加入正己烯465μL,溶剂乙酸乙酯15mL。用氢气吹扫反应装置3次,35℃反应2h。反应结束后,将催化剂和料液离心分离,采用气相色谱(色谱柱:HP-5;FID)检测结果。
按照摩尔比nPd:n烯烃=1:10000称取Pd/Sil-1催化剂0.0031g、Pd@Sil-1催化剂0.0394g,各加入环己烯380μL,溶剂乙酸乙酯15mL。用氢气吹扫反应装置3次,35℃反应4h。反应结束后,将催化剂和料液离心分离,采用气相色谱(色谱柱:HP-5;FID)检测结果。
按照摩尔比nPd:n烯烃=1:2000称取Pd/Sil-1催化剂0.0156g、Pd@Sil-1催化剂0.197g,各加入环辛烯485μL,溶剂乙酸乙酯15mL。用氢气吹扫反应装置3次,35℃反应24h。反应结束后,将催化剂和料液离心分离,采用气相色谱(色谱柱:HP-5;FID)检测结果。
实施例2
(1)Sil-1纳米晶种的制备与实施例1中相同。
(2)氨基修饰Sil-1纳米晶种及其与Pd2+的固载结合
取步骤(1)中的晶种悬浊液4mL,加入乙醇至20mL,并加入上述溶液质量2%的3-氨丙基三乙氧基硅烷335μL,60℃水浴加热处理,搅拌6h。用去离子水洗涤样品2次,并分散于6mL去离子水中,形成分散均匀的经过氨基修饰的Sil-1晶种悬浊液。取0.003gNa2PdCl4固体粉末溶于4mL去离子水中,将该溶液滴加至上述经过氨基修饰的Sil-1晶种悬浊液中。滴加完毕后,30℃水浴搅拌处理2h,得到Pd/Sil-1负载型催化剂。
(3)Pd@Sil-1核壳催化剂的合成
按照TEOS:TPAOH:H2O=40:10:10000的摩尔比量取36.96mL去离子水,剧烈搅拌下加入1.86mL四丙基氢氧化铵,后加入2.05mL正硅酸乙酯,室温条件下搅拌陈化1h,制备合成液。在搅拌陈化的过程中,将步骤(2)中得到的Pd/Sil-1分子筛纳米晶种分散于3mL去离子水中,形成分散均匀的Pd/Sil-1分子筛纳米晶种悬浊液,于陈化结束前0.5h将该悬浊液逐滴滴加到上述合成液当中。陈化完毕后,将合成液装入带有聚四氟乙烯内衬的合成釜中,于转动烘箱中以5r/min的转速,170℃水热合成24h,得到Pd@Sil-1核壳型催化剂。将得到的产物于马弗炉中550℃焙烧6h。之后将0.02268gNaBH4加入60mL去离子水,配制0.01M的NaBH4水溶液,将Pd@Sil-1催化剂加入该水溶液中,室温下搅拌处理,直至无气泡产生。
(4)Pd@Sil-1催化剂在烯烃液相加氢中的应用与实施例1中相同。
实施例3
(1)Sil-1纳米晶种的制备与实施例1中相同。
(2)氨基修饰Sil-1纳米晶种及其与Pd2+的固载结合
取步骤(1)中的晶种悬浊液5mL,加入乙醇至20mL,并加入上述溶液质量2%的3-氨丙基三乙氧基硅烷335μL,60℃水浴加热处理,搅拌6h。用去离子水洗涤样品2次,并分散于6mL去离子水中,形成分散均匀的经过氨基修饰的Sil-1晶种悬浊液。取0.005gNa2PdCl4固体粉末溶于4mL去离子水中,将该溶液滴加至上述经过氨基修饰的Sil-1晶种悬浊液中。滴加完毕后,30℃水浴搅拌处理2h,得到Pd/Sil-1负载型催化剂。
(3)Pd@Sil-1核壳催化剂的合成
按照TEOS:TPAOH:H2O=40:10:15000的摩尔比量取40.80mL去离子水,剧烈搅拌下加入1.35mL四丙基氢氧化铵,后加入1.48mL正硅酸乙酯,室温条件下搅拌陈化1h,制备合成液。在搅拌陈化的过程中,将步骤(2)中得到的Pd/Sil-1分子筛纳米晶种分散于3mL去离子水中,形成分散均匀的Pd/Sil-1分子筛纳米晶种悬浊液,于陈化结束前0.5h将该悬浊液逐滴滴加到上述合成液当中。陈化完毕后,将合成液装入带有聚四氟乙烯内衬的合成釜中,于转动烘箱中以5r/min的转速,170℃水热合成24h,得到Pd@Sil-1核壳型催化剂。将得到的产物于马弗炉中550℃焙烧6h。之后将0.02268gNaBH4加入60mL去离子水,配制0.01M的NaBH4水溶液,将Pd@Sil-1催化剂加入该水溶液中,室温下搅拌处理,直至无气泡产生。
(4)Pd@Sil-1催化剂在烯烃液相加氢中的应用与实施例1中相同。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法,其特征在于,以粒径小于200nm而未经焙烧的Sil-1分子筛纳米颗粒为晶种;采用3-氨丙基三乙氧基硅烷作为改质剂,修饰Sil-1分子筛纳米晶种表面后均匀稳定的固载Pd2+形成Pd/Sil-1分子筛纳米晶种;然后将Pd/Sil-1分子筛纳米晶种投入到Sil-1分子筛单晶合成液中以形成Pd@Sil-1核壳型催化剂。
2.根据权利要求1所述的一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法,其特征在于,具体步骤如下:
(1)Sil-1晶种的制备
按照TPAOH:TEOS:H2O=0.25:1:27的摩尔比配制Sil-1晶种合成液,室温搅拌陈化24h,于静态烘箱中以80~100℃合成18~28h,洗涤、分散在乙醇中,配制成晶种含量为0.018g/mL~0.02g/mL的乙醇悬浊液;
(2)Sil-1晶种的氨基修饰
取步骤(1)中的Sil-1晶种悬浊液3.5~5mL,加入乙醇至20mL,并加入上述溶液质量分数2%的3-氨丙基三乙氧基硅烷,60℃水浴加热处理,搅拌6h;
(3)氨基修饰Sil-1晶种的Pd2+吸附固载
取步骤(2)中经过氨基修饰的Sil-1晶种悬浊液分散在6mL去离子水中,另将0.001~0.005g Na2PdCl4溶于4mL水中,形成Na2PdCl4水溶液,将Na2PdCl4水溶液在搅拌下逐渐滴加至经过氨基修饰的Sil-1晶种悬浊液中,30℃水浴搅拌处理2h,得到Pd/Sil-1分子筛纳米晶种;
(4)Pd/Sil-1分子筛纳米晶种的单晶生长包覆
按照TEOS:TPAOH:H2O=40:10:(5000~15000)的摩尔比配制Sil-1分子筛单晶合成液,将步骤(3)中得到的Pd/Sil-1分子筛纳米晶种加入到该合成液中,室温搅拌陈化1~2h,陈化完成后,将该合成液装入合成釜中,于转动烘箱中以5r/min的转速,170℃水热合成24h,得到Pd@Sil-1单晶包覆钯核壳型催化剂;
(5)Pd@Sil-1核壳型催化剂的焙烧与还原
将步骤(4)中得到的Pd@Sil-1催化剂以550℃焙烧6h后,用0.01M的NaBH4水溶液将Pd@Sil-1核壳催化剂中的钯还原,得到Sil-1单晶包覆纳米钯Pd@Sil-1核壳催化剂。
3.根据权利要求2所述的一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法,其特征在于,所述合成釜的内衬为聚四氟乙烯。
4.一种如权利要求1所述的Pd@Sil-1核壳催化剂在液相加氢中的应用,其特征在于,称取摩尔比nPd:n烯烃=(1:10000)~(1:2000)的催化剂和反应物,分散在一定量乙酸乙酯溶剂中,用氢气吹扫反应装置,35℃反应2~24h,反应结束后,将催化剂和料液离心分离,采用气相色谱检测结果。
CN201710516963.0A 2017-06-29 2017-06-29 一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用 Active CN107442155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710516963.0A CN107442155B (zh) 2017-06-29 2017-06-29 一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710516963.0A CN107442155B (zh) 2017-06-29 2017-06-29 一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用

Publications (2)

Publication Number Publication Date
CN107442155A true CN107442155A (zh) 2017-12-08
CN107442155B CN107442155B (zh) 2019-10-11

Family

ID=60488489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710516963.0A Active CN107442155B (zh) 2017-06-29 2017-06-29 一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用

Country Status (1)

Country Link
CN (1) CN107442155B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167069A (zh) * 2018-07-17 2019-01-08 常州大学 一种金属负载在含分子筛的二元载体上的高活性电极制备方法
CN109876847A (zh) * 2019-03-05 2019-06-14 大连理工大学 一种应用于烯烃氢甲酰化的分子筛封装铑的非均相核壳式催化剂及其催化方法
CN110116018A (zh) * 2019-04-15 2019-08-13 中国科学院化学研究所 一种包覆贵金属的硅分子筛催化材料及其制备方法
US20200139353A1 (en) * 2017-07-20 2020-05-07 Wanhua Chemical Group Co., Ltd. Silicalite-1 molecular sieve-based catalyst and preparation method for 1,2-pentanediol using said catalyst
CN111686795A (zh) * 2020-06-15 2020-09-22 大连理工大学 硫掺杂的kl分子筛封装铑纳米粒子核壳催化剂的一锅法制备及催化苯酚选择性加氢的应用
CN112387305A (zh) * 2020-11-16 2021-02-23 江苏扬农化工集团有限公司 一种核壳结构催化剂的合成及原位生成双氧水制备环氧氯丙烷的方法
CN113385217A (zh) * 2021-06-25 2021-09-14 中山大学 一种用于低浓度甲烷催化燃烧的钯基核壳结构催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091655A (zh) * 2009-12-09 2011-06-15 中国科学院大连化学物理研究所 一种用于不饱合烃类选择加氢的催化剂及其制备和应用
CN106669768A (zh) * 2017-01-09 2017-05-17 吉林大学 负载超小贵金属粒子的Metal@Silicalite‑1分子筛、制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091655A (zh) * 2009-12-09 2011-06-15 中国科学院大连化学物理研究所 一种用于不饱合烃类选择加氢的催化剂及其制备和应用
CN106669768A (zh) * 2017-01-09 2017-05-17 吉林大学 负载超小贵金属粒子的Metal@Silicalite‑1分子筛、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG LIU, ET AL.: "Palladium Nanoparticles Encapsulated in a Silicalite-1 Zeolite Shell for Size-Selective Catalysis in Liquid-Phase Solution", 《CHEMCATCHEM》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200139353A1 (en) * 2017-07-20 2020-05-07 Wanhua Chemical Group Co., Ltd. Silicalite-1 molecular sieve-based catalyst and preparation method for 1,2-pentanediol using said catalyst
US10898883B2 (en) * 2017-07-20 2021-01-26 Wanhua Chemical Group Co., Ltd. Silicalite-1 molecular sieve-based catalyst and preparation method for 1,2-pentanediol using said catalyst
CN109167069A (zh) * 2018-07-17 2019-01-08 常州大学 一种金属负载在含分子筛的二元载体上的高活性电极制备方法
CN109876847A (zh) * 2019-03-05 2019-06-14 大连理工大学 一种应用于烯烃氢甲酰化的分子筛封装铑的非均相核壳式催化剂及其催化方法
CN109876847B (zh) * 2019-03-05 2020-04-14 大连理工大学 一种应用于烯烃氢甲酰化的分子筛封装铑的非均相核壳式催化剂及其催化方法
CN110116018A (zh) * 2019-04-15 2019-08-13 中国科学院化学研究所 一种包覆贵金属的硅分子筛催化材料及其制备方法
CN111686795A (zh) * 2020-06-15 2020-09-22 大连理工大学 硫掺杂的kl分子筛封装铑纳米粒子核壳催化剂的一锅法制备及催化苯酚选择性加氢的应用
CN111686795B (zh) * 2020-06-15 2022-10-14 大连理工大学 硫掺杂的kl分子筛封装铑纳米粒子核壳催化剂的一锅法制备及催化苯酚选择性加氢的应用
CN112387305A (zh) * 2020-11-16 2021-02-23 江苏扬农化工集团有限公司 一种核壳结构催化剂的合成及原位生成双氧水制备环氧氯丙烷的方法
CN112387305B (zh) * 2020-11-16 2023-06-06 江苏扬农化工集团有限公司 一种核壳结构催化剂的合成及原位生成双氧水制备环氧氯丙烷的方法
CN113385217A (zh) * 2021-06-25 2021-09-14 中山大学 一种用于低浓度甲烷催化燃烧的钯基核壳结构催化剂及其制备方法
CN113385217B (zh) * 2021-06-25 2024-03-15 中山大学 一种用于低浓度甲烷催化燃烧的钯基核壳结构催化剂及其制备方法

Also Published As

Publication number Publication date
CN107442155B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN107442155B (zh) 一种Silicalite-1单晶包覆纳米钯核壳催化剂的制备方法及其催化应用
EP3016741B1 (en) Method for producing zeolites and zeotypes
CN107020147B (zh) 一种封装金属氧化物或金属纳米颗粒的mfi结构片层状分子筛催化剂、其制备方法及用途
CN103272634B (zh) 纳米金属负载型分子筛催化剂的制备方法
CN105582913B (zh) 一种具有蛋黄‑蛋壳结构Pt@SiO2催化剂的制备方法
KR102189426B1 (ko) 금속 입자가 담지된 메조다공성 중공형 유기실리카 나노입자, 및 이의 제조방법
CN106457229A (zh) 在沸石和类沸石中引入金属纳米粒子的通用方法
CN104258897A (zh) 核壳型分子筛包覆催化剂及其制备方法
CN106669768A (zh) 负载超小贵金属粒子的Metal@Silicalite‑1分子筛、制备方法及应用
CN109467099A (zh) 一种纳米级纯硅梯级孔Beta分子筛的制备方法
Yang et al. A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres
Chen et al. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite
CN108453265A (zh) 一种二氧化硅纳米管限域镍纳米颗粒及其制备方法
CN106994366B (zh) 一种核壳型费托合成催化剂及其合成方法和应用
CN104258896A (zh) 纳微尺度反应分离耦合多功能催化剂及其制备方法
CN106040302A (zh) 一种加氢催化剂
CN114749207B (zh) 一种分子筛封装的核壳催化剂及其制备方法
CN106076402A (zh) 一种高分散镍表面修饰的等级孔mfi纳米片的制备方法及其应用
Aghamohammadi et al. Pathways in particle assembly by ultrasound-assisted spray-drying of kaolin/SAPO-34 as a fluidized bed catalyst for methanol to light olefins
Zhang et al. Organic-free one-step synthesis of macro/microporous LTA zeolite and its encapsulation of metal nanoparticles
Chen et al. A strategy for fast and facile embedding platinum nanoparticles in silicalite‑1 crystallites with a stable and catalytic active structure
CN105948073A (zh) 一种sapo-34分子筛的制备方法
CN113600230B (zh) 一种高效单原子分子筛成型催化剂及其制备方法
CN108658087A (zh) 一种多级孔道ts-1沸石材料及其制备方法
Huang et al. Protective dissolution: generating secondary pores in zeolite by mechanochemical reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant