CN107369510A - 一种低成本高性能复合软磁材料的制备方法 - Google Patents

一种低成本高性能复合软磁材料的制备方法 Download PDF

Info

Publication number
CN107369510A
CN107369510A CN201710515160.3A CN201710515160A CN107369510A CN 107369510 A CN107369510 A CN 107369510A CN 201710515160 A CN201710515160 A CN 201710515160A CN 107369510 A CN107369510 A CN 107369510A
Authority
CN
China
Prior art keywords
soft magnetic
prepared
magnetic material
preparation
cost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710515160.3A
Other languages
English (en)
Inventor
许斌
朱文玲
王光建
吴保华
徐晓
王晓晖
卜二军
孙泽辉
黄小波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HBIS Co Ltd Handan Branch
Original Assignee
HBIS Co Ltd Handan Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HBIS Co Ltd Handan Branch filed Critical HBIS Co Ltd Handan Branch
Priority to CN201710515160.3A priority Critical patent/CN107369510A/zh
Publication of CN107369510A publication Critical patent/CN107369510A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种低成本高性能复合软磁材料的制备方法,其特征在于,所述方法包括溶液A、B、C制备,湿凝胶D、E制备,干凝胶F制备,纳米晶复合软磁材料粉体G制备及非晶/纳米晶复合软磁材料产品H制备。本发明利用MnZn铁氧体包裹Fe非晶/纳米晶制备复合软磁粉料,减少中间的生产环节,生成的料粉粒度细小、均匀,可直接成型烧结成软磁产品;得到的MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的主要技术指标是:烧结密度6.7‑7.0g/cm3,复合软磁材料的饱和磁化强度为110‑135emu/g,最佳矫顽力17‑27Oe,B800A/m的最大磁导率为80000‑90000。

Description

一种低成本高性能复合软磁材料的制备方法
技术领域
本发明属于冶金技术领域,具体涉及一种低成本高性能复合软磁材料的制备方法。
背景技术
由于传统金属软磁材料和软磁铁氧体性能特征比较单一,达不到制备特定环境下高性能电磁部件的要求。通过合理复合工艺制备的复合软磁材料可兼有金属软磁材料高饱和磁感应强度和铁氧体软磁材料高电阻率的特点,具有重要的应用价值。
非晶/纳米晶软磁合金在制备过程中要求极高的冷却速度105~106K/s,因此其产品主要以薄带、细丝等低维尺寸为主。带材用作磁性材料主要缺点是:带材太薄,退火脆性和应力敏感。在实际工程应用中,所需要的软磁材料大多数为块体材料,特别是对于高性能,小型化的电机来说,磁芯材料不但需要具有高饱和磁感应强度等优异软磁性能,而且需要形状复杂的块体材料以满足获得特殊空间磁路分布的要求。当以这种非晶薄带卷绕成磁芯时,由于卷绕空隙大,致密度低,且在层与层之间存在大量的空气,势必导致磁通密度的降低,漏磁大,显著降低了磁芯输出性能。因此开发块体非晶/纳米晶软磁合金成为这类材料实用化的重点。
通过用铁氧体软磁材料与非晶/纳米晶合金材料的有效复合,在低成本的情况下提高软磁材料的软磁特性,形成一种低成本高性能复合软磁材料。
发明内容
本发明要解决的技术问题是提供一种低成本高性能复合软磁材料的制备方法。
为解决上述技术问题,本发明采取的技术方案是:一种低成本高性能复合软磁材料的制备方法,所述方法包括溶液A、B、C制备,湿凝胶D、E制备,干凝胶F制备,纳米晶复合软磁材料粉体G制备及非晶纳米晶复合软磁材料产品H制备,具体工艺步骤如下:
(1)溶液A制备:按MnZn铁氧体成分中的Fe2O3/MnO/ZnO的摩尔比称取铁、锰、锌盐配制成溶液A;
(2)溶液B制备:将柠檬酸加入到步骤(1)制得的溶液A中,边加边搅拌,形成均匀混合溶液B;
(3)溶液C制备:向步骤(2)制得的混合溶液B中滴入氨水调节PH值,得到溶液C;
(4)湿凝胶D制备:将步骤(3)制得溶液C置于恒温水浴中,加热搅拌,直到形成透明粘稠的湿凝胶D;
(5)湿凝胶E制备:将FINEMET非晶纳米晶粉末撒入步骤(4)制得湿凝胶D中,并搅拌均匀得到湿凝胶E;
(6)干凝胶F制备:将步骤(5)制得湿凝胶E干燥,得到褐色干凝胶F;
(7)纳米晶复合软磁材料粉体G制备:将步骤(6)制得干凝胶F研磨后,煅烧获得MnZn铁氧体包裹FINEMET纳米晶复合软磁材料粉体G;
(8)产品H制备:将步骤(7)制得非晶/纳米晶复合软磁粉末G进行烧结,得到非晶/纳米晶复合软磁材料产品H。
本发明所述步骤(1)中,铁、锰、锌盐分别为硝酸铁[Fe(NO3)3·9H2O]、硝酸锌[Zn(NO3)2·6H2O]、硝酸锰[Mn(NO3)2],铁、锰、锌盐摩尔比为4:1:1~5:1.5:1。
本发明所述步骤(2)中,柠檬酸的加入量按柠檬酸与金属离子摩尔比为1:1~1.05:1计。
本发明所述步骤(3)中调节pH范围为4.5~5.5。
本发明所述步骤(4)中,加热搅拌温度为80~90℃。
本发明所述步骤(5)中,FINEMET非晶粉末撒入量为,非晶粉末:MnZn铁氧体=1:4~1:12。
本发明所述步骤(6)中,湿凝胶E干燥温度为40~60℃,加热时间20~24h。
本发明所述步骤(7)中,研磨粒度100~200目,研磨时间3~6min;煅烧温度为400~500℃,煅烧时间为30~60min。
本发明所述步骤(8)中,烧结温度为500~800℃,烧结压力为25~40MPa。
本发明所得到的MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的主要技术指标为:烧结密度6.7-7.0g/cm3,复合软磁材料的饱和磁化强度为110-135emu/g,最佳矫顽力降低到17-27Oe,B800A/m的最大磁导率为80000-90000。
本发明的技术构思为:通过化学法在Fe基非晶纳米晶颗粒表面沉积MnZn铁氧体,采用快速低温烧结的方法制备两者的复合软磁材料,从而实现两者在软磁性能上的综合最优化。
本发明MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料产品标准参考软磁材料产品标准:SJ/T1766-2013《软磁铁氧体材料分类》。
采用上述技术方案所产生的有益效果在于:1、本发明利用MnZn铁氧体包裹Fe非晶/纳米晶制备复合软磁粉料,减少中间的生产环节,生成的料粉粒度细小、均匀,可直接成型烧结成软磁产品。2、本发明生产的MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的主要技术指标是:烧结密度6.7-7.0g/cm3,复合软磁材料的饱和磁化强度为110-135emu/g,最佳矫顽力降低到17-27Oe,B800A/m的最大磁导率为80000-90000。
附图说明
图1是本发明的流程示意图;
图2是实施例1MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的XRD图;
图3是实施例1MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的磁滞回线图。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1
本实施例MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的制备方法如图1所示,具体工艺步骤如下所述:
(1)按4:1:1摩尔比分别称取硝酸铁、硝酸锌、硝酸锰,溶于600ml水中配制成溶液A;按柠檬酸与溶液A中金属离子摩尔比1:1称取柠檬酸加入到溶液A中,边加边搅拌,形成均匀混合的溶液B;
(2)在向混合液B中滴入氨水调节pH值为5.5,得到溶液C;
(3)将盛有溶液C的烧杯置于恒温水浴锅中,在80℃加热搅拌,直到形成透明粘稠的湿凝胶D;
(4)取FINEMET非晶粉末撒入湿凝胶D中,非晶粉末:MnZn铁氧体=1:4,并搅拌均匀得到湿凝胶E;
(5)将湿凝胶E置于干燥箱中干燥,干燥温度为60℃,干燥时间为20h,得到褐色干凝胶F;
(6)将干凝胶F研磨3min、粒度100目置于坩埚中,在400℃煅烧60min获得MnZn铁氧体包裹FINEMET纳米晶复合软磁材料粉体G;
(7)将复合软磁粉末G在500℃进行烧结,烧结压力为40MPa,得到产品H。
经检测各衍射峰的位置和相对强度与Mn0.6Zn0.4Fe2O4的标准图谱基本吻合,说明所得产物为MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料,烧结密度6.8 g/cm3,复合软磁材料的饱和磁化强度为112emu/g,矫顽力20Oe,B800A/m的最大磁导率为90000。
图2是本实施例MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的XRD图,证明所制备的产品为尖晶石结构的MnZn铁氧体。
图3是本实施例MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的磁滞回线图,说明磁性能符合软磁产品的磁性能要求。
实施例2-3产品XRD图和磁滞回线图与实施例1相似,故省略。
实施例2
本实施例MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的制备方法如图1所示,具体工艺步骤如下所述:
(1)按5:1.35:1摩尔比分别称取硝酸铁、硝酸锌、硝酸锰,溶于600ml水中配制成溶液A;按柠檬酸与溶液A中金属离子摩尔比1.02:1称取柠檬酸加入到溶液A中,边加边搅拌,形成均匀混合的溶液B;
(2)在向混合液B中滴入氨水调节pH值为4.5,得到溶液C;
(3)将盛有溶液C的烧杯置于恒温水浴锅中,在85℃加热搅拌,直到形成透明粘稠的湿凝胶D;
(4)取FINEMET非晶粉末撒入湿凝胶D中,非晶粉末:MnZn铁氧体=1:8,并搅拌均匀得到湿凝胶E;
(5)将湿凝胶E置于干燥箱中干燥,干燥温度为40℃,干燥时间为24h,得到褐色干凝胶F;
(6)将干凝胶F研磨4min、粒度150目置于坩埚中,在500℃煅烧30min获得MnZn铁氧体包裹FINEMET纳米晶复合软磁材料粉体G;
(7)将复合软磁粉末G在800℃进行了烧结,烧结压力为25MPa,得到产品H。
经检测各衍射峰的位置和相对强度与Mn0.6Zn0.4Fe2O4的标准图谱基本吻合,说明所得产物为MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料,烧结密度7.0 g/cm3,复合软磁材料的饱和磁化强度为130emu/g,矫顽力17Oe,B800A/m的最大磁导率为87000。
实施例3
本实施例MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的制备方法如图1所示,具体工艺步骤如下所述:
(1)按5:1.5:1摩尔比分别称取硝酸铁、硝酸锌、硝酸锰,溶于600ml水中配制成溶液A;按柠檬酸与溶液A中金属离子摩尔比1.05:1称取柠檬酸加入到溶液A中,边加边搅拌,形成均匀混合的溶液B;
(2)在向混合液B中滴入氨水调节pH值为5,得到溶液C;
(3)将盛有溶液C的烧杯置于恒温水浴锅中,在90℃加热搅拌,直到形成透明粘稠的湿凝胶D;
(4)取FINEMET非晶粉末撒入湿凝胶D中,非晶粉末:MnZn铁氧体=1:12,并搅拌均匀得到湿凝胶E;
(5)将湿凝胶E置于干燥箱中干燥,干燥温度为45℃,干燥时间为22h,得到褐色干凝胶F;
(6)将干凝胶F研磨6min、粒度200目置于坩埚中,在450℃煅烧50min获得MnZn铁氧体包裹FINEMET纳米晶复合软磁材料粉体G;
(7)将复合软磁粉末G在600℃进行了烧结,烧结压力为30MPa,得到产品H。
经检测各衍射峰的位置和相对强度与Mn0.6Zn0.4Fe2O4的标准图谱基本吻合,说明所得产物为MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料,烧结密度6.7 g/cm3,复合软磁材料的饱和磁化强度为121emu/g,矫顽力27Oe,B800A/m的最大磁导率为82000。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种低成本高性能复合软磁材料的制备方法,其特征在于,所述方法包括溶液A、B、C制备,湿凝胶D、E制备,干凝胶F制备,纳米晶复合软磁材料粉体G制备及非晶/纳米晶复合软磁材料产品H制备,具体工艺步骤如下:
(1)溶液A制备:按MnZn铁氧体成分中的Fe2O3/MnO/ZnO的摩尔比称取铁、锰、锌盐配制成溶液A;
(2)溶液B制备:将柠檬酸加入到步骤(1)制得的溶液A中,边加边搅拌,形成均匀混合溶液B;
(3)溶液C制备:向步骤(2)制得的混合溶液B中滴入氨水调节PH值,得到溶液C;
(4)湿凝胶D制备:将步骤(3)制得溶液C置于恒温水浴中,加热搅拌,直到形成透明粘稠的湿凝胶D;
(5)湿凝胶E制备:将FINEMET非晶粉末撒入步骤(4)制得湿凝胶D中,并搅拌均匀得到湿凝胶E;
(6)干凝胶F制备:将步骤(5)制得湿凝胶E干燥,得到褐色干凝胶F;
(7)纳米晶复合软磁材料粉体G制备:将步骤(6)制得干凝胶F研磨后,煅烧获得MnZn铁氧体包裹FINEMET纳米晶复合软磁材料粉体G;
(8)产品H制备:将步骤(7)制得纳米晶复合软磁粉末G进行烧结,得到非晶/纳米晶复合软磁材料产品H。
2.根据权利要求1所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(1)中,铁、锰、锌盐分别为硝酸铁[Fe(NO3)3·9H2O]、硝酸锌[Zn(NO3)2·6H2O]、硝酸锰[Mn(NO3)2],铁、锰、锌盐摩尔比为4:1:1~5:1.5:1。
3.根据权利要求1所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(2)中,柠檬酸的加入量按柠檬酸与金属离子摩尔比为1:1~1.05:1计。
4.根据权利要求1所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(3)中,调节pH范围为4.5~5.5。
5.根据权利要求1所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(4)中,加热搅拌温度为80~90℃。
6.根据权利要求1-5任意一项所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(5)中,FINEMET非晶粉末撒入量为,非晶粉末:MnZn铁氧体=1:4~1:12。
7.根据权利要求1-5任意一项所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(6)中,湿凝胶E干燥温度为40~60℃,加热时间20~24h。
8.根据权利要求1-5任意一项所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(7)中,研磨粒度100~200目,研磨时间3~6min;煅烧温度为400~500℃,煅烧时间为30~60min。
9.根据权利要求1-5任意一项所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所述步骤(8)中,烧结温度为500~800℃,烧结压力为25~40MPa。
10.根据权利要求1-5任意一项所述的一种低成本高性能复合软磁材料的制备方法,其特征在于,所得到的MnZn铁氧体包裹Fe非晶/纳米晶复合软磁材料的主要技术指标为:烧结密度6.7-7.0g/cm3,复合软磁材料的饱和磁化强度为110-135emu/g,最佳矫顽力17-27Oe,B800A/m的最大磁导率为80000-90000。
CN201710515160.3A 2017-06-29 2017-06-29 一种低成本高性能复合软磁材料的制备方法 Pending CN107369510A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710515160.3A CN107369510A (zh) 2017-06-29 2017-06-29 一种低成本高性能复合软磁材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710515160.3A CN107369510A (zh) 2017-06-29 2017-06-29 一种低成本高性能复合软磁材料的制备方法

Publications (1)

Publication Number Publication Date
CN107369510A true CN107369510A (zh) 2017-11-21

Family

ID=60306637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710515160.3A Pending CN107369510A (zh) 2017-06-29 2017-06-29 一种低成本高性能复合软磁材料的制备方法

Country Status (1)

Country Link
CN (1) CN107369510A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305737A (zh) * 2018-01-30 2018-07-20 中南大学 一种复合软磁材料及其制备方法
CN110428967A (zh) * 2019-08-27 2019-11-08 四川大学 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品
CN110767405A (zh) * 2019-09-24 2020-02-07 江西尚朋电子科技有限公司 一种高性能软磁材料及其元件制备方法
CN113345703A (zh) * 2021-04-19 2021-09-03 马鞍山市鑫洋永磁有限责任公司 一种复合磁粉的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335506A (ja) * 1995-04-01 1996-12-17 Sumitomo Special Metals Co Ltd 高保磁力鉄基永久磁石及びボンド磁石
CN103086706A (zh) * 2013-01-16 2013-05-08 陕西科技大学 Zr-Mn-Co多元掺杂钡铁氧体吸波材料的制备方法
CN103440950A (zh) * 2013-09-15 2013-12-11 彭晓领 一种磁粉芯的原位制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335506A (ja) * 1995-04-01 1996-12-17 Sumitomo Special Metals Co Ltd 高保磁力鉄基永久磁石及びボンド磁石
CN103086706A (zh) * 2013-01-16 2013-05-08 陕西科技大学 Zr-Mn-Co多元掺杂钡铁氧体吸波材料的制备方法
CN103440950A (zh) * 2013-09-15 2013-12-11 彭晓领 一种磁粉芯的原位制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305737A (zh) * 2018-01-30 2018-07-20 中南大学 一种复合软磁材料及其制备方法
CN110428967A (zh) * 2019-08-27 2019-11-08 四川大学 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品
CN110767405A (zh) * 2019-09-24 2020-02-07 江西尚朋电子科技有限公司 一种高性能软磁材料及其元件制备方法
CN113345703A (zh) * 2021-04-19 2021-09-03 马鞍山市鑫洋永磁有限责任公司 一种复合磁粉的制备方法
CN113345703B (zh) * 2021-04-19 2022-11-29 马鞍山市鑫洋永磁有限责任公司 一种复合磁粉的制备方法

Similar Documents

Publication Publication Date Title
CN107369510A (zh) 一种低成本高性能复合软磁材料的制备方法
Li et al. Structural and magnetic properties of nickel ferrite nanoparticles synthesized via a template-assisted sol–gel method
Nourbakhsh et al. The effect of nano sized SrFe 12 O 19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics
Li et al. Preparation and characterization of MnZn/FeSiAl soft magnetic composites
Al Yaqoob et al. Selectivity and efficient Pb and Cd ions removal by magnetic MFe2O4 (M= Co, Ni, Cu and Zn) nanoparticles
CN103426580B (zh) 一种复合磁粉芯及其制备方法
Gabal et al. Cr-substituted Ni–Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties
Costa et al. Ni–Zn–Sm nanopowder ferrites: Morphological aspects and magnetic properties
CN107352991B (zh) 一种核壳结构锰锌/镍锌复合铁氧体及其制备方法
Sadhana et al. Effect of Sm 3+ on dielectric and magnetic properties of Y 3 Fe 5 O 12 nanoparticles
Ashiq et al. Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method
Waqas et al. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process
CN104200944B (zh) 一种高q值复合软磁材料及其制备方法
Pati et al. A facile approach to enhance the high temperature stability of magnetite nanoparticles with improved magnetic property
Agami et al. Structural, IR, and magnetic studies of annealed Li-ferrite nanoparticles
CN103725951B (zh) 一种微波烧结制备纳米晶软磁材料的方法
Sawant et al. The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method
Pei et al. Effect of Bi-Co co-doping on the microstructure and magnetic properties of NiMgCuZn ferrites
Zhang et al. Preparation and magnetic properties of core–shell structured Fe-Si/Fe3O4 composites via in-situ reaction method
Aslam et al. Structural, optical and magnetic elucidation of co-doping of Nd3+ and Pr3+ on lithium nanoferrite and its technological application
CN102643082A (zh) 一种w型钡铁氧体的制备方法
Mirshekari et al. Structure and magnetic properties of Mn-Zn ferrite synthesized by glycine-nitrate auto-combustion process
CN104496448B (zh) 一种LiZnTi旋磁铁氧体材料及其制备方法
CN110483032A (zh) 基于ltcc技术的低温烧结yig铁氧体及制备方法
Duan et al. The thermal stability and microwave electromagnetic properties of Mn 4 N

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171121