CN107409261B - 超声波振子单元 - Google Patents

超声波振子单元 Download PDF

Info

Publication number
CN107409261B
CN107409261B CN201680011506.XA CN201680011506A CN107409261B CN 107409261 B CN107409261 B CN 107409261B CN 201680011506 A CN201680011506 A CN 201680011506A CN 107409261 B CN107409261 B CN 107409261B
Authority
CN
China
Prior art keywords
piezoelectric element
acoustic
layer
acoustic impedance
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680011506.XA
Other languages
English (en)
Other versions
CN107409261A (zh
Inventor
元木和也
小林和裕
渡边彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Healthcare Corp
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN107409261A publication Critical patent/CN107409261A/zh
Application granted granted Critical
Publication of CN107409261B publication Critical patent/CN107409261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0677Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a high impedance backing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

在压电元件(24)与具备对压电元件进行驱动的电子电路的电路基板(16)之间,使谐振层(30)和声分离层(34)彼此相邻地配置。谐振层(30)的声阻抗比压电元件(24)高,声分离层(34)的声阻抗比电路基板(16)低。在声阻抗之差较大的谐振层(30)与声分离层(34)的边界面,超声波被反射,从而传播到电路基板(16)侧的超声波减少。

Description

超声波振子单元
技术领域
本发明涉及用于超声波探头的超声波振子单元,特别涉及其构造。
背景技术
在医疗领域中超声波诊断装置得到了有效地利用。超声波诊断装置是对生物体收发超声波并基于由此得到的接收信号来形成超声波图像的装置。对生物体的超声波的收发通过超声波探头(探针)进行。探针具备包括压电元件的振子,通过驱动压电元件,从而收发超声波。
振子包括配置在压电元件的生物体侧的匹配层。匹配层是用于使从压电元件向生物体的声阻抗依次减少而对压电元件和生物体进行声匹配的层。此外,振子也可以具有与压电元件的背面即与和生物体侧相反一侧的面相邻地配置的谐振层。谐振的声阻抗相对于压电元件较高,有助于与压电元件进行谐振而朝向生物体高效地发送超声波。在振子的背面配置电路基板,电路基板具备对压电元件进行驱动的电子电路。在下述专利文献1示出了超声波探头的例子。
在先技术文献
专利文献
专利文献1:日本特表2005-507581号公报
发明内容
发明要解决的课题
若从振子发射的超声波传播到电路基板,则会在电路基板内反射,一部分返回到振子,再发射到生物体内。基于该电路基板内的反射的超声波迟于直接发射的超声波进行发射,有时由于该延迟会成为噪声而导致超声波图像劣化。
本发明的目的在于,降低从振子传播到电路基板侧的超声波。
用于解决课题的技术方案
本发明涉及的超声波振子单元具有:压电元件;电路基板,其具备对压电元件进行驱动的电子电路;谐振层,其配置在压电元件与电路基板之间,声阻抗比压电元件的声阻抗高;以及声分离层,其与谐振层相邻地配置在谐振层的电路基板侧,声阻抗比电路基板的声阻抗低。
由于谐振层与声分离层的声阻抗之差,从而在这些层的边界面会对超声波进行反射,由此能够抑制超声波传播到电路基板侧。
此外,声分离层能够由多孔质材料特别是多孔质碳构成。
进而,能够使谐振层的声阻抗为压电元件的声阻抗的2.3倍以上,并使声分离层的声阻抗为电路基板的声阻抗的1/20以下。此外,能够使声分离层的声阻抗为谐振层的声阻抗的1/70。
发明效果
通过在声分离层与谐振层的边界面对超声波进行反射,抑制超声波传播到电路基板,从而能够降低在电路基板内反射的超声波所引起的噪声。
附图说明
图1是示出本实施方式的超声波振子单元的概略结构的立体图。
图2是示出本实施方式的超声波振子单元的概略结构的剖视图。
图3是示出声分离层的效果的图。
具体实施方式
以下,按照附图对本发明的实施方式进行说明。图1是示出本实施方式的超声波振子单元10的立体图。此外,图2是超声波振子单元10的剖视图。超声波振子单元10内置于超声波诊断装置的探针,对探针接触的生物体进行超声波的收发。图1中的超声波的发送方向是上方。另外,在以下的说明中,“上”、“下”等表示上下的关系的语句表示的是图中的上下,并不表示使用方式等的上下关系。
超声波振子单元10包括纵横配置了单振子(individual transducer)12的二维的阵列振子14。在图示的阵列振子14中,纵横排列有相同数目的单振子12,作为整体构成为大致正方形。此外,虽然在图中为了进行说明而将单振子12的数目设为5×5配置的25个,但是实际的阵列振子14具备非常多的单振子12,例如几千个。在该结构中,能够以任意的角度扫描超声波束。根据通过任意的角度的扫描而导入的三维空间内的数据,能够形成表示三维空间的三维超声波图像。根据该数据还能够形成任意的剖面处的超声波图像。阵列振子也可以是单振子12呈直线状排列为一列的一维阵列。此外,也可以是在纵向和横向上排列了不同个数的单振子12的大致长方形的阵列。
超声波振子单元10具有电路基板16和保护层18,电路基板16具备对阵列振子14进行驱动的电子电路,保护层18覆盖阵列振子14而进行保护。在该超声波振子单元10的情况下,电路基板16具有电子电路基板20和中继基板22,电子电路基板20形成有电子电路,中继基板22具有用于对该电子电路和单振子12进行连接的布线或电路。中继基板22也可以具有对电子电路上的端子与单振子12的连接进行切换的功能。
单振子12包括振动元件26和声匹配层28,振动元件26包括压电元件24。振动元件26除了压电元件24以外还包括谐振层30。谐振层30配置在压电元件24的背面侧,即,配置在对超声波进行收发的方向的相反侧。此外,谐振层30的声阻抗比压电元件24高,形成硬背面层,压电元件24与谐振层30成为一体而进行超声波的发射以及接收。压电元件24和谐振层30的声阻抗例如分别为30MRayl左右、70~100MRayl,谐振层30的声阻抗是压电元件24的2.3倍以上。谐振层30的材料是包含碳、钨的导电性的填料的树脂材料、金属、合金、金属的烧结体、金属与无机材料的烧结体、或它们的复合体。谐振层30有助于与压电元件24进行谐振而朝向生物体高效地发送超声波。此外,电路基板16特别是中继基板22的声阻抗为大约20MRayl。
声匹配层28是用于使声阻抗从压电元件24向生物体阶段性地减少、对压电元件24和生物体进行声匹配的层。虽然声匹配层28可以仅由一层构成,但是为了使声阻抗朝向生物体尽可能平滑地减少,也可以具有多个层。在图示的例子中,由第一声匹配层28A、第二声匹配层28B这两层构成。
在单振子12的与保护层18对置的面,与各单振子12接合有公共的接地电极32。声匹配层28具有导电性,对接地电极32和振动元件26进行电连接。关于声匹配层28,为了使其具有导电性,能够使用混入了玻璃状碳、碳、石墨材料或导电性填料的树脂。关于该树脂,例如能够使用环氧树脂。
在谐振层30的背面侧即电路基板16侧,与谐振层30相邻地配置有声分离层34。关于声分离层34,其声阻抗比压电元件24以及电路基板16低。电路基板16包括的中继基板22与电子电路基板20的声阻抗大致相等,但是在它们存在差异的情况下,声分离层34的声阻抗会比位于声分离层34侧的中继基板22的声阻抗低。此外,在没有中继基板22的情况下,声分离层34的声阻抗会比电子电路基板20的声阻抗低。通过声阻抗比压电元件24高的谐振层30与声阻抗比电路基板16低的声分离层34相邻,从而在谐振层30与声分离层34的边界处产生较大的声阻抗之差。由此,超声波在谐振层30与声分离层34的边界面进行反射,从而传播到电路基板16的超声波减少。通过使谐振层30的声阻抗比压电元件24高,并且使声分离层34的声阻抗比中继基板22低,从而能够增大谐振层30与声分离层34的声阻抗之差。
单振子12经由声分离层34与设置在电路基板16的表面的电极连接。谐振层30以及声分离层34具有导电性,将压电元件24与电路基板16的电极电连接。中继基板22具有对单振子12和设置在电子电路基板20的上表面的电极进行连接的功能,例如,通过设置在中继基板22的贯通孔来实现单振子12与电极的连接。通过中继基板22内的布线的配置,能够对电子电路基板20上的电极以及单振子12的排列、间距的差异进行匹配。此外,也可以使得在中继基板22内具备用于对电子电路基板20上的电极与单振子12的连接关系进行切换的电路。
如前所述,声分离层34是用于通过与谐振层30的声阻抗之差从而在与谐振层30的边界面对超声波进行反射的层,因此需要由与谐振层30的声阻抗之差较大的材料构成。如前所述,谐振层30的声阻抗较高,因此声分离层34优选降低声阻抗来设置较大的声阻抗之差。此外,在声分离层34中流过从电路基板16供给的电力,因此要求高导电性。进而,声分离层34对单振子12和电路基板16进行连接,还要求高构造强度。像这样,声分离层34要求低声阻抗、高导电性、以及高构造强度。
作为满足声分离层34要求的上述的特性的材料,可以举出多孔质材料。例如,能够通过在烧结性导电材料的生成时混入粘合剂等而使空孔率为80%以上,由此,能够使声阻抗为1MRayl以下。作为更具体的材料,可以举出多孔质金属、多孔质碳。某种多孔质碳的特性是声阻抗为0.7~1.0MRayl,固有电阻为大约2~20×10-2Ωcm,弯曲弹性模量为2~15GPa,满足前述的特性要求。
图3是示出具有上述的特性的多孔质碳制的声分离层34的效果的图。横轴表示时间,纵轴表示超声波的振幅。虚线是未设置声分离层34的情况下的曲线图,实线是设置了声分离层34的情况下的曲线图。示出了-20dB处的超声波的脉冲宽度成为大约50%的情况。这表示,声分离层34的背后的层内的多重反射所造成的影响减少。在实际的超声波图像中,因多重反射而产生的声音噪声的减少也得到了确认。
该多孔质碳制的声分离层34的声阻抗相对于电路基板16为1/20,相对于谐振层30为1/100~1/70。给出了如下启示,即,若为其以下的数值,则能够使超声波的脉冲宽度成为50%以下,能够实现超声波图像的画质改善。
通过使得在谐振层30与声分离层34的边界面处对超声波进行反射,从而关于配置在声分离层34的背面侧的层,材料选择的自由度提高。在没有声分离层34的以往的结构的情况下,通过使进入到电路基板16等振动元件26的背后的层的超声波在层内衰减,来进行了噪声的抑制。因此,该层的材料需要选择衰减大的材料。通过设置声分离层34,从而传播到声分离层34的背后的超声波减少,因此能够选择衰减小的材料。
附图标记说明
10:超声波振子单元,12:单振子,16:电路基板,20:电子电路基板,22:中继基板,24:压电元件,26:振动元件,28:声匹配层,30:谐振层,34:声分离层。

Claims (5)

1.一种超声波振子单元,具有:
压电元件;
电路基板,其具备对压电元件进行驱动的电子电路;
谐振层,其配置在压电元件与电路基板之间,声阻抗比压电元件的声阻抗高;以及
声分离层,其与谐振层相邻地配置在谐振层的电路基板侧,声阻抗比电路基板的声阻抗低,
声分离层的声阻抗为谐振层的声阻抗的1/70以下。
2.一种超声波振子单元,具有:
压电元件;
电路基板,其具备对压电元件进行驱动的电子电路,声阻抗比压电元件的声阻抗低;
谐振层,其配置在压电元件与电路基板之间,声阻抗比压电元件的声阻抗高;以及
声分离层,其与谐振层相邻地配置在谐振层的电路基板侧,声阻抗比电路基板的声阻抗低,
声分离层由多孔质材料构成。
3.一种超声波振子单元,具有:
压电元件;
电路基板,其具备对压电元件进行驱动的电子电路,声阻抗比压电元件的声阻抗低;
谐振层,其配置在压电元件与电路基板之间,声阻抗比压电元件的声阻抗高;以及
声分离层,其与谐振层相邻地配置在谐振层的电路基板侧,声阻抗比电路基板的声阻抗低,
声分离层由多孔质碳构成。
4.一种超声波振子单元,具有:
压电元件;
电路基板,其具备对压电元件进行驱动的电子电路,声阻抗比压电元件的声阻抗低;
谐振层,其配置在压电元件与电路基板之间,声阻抗比压电元件的声阻抗高;以及
声分离层,其与谐振层相邻地配置在谐振层的电路基板侧,声阻抗比电路基板的声阻抗低,
谐振层的声阻抗是压电元件的声阻抗的2.3倍以上,声分离层的声阻抗是电路基板的声阻抗的1/20以下。
5.根据权利要求2~4中的任一项所述的超声波振子单元,其中,
声分离层的声阻抗为谐振层的声阻抗的1/70以下。
CN201680011506.XA 2015-02-27 2016-01-18 超声波振子单元 Active CN107409261B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-038544 2015-02-27
JP2015038544A JP5997796B2 (ja) 2015-02-27 2015-02-27 超音波振動子ユニット
PCT/JP2016/051286 WO2016136327A1 (ja) 2015-02-27 2016-01-18 超音波振動子ユニット

Publications (2)

Publication Number Publication Date
CN107409261A CN107409261A (zh) 2017-11-28
CN107409261B true CN107409261B (zh) 2020-01-10

Family

ID=56788330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680011506.XA Active CN107409261B (zh) 2015-02-27 2016-01-18 超声波振子单元

Country Status (5)

Country Link
US (1) US10672972B2 (zh)
EP (1) EP3264795A1 (zh)
JP (1) JP5997796B2 (zh)
CN (1) CN107409261B (zh)
WO (1) WO2016136327A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804643B (zh) * 2016-10-13 2021-02-19 富士胶片株式会社 超声波探头及超声波探头的制造方法
DE112017006434T5 (de) * 2016-12-20 2019-09-05 Sony Corporation Matrixförmiger Ultraschallvibrator, Ultraschallsonde, Ultraschallkatheter, tragbares chirurgisches Instrument und medizinische Vorrichtung
CN108435520B (zh) * 2018-03-09 2023-09-12 苏州诺莱声科技有限公司 一种振动增强型超声换能器
WO2019211941A1 (ja) 2018-05-01 2019-11-07 株式会社村田製作所 電子デバイスおよびそれを搭載した指紋認証装置
JP7275808B2 (ja) * 2019-04-23 2023-05-18 コニカミノルタ株式会社 超音波探触子及び超音波診断装置
KR20210105023A (ko) * 2020-02-18 2021-08-26 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법
US11522694B2 (en) * 2020-02-25 2022-12-06 Lexmark International, Inc. Acoustical physically unclonable function (puf) and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872493A (en) * 1997-03-13 1999-02-16 Nokia Mobile Phones, Ltd. Bulk acoustic wave (BAW) filter having a top portion that includes a protective acoustic mirror
CN101238754A (zh) * 2005-10-18 2008-08-06 株式会社日立制作所 超声波换能器、超声波探头以及超声波摄像装置
CN101878658A (zh) * 2007-11-29 2010-11-03 株式会社日立医疗器械 超声波探头及使用该超声波探头的超声波诊断装置
CN102598330A (zh) * 2009-09-01 2012-07-18 精量电子股份有限公司 用于超声波换能器的多层声阻抗变换器
CN103210665A (zh) * 2011-01-28 2013-07-17 株式会社东芝 超声波换能器、超声波探头以及超声波换能器的制造方法
WO2014054810A1 (ja) * 2012-10-04 2014-04-10 株式会社 東芝 超音波診断装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603241B1 (en) * 2000-05-23 2003-08-05 Agere Systems, Inc. Acoustic mirror materials for acoustic devices
US6551248B2 (en) 2001-07-31 2003-04-22 Koninklijke Philips Electronics N.V. System for attaching an acoustic element to an integrated circuit
US8397574B2 (en) * 2005-10-18 2013-03-19 Hitachi, Ltd. Ultrasonic transducer, ultrasonic probe, and ultrasonic imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872493A (en) * 1997-03-13 1999-02-16 Nokia Mobile Phones, Ltd. Bulk acoustic wave (BAW) filter having a top portion that includes a protective acoustic mirror
CN101238754A (zh) * 2005-10-18 2008-08-06 株式会社日立制作所 超声波换能器、超声波探头以及超声波摄像装置
CN101878658A (zh) * 2007-11-29 2010-11-03 株式会社日立医疗器械 超声波探头及使用该超声波探头的超声波诊断装置
CN102598330A (zh) * 2009-09-01 2012-07-18 精量电子股份有限公司 用于超声波换能器的多层声阻抗变换器
CN103210665A (zh) * 2011-01-28 2013-07-17 株式会社东芝 超声波换能器、超声波探头以及超声波换能器的制造方法
WO2014054810A1 (ja) * 2012-10-04 2014-04-10 株式会社 東芝 超音波診断装置

Also Published As

Publication number Publication date
US10672972B2 (en) 2020-06-02
US20180040805A1 (en) 2018-02-08
JP5997796B2 (ja) 2016-09-28
CN107409261A (zh) 2017-11-28
JP2016163132A (ja) 2016-09-05
EP3264795A1 (en) 2018-01-03
WO2016136327A1 (ja) 2016-09-01

Similar Documents

Publication Publication Date Title
CN107409261B (zh) 超声波振子单元
EP1728563B1 (en) Ultrasonic probe and ultrasonic probe manufacturing method
US6936008B2 (en) Ultrasound system with cableless coupling assembly
KR101137261B1 (ko) 초음파 진단장치용 프로브 및 그 제조방법
JP5923205B1 (ja) 超音波探触子
CN102218394B (zh) 超声波换能器、超声波探头以及超声波换能器的制造方法
KR101137262B1 (ko) 초음파 진단장치용 프로브 및 그 제조방법
US5598051A (en) Bilayer ultrasonic transducer having reduced total electrical impedance
CN102327128A (zh) 超声波探头及超声波诊断装置
KR20140098755A (ko) 백킹 부재, 초음파 프로브, 및 초음파 화상 표시 장치
US7382082B2 (en) Piezoelectric transducer with gas matrix
CN107005768A (zh) 具有包括厚金属层的柔性印刷电路板的超声波换能器及其制造方法
CN103298409B (zh) 超声波探头
JP2009072349A (ja) 超音波トランスデューサ及びその製造方法、並びに、超音波探触子
KR20110064511A (ko) 초음파 프로브 장치 및 그 제조방법
JP4709500B2 (ja) 超音波プローブ及び超音波診断装置
CN209252920U (zh) 一种超高密度阵列换能器
JP2017158630A (ja) 超音波プローブ
JP2007288396A (ja) 超音波用探触子
JP4080580B2 (ja) 超音波プローブ
CN108926362A (zh) 一种超高密度阵列换能器
CN116511011A (zh) 波形改善方法及超音波换能器
KR102623559B1 (ko) 초음파 프로브
JP6613088B2 (ja) 超音波プローブ
JP6675142B2 (ja) 超音波プローブ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211117

Address after: Chiba County, Japan

Patentee after: Fujifilm medical health Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Hitachi, Ltd.

TR01 Transfer of patent right