CN107393970A - 一种碳化硅结势垒二极管 - Google Patents

一种碳化硅结势垒二极管 Download PDF

Info

Publication number
CN107393970A
CN107393970A CN201710749274.4A CN201710749274A CN107393970A CN 107393970 A CN107393970 A CN 107393970A CN 201710749274 A CN201710749274 A CN 201710749274A CN 107393970 A CN107393970 A CN 107393970A
Authority
CN
China
Prior art keywords
junction barrier
doping concentration
sic
barrier diode
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710749274.4A
Other languages
English (en)
Other versions
CN107393970B (zh
Inventor
蒲红斌
王曦
陈春兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Qianye Micro Nano Technology Co.,Ltd.
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710749274.4A priority Critical patent/CN107393970B/zh
Publication of CN107393970A publication Critical patent/CN107393970A/zh
Application granted granted Critical
Publication of CN107393970B publication Critical patent/CN107393970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种碳化硅结势垒二极管,将沟槽结构引入4H‑SiC结势垒二极管中,有效的提高4H‑SiC场控二极管的耐压性,改善了高压4H‑SiC结势垒二极管的阻断性能;本发明二极管使用外延形成用于阳极接触的重掺杂接触区,通过刻蚀技术在重掺杂接触区与沟道扩展区制作沟槽的方法,以及离子注入后无碳膜保护的激活退火方法,均有效增加了p结区结深,并改善了欧姆接触阳极的接触特性,降低了器件工艺的复杂度,提高了器件的可行性。

Description

一种碳化硅结势垒二极管
技术领域
本发明属于电力半导体器件技术领域,具体涉及一种碳化硅结势垒二极管。
背景技术
碳化硅(SiC)材料具有禁带宽度大,热导率高,临界雪崩击穿电场强度高,饱和载流子漂移速度大及热稳定性好等特点,是制造功率半导体器件的理想材料。SiC高压器件与同等级的硅器件相比,具有更低的通态压降、更高的工作频率、更低的功耗、更小的体积以及更好的热特性,更适合应用于电力电子电路。
SiC功率肖特基二极管(SBD)作为最早实现商品化的SiC功率器件,兼具了通态压降低与反向恢复时间几乎为零的优势,适合作为续流二极管与Si基IGBT等开关器件组成混合Si-SiC电力电子电路,降低开关损耗。随应用电路电压的提高,耐压性能良好的SiC结势垒肖特基二极管(JBS)成为主流。由于通态时器件中无电导调制,SiC JBS二极管保持了良好的反向恢复特性,但这也使耐压较高的SiC JBS二极管难以获得高的电流密度,不利于降低器件的通态损耗。
硅基混合pn-肖特基势垒(MPS)二极管可以通过调节额外载流子的注入率,使器件的压降与反向恢复时间得到较好的兼顾。但SiC pn结的门槛电压明显高于SiC MPS二极管所使用的肖特基势垒,电导调制效应只能在器件遭受浪涌冲击时起作用,工作于通态时SiCMPS二极管与SiC JBS二极管并无二致。
2013年苗东铭在其学位论文《新型SiC二极管的结构优化及其制造工艺流程设计》中,提出并研究了一种新型SiC二极管结构,改JBS阳极处的肖特基接触为欧姆接触,取消了肖特基势垒对器件正向压降的制约,通过调整p区与导电沟道的宽度,增加沟道区掺杂浓度,获得了具有低通态压降的1200V SiC二极管。同年,Chaofeng Cai等在所发表文章《Silicon Carbide Pinched Barrier Rectifier(PBR)》中提出类似的1200V SiC二极管结构,将1200V SiC JBS二极管的肖特基势垒降为零,有效降低了SiC JBS二极管的通态损耗,改善了SiC JBS二极管的高温性能。但由于SiC高温离子注入技术注入结深较浅、高精度光刻技术成本昂贵以及在沟槽中外延生长技术不够成熟的限制,文中所提出的SiC结势垒二极管结构难以适用于更高的电压等级。
发明内容
本发明的目的是提供一种碳化硅结势垒二极管,解决了现有器件结构难以适用于高电压领域的问题。
本发明所采用的技术方案是,一种碳化硅结势垒二极管,包括衬底,衬底一面自下而上依次设置有缓冲层、漂移区、沟道扩展区,沟道扩展区分为沟道区和终端台面,终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区,沟道区最高面连接有高掺杂接触区,终端台面包括多个场限环,P结区、高掺杂接触区外连接欧姆接触阳极,终端台面上连接有钝化层,衬底另一面连接欧姆接触阴极。
本发明的特点还在于:
缓冲层掺杂浓度为1×1018cm-3—5×1019cm-3,厚度为0.5μm—2.0μm,漂移区掺杂浓度为2×1014cm-3—2×1016cm-3,厚度为5μm—80μm,高掺杂接触区掺杂浓度为1×1018cm-3—5×1019cm-3,厚度为0.1μm—0.3μm,沟道扩展区掺杂浓度为2×1016cm-3—2×1017cm-3,厚度为1.1μm—2.1μm。
P结区掺杂浓度为1×1018cm-3—5×1019cm-3,结深为0.5μm—0.8μm。
衬底为n型4H-SiC衬底。
钝化层为SiO2层。
本发明的有益效果是:
(1)本发明的一种碳化硅结势垒二极管,将沟槽结构引入4H-SiC结势垒二极管中,有效的提高4H-SiC场控二极管的耐压性,改善了高压4H-SiC结势垒二极管的阻断性能;
(2)本发明的碳化硅结势垒二极管采用欧姆接触阳极配合使用缓冲层、重掺杂接触区、沟道扩展区、漂移区、P结区以及特定的掺杂浓度、厚度、结深,有效的改善了欧姆接触阳极的接触特性,提高了器件的可行性。
附图说明
图1是本发明一种碳化硅结势垒二极管结构示意图;
图2是本发明一种碳化硅结势垒二极管在3300V电压情况下正向导通特性数值仿真结果;
图3是本发明一种碳化硅结势垒二极管在3300V电压情况下反向阻断特性数值仿真结果。
图中,1.衬底,2.缓冲层,3.漂移区,4.沟道扩展区,5.高掺杂接触区,6.P结区,7.欧姆接触阳极,8.欧姆接触阴极,9.场限环,10.钝化层。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种碳化硅结势垒二极管,如图1所示,包括衬底1,衬底1为n型4H-SiC衬底,衬底1一面自下而上依次设置有缓冲层2、漂移区3、沟道扩展区4,沟道扩展区4分为沟道区和终端台面,且终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区6,沟道区最高面连接有高掺杂接触区5,终端台面包括多个场限环9,P结区6、高掺杂接触区5外连接欧姆接触阳极7,终端台面上连接有钝化层10,且钝化层10为SiO2层;衬底1另一面连接欧姆接触阴极8。
缓冲层2掺杂浓度为1×1018cm-3—5×1019cm-3,厚度为0.5μm—2.0μm,漂移区3掺杂浓度为2×1014cm-3—2×1016cm-3,厚度为5μm—80μm,高掺杂接触区5掺杂浓度为1×1018cm-3—5×1019cm-3,厚度为0.1μm—0.3μm,沟道扩展区4掺杂浓度为2×1016cm-3—2×1017cm-3,厚度为1.1μm—2.1μm。
P结区掺杂浓度为1×1018cm-3—5×1019cm-3,结深为0.5μm—0.8μm。
实施例1
一种碳化硅结势垒二极管,包括衬底1,衬底1为n型4H-SiC衬底,衬底1一面自下而上依次设置有缓冲层2、漂移区3、沟道扩展区4,沟道扩展区4分为沟道区和终端台面,终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区6,沟道区最高面连接有高掺杂接触区5,终端台面包括多个场限环9,P结区6、高掺杂接触区5外连接欧姆接触阳极7,终端台面上连接有钝化层10,钝化层10为SiO2层,衬底1另一面连接欧姆接触阴极8。
缓冲层2掺杂浓度为1×1018cm-3,厚度为0.5μm,漂移区3掺杂浓度为2×1014cm-3,厚度为5μm,高掺杂接触区5掺杂浓度为1×1018cm-3,厚度为0.1μm,沟道扩展区4掺杂浓度为2×1016cm-3,厚度为1.1μm。
P结区掺杂浓度为1×1018cm-3,结深为0.5μm。
实施例2
一种碳化硅结势垒二极管,包括衬底1,衬底1为n型4H-SiC衬底,衬底1一面自下而上依次设置有缓冲层2、漂移区3、沟道扩展区4,沟道扩展区4分为沟道区和终端台面,终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区6,沟道区最高面连接有高掺杂接触区5,终端台面包括多个场限环9,P结区6、高掺杂接触区5外连接欧姆接触阳极7,终端台面上连接有钝化层10,钝化层10为SiO2层,衬底1另一面连接欧姆接触阴极8。
缓冲层2掺杂浓度为2×1018cm-3,厚度为1.0μm,漂移区3掺杂浓度为5×1015cm-3,厚度为21.2μm,高掺杂接触区5掺杂浓度为2×1018cm-3,厚度为0.15μm,沟道扩展区4掺杂浓度为6.5×1016cm-3,厚度为1.3μm。
P结区掺杂浓度为1.2×1019cm-3,结深为0.65μm。
实施例3
一种碳化硅结势垒二极管,包括衬底1,衬底1为n型4H-SiC衬底,衬底1一面自下而上依次设置有缓冲层2、漂移区3、沟道扩展区4,沟道扩展区4分为沟道区和终端台面,终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区6,沟道区最高面连接有高掺杂接触区5,终端台面包括多个场限环9,P结区6、高掺杂接触区5外连接欧姆接触阳极7,终端台面上连接有钝化层10,钝化层10为SiO2层,衬底1另一面连接欧姆接触阴极8。
缓冲层2掺杂浓度为2.5×1019cm-3,厚度为1.2μm,漂移区3掺杂浓度为1×1016cm-3,厚度为42.5μm,高掺杂接触区5掺杂浓度为2.5×1019cm-3,厚度为0.2μm,沟道扩展区4掺杂浓度为1×1017cm-3,厚度为1.6μm。
P结区掺杂浓度为2.5×1019cm-3,结深为0.65μm。
实施例4
一种碳化硅结势垒二极管,包括衬底1,衬底1为n型4H-SiC衬底,衬底1一面自下而上依次设置有缓冲层2、漂移区3、沟道扩展区4,沟道扩展区4分为沟道区和终端台面,终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区6,沟道区最高面连接有高掺杂接触区5,终端台面包括多个场限环9,P结区6、高掺杂接触区5外连接欧姆接触阳极7,终端台面上连接有钝化层10,钝化层10为SiO2层,衬底1另一面连接欧姆接触阴极8。
缓冲层2掺杂浓度为4.5×1019cm-3,厚度为1.8μm,漂移区3掺杂浓度为1×1016cm-3,厚度为63μm,高掺杂接触区5掺杂浓度为3.7×1019cm-3,厚度为0.25μm,沟道扩展区4掺杂浓度为1.65×1017cm-3,厚度为1.8μm。
P结区掺杂浓度为3.7×1019cm-3,结深为0.72μm。
实施例5
一种碳化硅结势垒二极管,包括衬底1,衬底1为n型4H-SiC衬底,衬底1一面自下而上依次设置有缓冲层2、漂移区3、沟道扩展区4,沟道扩展区4分为沟道区和终端台面,终端台面低于沟道区最高面,沟道区开设多个矩形的阳极沟槽,每个阳极沟槽的侧壁和底端均连接P结区6,沟道区最高面连接有高掺杂接触区5,终端台面包括多个场限环9,P结区6、高掺杂接触区5外连接欧姆接触阳极7,终端台面上连接有钝化层10,钝化层10为SiO2层,衬底1另一面连接欧姆接触阴极8。
缓冲层2掺杂浓度为5×1019cm-3,厚度为2.0μm,漂移区3掺杂浓度为2×1016cm-3,厚度为80μm,高掺杂接触区5掺杂浓度为5×1019cm-3,厚度为0.3μm,沟道扩展区4掺杂浓度为2×1017cm-3,厚度为2.1μm。
P结区掺杂浓度为5×1019cm-3,结深为0.8μm。
为了说明本发明4H-SiC结势垒二极管的性能,通过以下数值仿真进行证明。
使用Silvaco TCAD计算机仿真软件对上述实施例3的结势垒二极管进行了数值仿真,仿真中采用的结构为本发明4H-SiC结势垒二极管的元胞。经数值仿真,上述4H-SiC结势垒二极管的正向特性曲线如图2所示,反向特性曲线如图3所示,可见本发明4H-SiC结势垒二极管的门槛电压小于0.3V,正向压降为1.51V,击穿电压大于4000V,在阻断电压为3300V时,器件的漏电流密度低于0.5μA/cm2。相比于相同电压等级的4H-SiC JBS二极管,通态性能得到明显提升。
通过上述方式,本发明一种碳化硅结势垒二极管,有效的提高4H-SiC场控二极管的耐压性,改善了高压4H-SiC结势垒二极管的阻断性能;本发明二极管使用外延形成用于阳极接触的重掺杂接触区,通过刻蚀技术在重掺杂接触区与沟道扩展区制作沟槽的方法,以及离子注入后无碳膜保护的激活退火方法,均有效增加了p结区结深,并改善了欧姆接触阳极的接触特性,降低了器件工艺的复杂度,提高了器件的可行性。

Claims (5)

1.一种碳化硅结势垒二极管,其特征在于,包括衬底(1),所述衬底(1)一面自下而上依次设置有缓冲层(2)、漂移区(3)、沟道扩展区(4),所述沟道扩展区(4)分为沟道区和终端台面,所述终端台面低于沟道区最高面,所述沟道区开设多个矩形的阳极沟槽,每个所述阳极沟槽的侧壁和底端均连接P结区(6),所述沟道区最高面连接有高掺杂接触区(5),所述终端台面包括多个场限环(9),所述P结区(6)、高掺杂接触区(5)外连接欧姆接触阳极(7),所述终端台面上连接有钝化层(10),所述衬底(1)另一面连接欧姆接触阴极(8)。
2.根据权利要求1所述的一种碳化硅结势垒二极管,其特征在于,所述缓冲层(2)掺杂浓度为1×1018cm-3—5×1019cm-3,厚度为0.5μm—2.0μm;所述漂移区(3)掺杂浓度为2×1014cm-3—2×1016cm-3,厚度为5μm—80μm;所述高掺杂接触区(5)掺杂浓度为1×1018cm-3—5×1019cm-3,厚度为0.1μm—0.3μm;所述沟道扩展区(4)掺杂浓度为2×1016cm-3—2×1017cm-3,厚度为1.1μm—2.1μm。
3.根据权利要求1所述的一种碳化硅结势垒二极管,其特征在于,所述P结区掺杂浓度为1×1018cm-3—5×1019cm-3,结深为0.5μm—0.8μm。
4.根据权利要求1所述的一种碳化硅结势垒二极管,其特征在于,所述衬底(1)为n型4H-SiC衬底。
5.根据权利要求1所述的一种碳化硅结势垒二极管,其特征在于,所述钝化层(10)为SiO2层。
CN201710749274.4A 2017-08-28 2017-08-28 一种碳化硅结势垒二极管 Active CN107393970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710749274.4A CN107393970B (zh) 2017-08-28 2017-08-28 一种碳化硅结势垒二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710749274.4A CN107393970B (zh) 2017-08-28 2017-08-28 一种碳化硅结势垒二极管

Publications (2)

Publication Number Publication Date
CN107393970A true CN107393970A (zh) 2017-11-24
CN107393970B CN107393970B (zh) 2020-02-14

Family

ID=60346991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710749274.4A Active CN107393970B (zh) 2017-08-28 2017-08-28 一种碳化硅结势垒二极管

Country Status (1)

Country Link
CN (1) CN107393970B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767019A (zh) * 2018-05-22 2018-11-06 西安电子科技大学 一种部分P型AlGaN帽层RESURF GaN基肖特基势垒二极管
WO2020042221A1 (zh) * 2018-08-29 2020-03-05 无锡新洁能股份有限公司 一种高浪涌电流能力碳化硅二极管及其制作方法
CN111883577A (zh) * 2020-06-16 2020-11-03 西安理工大学 一种SiC耐高压抗浪涌pn结单极二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483196A (zh) * 2007-12-21 2009-07-15 塞米克朗电子有限及两合公司 带有凹槽状第二触点区域的功率半导体元件
JP2014041920A (ja) * 2012-08-22 2014-03-06 Rohm Co Ltd 半導体装置
CN103959479A (zh) * 2011-12-01 2014-07-30 罗伯特·博世有限公司 高压沟槽结势垒肖特基二极管
CN105023953A (zh) * 2015-07-10 2015-11-04 淄博汉林半导体有限公司 一种垂直场效应二极管及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483196A (zh) * 2007-12-21 2009-07-15 塞米克朗电子有限及两合公司 带有凹槽状第二触点区域的功率半导体元件
CN103959479A (zh) * 2011-12-01 2014-07-30 罗伯特·博世有限公司 高压沟槽结势垒肖特基二极管
JP2014041920A (ja) * 2012-08-22 2014-03-06 Rohm Co Ltd 半導体装置
CN105023953A (zh) * 2015-07-10 2015-11-04 淄博汉林半导体有限公司 一种垂直场效应二极管及制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767019A (zh) * 2018-05-22 2018-11-06 西安电子科技大学 一种部分P型AlGaN帽层RESURF GaN基肖特基势垒二极管
WO2020042221A1 (zh) * 2018-08-29 2020-03-05 无锡新洁能股份有限公司 一种高浪涌电流能力碳化硅二极管及其制作方法
CN111883577A (zh) * 2020-06-16 2020-11-03 西安理工大学 一种SiC耐高压抗浪涌pn结单极二极管
CN111883577B (zh) * 2020-06-16 2024-03-01 西安理工大学 一种SiC耐高压抗浪涌pn结单极二极管

Also Published As

Publication number Publication date
CN107393970B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN104779303B (zh) 一种垂直型恒流二极管及其制造方法
CN108389901A (zh) 一种载流子存储增强型超结igbt
CN101950759A (zh) 一种Super Junction VDMOS器件
CN104638023B (zh) 一种垂直型恒流二极管
Baliga et al. PRESiCETM: Process engineered for manufacturing SiC electronic devices
CN108899370A (zh) 集成电阻区的vdmos器件
CN104051547A (zh) 一种高压快速软恢复二极管及其制备方法
CN107195678B (zh) 一种载流子存储增强的超结igbt
CN105047705B (zh) 一种电子注入增强型的高压igbt及其制造方法
Zhou et al. SiC planar MOSFETs with built-in reverse MOS-channel diode for enhanced performance
CN107393970A (zh) 一种碳化硅结势垒二极管
Zhang et al. Design and characterization of high-voltage 4H-SiC p-IGBTs
CN112420694A (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
EP1737042A1 (en) Voltage-controlled semiconductor device
CN108155225A (zh) 恒流器件及其制造方法
CN108447905A (zh) 一种具有沟槽隔离栅极结构的超结igbt
CN105405873A (zh) 一种半导体器件及其制造方法
CN106067799B (zh) 一种半导体器件
Ryu et al. 15 kv igbts in 4h-sic
CN113270492A (zh) 一种沟槽型GaN绝缘栅双极型晶体管
CN203179900U (zh) 一种快恢复二极管frd芯片
CN109346517B (zh) 一种碳化硅mos栅控晶闸管
Chowdhury et al. Experimental demonstration of high-voltage 4H-SiC Bi-directional IGBTs
Wang et al. Characterization and analysis of 4H-SiC super junction JFETs fabricated by sidewall implantation
Yang et al. Effects of p-type Islands Configuration on the Electrical Characteristics of the 4H-SiC Trench MOSFETs with Integrated Schottky Barrier Diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211229

Address after: 214000 613, 614, 6 / F, building A3, 777 Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province

Patentee after: Wuxi ganye micro nano Electronics Co.,Ltd.

Address before: 710048 No. 5 Jinhua South Road, Shaanxi, Xi'an

Patentee before: XI'AN University OF TECHNOLOGY

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: 214000 613, 614, 6 / F, building A3, 777 Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province

Patentee after: Wuxi Qianye Micro Nano Technology Co.,Ltd.

Address before: 214000 613, 614, 6 / F, building A3, 777 Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province

Patentee before: Wuxi ganye micro nano Electronics Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP02 Change in the address of a patent holder

Address after: 615, 6th Floor, Building A3, No. 777 Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province, 214000

Patentee after: Wuxi Qianye Micro Nano Technology Co.,Ltd.

Address before: 214000 613, 614, 6 / F, building A3, 777 Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province

Patentee before: Wuxi Qianye Micro Nano Technology Co.,Ltd.

CP02 Change in the address of a patent holder