CN107365411B - 一种含有有机共轭高分子半导体材料的空穴传输层及其用途 - Google Patents

一种含有有机共轭高分子半导体材料的空穴传输层及其用途 Download PDF

Info

Publication number
CN107365411B
CN107365411B CN201710551881.XA CN201710551881A CN107365411B CN 107365411 B CN107365411 B CN 107365411B CN 201710551881 A CN201710551881 A CN 201710551881A CN 107365411 B CN107365411 B CN 107365411B
Authority
CN
China
Prior art keywords
hole transport
transport layer
conjugated polymer
aromatic ring
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710551881.XA
Other languages
English (en)
Other versions
CN107365411A (zh
Inventor
徐保民
张罗正
刘畅
张�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Putai Technology Co ltd
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN201710551881.XA priority Critical patent/CN107365411B/zh
Priority to PCT/CN2017/101171 priority patent/WO2019006852A1/en
Publication of CN107365411A publication Critical patent/CN107365411A/zh
Application granted granted Critical
Publication of CN107365411B publication Critical patent/CN107365411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种含有有机共轭高分子半导体材料的空穴传输层及其用途,所述有机共轭高分子半导体材料的主链的重复单元由对烷氧基苯单元和芳香环单元构成,所述有机共轭高分子具有如下结构式:
Figure DDA0002016952700000011
其中R1和R2独立地选自C1至C20的烷基基团中的1种或至少2种的组合,Ar为芳香环基团。本发明使用对烷氧基苯B(bisOR)来构建高分子简化了作为共轭高分子基空穴传输材料的结构和合成,可以降低成本。B(bisOR)衍生单元本身的高度平面性以及和相邻单元的弱的空间位阻,有利于空穴传输。此外,含有B(bisOR)单元的高分子也拥有相对于钙钛矿材料的合适的能级水平,从而促进光生空穴的收集并阻止光生电子的复合。

Description

一种含有有机共轭高分子半导体材料的空穴传输层及其用途
技术领域
本发明涉及一种含有有机共轭高分子半导体材料的空穴传输层及其用途,尤其涉及一种含有有机共轭高分子半导体材料的空穴传输层及在钙钛矿太阳能电池等光-电转换特性的电子器件中的用途。
背景技术
作为一种得到最广泛研究的光伏技术之一,钙钛矿太阳能电池(PSC)由于钙钛矿材料本身的许多独特性能,例如高吸光系数、低激子结合能和优良的空穴和电子传导能力等,自2009年问世以来已经取得了相当大的进展。
目前PSC的最高效率是22.1%,是由基于2,2’,7,7’-四[N,N-二(4-甲氧基苯基)氨基]-9,9’-螺二芴(Spiro-OMeTAD)这一空穴传输材料(HTM)的器件获得的。然而,Spiro-OMeTAD具有相当低的本征电导能力,因而需要使用锂盐作为掺杂剂来提高其导电性。虽然通过必要的氧化处理,Spiro-OMeTAD的导电能力得到提升,但是由于掺杂剂的迁移和再分布可能会带来针孔,从而使得HTM层下面的钙钛矿膜暴露在湿气下,或者会造成钙钛矿层与金属电极的直接接触。前者因为钙钛矿材料在接触湿气时出现降解从而会造成PSC性能的不稳定,而后者则会降低PSC的开路电压。即使HTM层不会形成针孔,锂盐本身的吸湿特性也会使这些基于Spiro-OMeTAD的PSC器件在其服役期间内不稳定。为了防止这些问题的发生并简化制造过程,避免对掺杂水平和氧化处理持续时间的精细控制,人们已经成功设计并研究了许多无掺杂的HTM,包括小分子和共轭高分子。相较于前者,共轭高分子具有成膜均匀、溶液加工性能好和柔性的优势,这将有利于使用更薄的HTM薄膜来完全覆盖下面的钙钛矿层,并有助于其在各种不同衬底上的应用,这些将会降低HTM层和PSC器件的制备成本,使得共轭高分子材料成为一类很有前景的HTM,尤其是当PSC集成到可穿戴设备中时。此外,结构工程使得高分子的光电性能易于调节,这也拓宽了适合于PSC中HTM的高分子的范围,使得更多的高分子具有空穴运输所需的高迁移率以及进行空穴转移和电子阻挡的合适的能级水平。虽然无掺杂高分子HTM的最高效率已经达到了17.3%,但是这些高效的高分子材料或者具有相对复杂的分子结构,或者因需要多步骤的合成操作而比较消耗时间,因而具有短合成路线的简单结构的高分子HTM将是非常理想的。
发明内容
针对现有技术中存在的上述问题,本发明的目的之一在于提供一种结构简单、易于合成、高效的空穴传输层,所述空穴传输层中包含有机共轭高分子半导体材料(即该空穴传输层是一种基于有机共轭高分子半导体材料的空穴传输层),所述有机共轭高分子半导体材料的主链的重复单元由对烷氧基苯单元(简称B(bisOR))和芳香环单元构成,所述有机共轭高分子具有如下结构:
Figure BDA0001344669580000021
其中,R1和R2独立地由C1至C20的烷基基团中的任意1种或至少2种组成,Ar为芳香环单元,n为正整数。
当n=1时,所述有机共轭高分子半导体材料的主链的重复单元具有如下结构:
Figure BDA0001344669580000031
其中,R1和R2独立地由C1至C20的烷基基团中的任意1种或至少2种组成,Ar为芳香环单元。
本发明中,有机共轭高分子半导体材料中,对烷氧基苯单元的个数为至少1个。
本发明中,所述“C1至C20的烷基基团”即:CH3至C20H41中的任一烷基基团。
本发明中,R1和R2可以相同,也可以不同。
优选地,R1和R2独立地选自CH3、C2H5、C4H9、C6H13、C8H17、C12H17、C12H25、2-乙基己基、2-丁基、2-己基或2-辛癸基中的任意1种或至少2种的组合,优选R1和R2均为2-乙基己基基团。
优选地,所述n的范围为5~200,例如5、8、10、15、20、30、35、40、50、55、60、70、80、90、100、110、120、135、150、160、180或200等,优选为10~100。
优选地,所述芳香环单元选自:噻吩、3,4-二氟噻吩、联二噻吩、5,5'-联噻唑、2,2'-联噻唑、3,3’-二氟-2,2’联二噻吩、噻吩并[3,2-b]噻吩、噻唑并[5,4-d]噻唑、噻吩并[3,4-b]噻吩、噻吩取代异靛、苯并噻二唑、苯并恶二唑、邻苯二甲酰亚胺、喹喔啉、苯并三唑、噻吩并噻二唑、噻吩并吡嗪、吡咯并吡咯二酮、苯并双噻二唑、噻二唑并喹喔啉、吡嗪并喹喔啉、苯并二噻吩二酮、邻苯二甲酰亚胺并噻二唑或上述物质的衍生物中的任意1种或至少2种的组合,优选为联二噻吩。
优选地,所述芳香环单元选自下面结构单元中的任意1种或至少2种的组合:
Figure BDA0001344669580000041
其中,R3选自C1至C20的烷基基团、烷氧基基团或烷硫基基团中的任意1种或至少2种的组合,优选为CH3、C2H5、C4H9、C6H13、C8H17、C12H17、C12H25、2-乙基己基、2-丁基辛基、2-己基癸基或2-辛基十二烷基中的任意1种或至少2种的组合。
作为本发明所述空穴传输层的优选技术方案,所述有机共轭高分子半导体材料的主链中,对烷氧基苯单元和芳香环单元交替排列。
优选地,所述对烷氧基苯单元和芳香环单元的摩尔比为1:1。
本发明的目的之二在于提供一种光-电转换特性的电子器件,所述光-电转换特性的电子器件包含如前所述的空穴传输层,所述光-电转换特性的电子器件优选为钙钛矿太阳能电池。
本发明提供一种钙钛矿太阳能电池,所述钙钛矿太阳能电池包含如前所述的空穴传输层,即提供了一种基于主链中含有对烷氧基苯单元的有机共轭高分子半导体材料形成的空穴传输层的钙钛矿太阳能电池器件。
与已有技术相比,本发明至少具有如下有益效果:
(1)使用含对烷氧基苯B(bisOR)单元来构建高分子,简化了作为空穴传输层材料共轭高分子半导体的结构和合成,可以降低成本。
(2)B(bisOR)衍生单元本身的高度平面性以及和相邻单元的弱的空间位阻,可以增加高分子的共轭程度,这有利于高分子分子链内和分子链之间的空穴传输,有利于提高采用其制备得到的空穴传输层的性能。
(3)此外,含有B(bisOR)单元的高分子也拥有相对于钙钛矿材料的合适的能级水平,从而使包含本发明所述有机共轭高分子半导体材料的空穴传输层能够促进光生空穴孔的收集并阻止光生电子的复合,提高包含该空穴传输层的钙钛矿太阳能电池等光-电转换特性的电子器件的性能。
附图说明
图1是实施例1合成基于对烷氧基苯和联二噻吩的共轭高分子DTB的路线图;
图2(a)是实施例2的具有FTO/c-TiO2/m-TiO2/钙钛矿/HTL/Au结构的光电器件的结构示意图;
图2(b)是实施例3的具有ITO/HTL/钙钛矿/PCBM/BCP/Ag结构的光电器件的结构示意图;
图3是实施例1的基于对烷氧基苯和联二噻吩的共轭高分子DTB在溶液和薄膜状态下的紫外-可见吸收光谱图;
图4是实施例1的基于对烷氧基苯和联二噻吩的共轭高分子DTB制成钙钛矿太阳能电池器件的空穴传输层,用循环伏安法测量得到的能级分布图。
图5(a)是采用基于对烷氧基苯和联二噻吩的共轭高分子DTB制成图2(a)的钙钛矿太阳能电池器件的J-V曲线;
图5(b)是采用基于对烷氧基苯和联二噻吩的共轭高分子DTB制成图2(a)的钙钛矿太阳能电池器件的外量子效率EQE图谱;
图6是采用基于对烷氧基苯和联二噻吩的共轭高分子DTB制成图2(a)的钙钛矿太阳能电池器件的电池效率随保存时间的演变图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
本发明第一方面提供了一种有机共轭高分子半导体材料,其可直接作为空穴传输层材料制备空穴传输层,也可以与其他常用的空穴传输层材料共同配合使用制备空穴传输层,所述有机共轭高分子半导体材料的分子主链的重复单元由对烷氧基苯B(bisOR)结构单元和芳香环单元构成。所述有机共轭高分子具有如下结构:
Figure BDA0001344669580000061
其中,R1和R2独立地由C1至C20的烷基基团中的任意1种或至少2种的组合,R1可以与R2相同或不同,Ar为芳香环单元,n为正整数。
作为优选实施例,R1和R2选自CH3、C2H5、C4H9、C6H13、C8H17、C12H17、C12H25、2-乙基己基、2-丁基辛基、2-己基癸基或2-辛基十二烷基中的任意1种或至少2种的组合。R1可以与R2相同或不同。更为优选的,R1和R2都是2-乙基己基基团。
作为本发明的实施例,共轭高分子的主链是交替形式,其中一部分是B(bisOR)单元,另一部分是芳香环单元(Ar)。B(bisOR)和Ar的摩尔比例为1:1。共轭高分子具有如下结构,
Figure BDA0001344669580000071
作为本发明的实施例,共轭高分子主链上的B(bisOR)-Ar的重复单元数量n为5至200。
作为本发明的实施例,高分子主链上的Ar芳香环单元可以是下面结构单元中的任何一个,
Figure BDA0001344669580000081
作为优选实施例,Ar可以从如下所述单元中选择,即噻吩,3,4-二氟噻吩,联二噻吩,5,5'-联噻唑,2,2'-联噻唑,3,3’-二氟-2,2’联二噻吩,噻吩并[3,2-b]噻吩,噻唑并[5,4-d]噻唑,噻吩并[3,4-b]噻吩,噻吩取代异靛,苯并噻二唑,苯并恶二唑,邻苯二甲酰亚胺,喹喔啉,苯并三唑,噻吩并噻二唑,噻吩并吡嗪,吡咯并吡咯二酮,苯并双噻二唑,噻二唑并喹喔啉,吡嗪并喹喔啉,苯并二噻吩二酮,邻苯二甲酰亚胺并噻二唑,以及其衍生物。其中,R3可以从C1至C20的烷基、烷氧基和烷硫基中选择。
作为优选实施例,R3选自CH3、C2H5、C4H9、C6H13、C8H17、C12H17、C12H25、2-乙基己基、2-丁基辛基、2-己基癸基或2-辛基十二烷基中的任意1种或至少2种的组合。
更为优选的实施例,Ar是联二噻吩。
本发明第二方面提供了一种基于上述有机共轭高分子半导体材料形成的空穴传输层构建的有机电子器件,特别是光-电转换特性的有机电子器件。
作为本发明的实施例,基于上述共轭高分子的空穴传输层应用于钙钛矿太阳能电池。
下面将结合本发明的实施例,对本发明实施例中的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
基于对烷氧基苯和联二噻吩的共轭高分子DTB的合成:
合成路线如图1所示。首先将对苯二醇的-OH基团中的H原子用烷基基团取代,然后其产物与联二噻吩的二锡化物进行共聚,从而得到目标高分子DTB。
产物B:在预先干燥的250毫升的烧瓶中加入原料A(2.0克)和无水碳酸钾(4.13克),之后相继进行抽真空和充氩气操作,并重复2次。然后加入DMF(37毫升),待混合体系溶解后再一次性加入溴代异辛烷(3.6克)。之后,将烧瓶在100℃下搅拌20小时。当反应体系降温至室温后,使用旋转蒸发仪进行浓缩,之后萃取有机层并水洗、浓缩。最后,使用硅胶柱层析法对产物进行进一步的提纯,得到最终产物。2.3克,产率62.6%。1H NMR(500MHz,CDCl3,δ):7.08(s,2H),3.83(dd,4H),1.75(m,2H),1.58-1.38(m,8H),1.36-1.30(m,8H),0.95-0.90(m,12H)。
高分子DTB:向预先干燥的10毫升烧瓶中加入原料B(130.1毫克)和5,5-双三甲基锡烷基-2,2'-联二噻吩(129.9毫克),之后相继进行抽真空、充氩气操作3轮。之后加入甲苯(6.6毫升)和DMF(1.32毫升),并用氩气对反应混合物进行20分钟的鼓气处理。待加入四三苯基膦钯(13.2毫克)后,再鼓气处理15分钟。反应体系在100℃下搅拌48小时后降至室温。将产物分散在丙酮中,回收沉淀,并将沉淀物在索氏提取器中相继用丙酮、正己烷和氯仿漂洗。浓缩处理氯仿溶液,并分散在丙酮。回收沉淀并真空干燥6小时得到产物。87毫克,产率66.2%。数均分子量Mn为18808,聚分散指数PDI为1.57。
实施例2
含有高分子DTB的光电器件的制备
制备具有FTO/c-TiO2/m-TiO2/钙钛矿/HTL/Au结构的光电器件,如图2a所示(其具体是一种钙钛矿太阳能电池的正式结构示意图),其中FTO(氟掺杂氧化锡)为底层;c-TiO2/m-TiO2为无针孔的致密TiO2层和介孔TiO2层;HTL为空穴传输层,其是DTB的空穴传输层。
光电器件的制造工艺总结如下:
首先用洗涤剂,去离子水,丙酮和乙醇清洗FTO玻璃(Nippon Sheet Glass),并在超声波浴中超声处理30分钟。之后,将FTO玻璃在紫外臭氧设备中处理30分钟。配制0.15M二异丙氧基化物双(乙酰丙酮)二乙酸酯的正丁醇溶液,然后使用旋转涂布法在清洁过的FTO玻璃上在2000rpm下涂覆60秒,然后在125℃加热5分钟。将膜冷却至室温,再次旋涂0.15M二异丙氧基二(乙酰丙酮)二乙酸二乙酯溶液,制成无针孔的致密TiO2(c-TiO2)膜。然后将基板在450℃的箱式炉中煅烧30分钟。将介孔TiO2(m-TiO2)层沉积在致密的TiO2层(即c-TiO2)上,以4000rpm的转速旋涂包含14.3wt%的TiO2的乙醇溶液20秒,然后在500℃下煅烧0.5小时。混合钙钛矿材料的前驱体溶液由172毫克的FAI,507毫克的PbI2,22.4毫克的MABr,73.4毫克的PbBr2和1毫升DMF和DMSO的混合溶剂(DMF和DMSO的体积比为9:1)组成。用两步旋涂法将钙钛矿薄膜沉积在TiO2基片上,第一步是1000rpm,10秒,升速为500rpm/s;第二步是4000rpm,35秒,升速2000rpm/s。在第二个旋涂步骤中,在步骤结束前15秒,将氯苯(约100微升)迅速滴落在旋转的基片上。之后,将所制备的薄膜在100℃下加热约2小时,直到薄膜的颜色变成深红色。将DTB溶解在氯苯(30毫克每毫升)中,并在80℃下预热,通过旋涂DTB溶液制备空穴传输层(HTL)。最后,以约0.05纳米每秒的速率在4×10-5托的真空下热蒸镀100nm厚的Au层以完成器件制备。所得器件的有效面积为0.08平方厘米。
实施例3
含有高分子DTB的光电器件的制备
制备具有ITO/HTL/钙钛矿/PCBM/BCP/Ag结构的光电器件,如图2b所示(其具体是一种钙钛矿太阳能电池的反式结构示意图)。其中ITO(铟掺杂氧化锡)为底层;HTL为空穴传输层,其是DTB的空穴传输层;PCBM为一种富勒烯衍生物;BCP为2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲。
光电器件的制造工艺总结如下:
首先用洗涤剂,去离子水,丙酮和乙醇清洗ITO玻璃(Nippon Sheet Glass),并在超声波浴中超声处理30分钟。之后,将ITO玻璃在紫外臭氧设备中处理30分钟。将DTB溶解在氯苯(30毫克每毫升)中,并在80℃下预热,通过旋涂DTB溶液制备空穴传输层(HTL)。旋涂工艺为4000rpm,30秒。混合钙钛矿材料的前驱体溶液由172毫克的FAI,507毫克的PbI2,22.4毫克的MABr,73.4毫克的PbBr2和1毫升DMF和DMSO的混合溶剂(DMF和DMSO的体积比为9:1)组成。用两步旋涂法将钙钛矿薄膜沉积在HTL上,第一步是1000rpm,10秒,升速为500rpm/s;第二步是4000rpm,35秒,升速2000rpm/s。在第二个旋涂步骤中,在步骤结束前15秒,将氯苯(约100微升)迅速滴落在旋转的基片上。之后,将所制备的薄膜在100℃下加热约2小时,直到薄膜的颜色变成深红色。然后将PCBM的氯苯溶液(20毫克每毫升)和BCP的异丙醇溶液(0.5毫克每毫升)依次以1000rpm、30秒和2000rpm、30秒的工艺旋涂在钙钛矿层之上。最后,以约0.05纳米每秒的速率在4×10-5托的真空下热蒸镀100nm厚的Ag层以完成器件制备。所得器件的有效面积为0.08平方厘米。
实施例4
含有高分子DTB的光电器件的测试
测试:
在AM1.5G的100毫瓦每平方厘米的模拟照明(Enlitech Solar Simulator SS-F5-3A)下的对器件的J-V进行测量。测量是在室温、空气(60%湿度)、未封装的条件下,由计算机控制的Keithley 2400源测量单元进行的。外部量子效率(EQE)则在环境气氛、室温下使用具有SR830锁定放大器的DSR100UV-B光谱仪测量的,其光源为溴钨灯。
测试结果:
图3给出了实施例1中制备的高分子DTB的紫外-可见吸收光谱,其中展示了高分子在氯仿溶液中和固体薄膜中的光谱。可以看出,当溶液被制备成膜时,其吸收峰从481纳米偏移28纳米至509纳米。而539纳米处的肩峰则应该源于相邻高分子链之间的pi-pi堆叠,这表明DTB膜中存在强的分子间相互作用。
实施例1中的DTB高分子制成钙钛矿太阳能电池器件的空穴传输层,循环伏安法(CV)测量能级,得到的能级分布图参见图4,其最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)的数据显示在图,中。HOMO水平为-5.05eV,LUMO水平在结合2.14eV的光学带隙能量后的计算结果为-2.91eV。合适的前沿轨道水平表明,高分子DTB可以通过从钙钛矿层中提取空穴并阻止电子到达金属电极而被用作空穴传输材料。
另外DTB层和金层之间的接触是欧姆接触,这有利于光生空穴的收集。
图5(a)示出了采用基于对烷氧基苯和联二噻吩的共轭高分子DTB制成图2(a)的钙钛矿太阳能电池器件的J-V特性曲线;图5(b)示出了采用基于对烷氧基苯和联二噻吩的共轭高分子DTB制成图2(a)的钙钛矿太阳能电池器件的外量子效率EQE图谱。如图可知,经优化的PSC器件有1.05伏特的开路电压(VOC),26.17毫安每平方厘米的短路电流密度(JSC),62.95%的填充因子(FF)和17.28%的光电转换效率(PCE)。从EQE图谱计算出的JSC值为25.25毫安每平方厘米,与测得的结果非常吻合。
图6给出了采用基于对烷氧基苯和联二噻吩的共轭高分子DTB制成图2(a)的钙钛矿太阳能电池(PSC)器件的电池效率(PCE)随保存时间的演变图。未封装的器件保存在干燥的、湿度低于20%的空气中。21天之后,该设备仍然保持其初始PCE值的91%,表明该PSC设备的高稳定性。
需要说明的是,在本文中,术语“包括”、“包含”、“含有”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种空穴传输层,其特征在于,所述空穴传输层中包含有机共轭高分子半导体材料,所述有机共轭高分子半导体材料的主链的重复单元由对烷氧基苯单元和芳香环单元构成,所述有机共轭高分子具有如下结构:
Figure FDA0002381647610000011
其中,R1和R2独立地选自CH3、C2H5、C4H9、C6H13、C8H17或C12H25中的任意1种,Ar为芳香环单元,n为正整数,所述n的范围为5~200;
所述芳香环单元选自:噻吩、3,4-二氟噻吩、联二噻吩、5,5'-联噻唑、2,2'-联噻唑、3,3’-二氟-2,2’联二噻吩、噻吩并[3,2-b]噻吩、噻唑并[5,4-d]噻唑、噻吩并[3,4-b]噻吩、噻吩取代异靛、苯并噻二唑、苯并恶二唑、邻苯二甲酰亚胺、喹喔啉、苯并三唑、噻吩并噻二唑、噻吩并吡嗪、吡咯并吡咯二酮、苯并双噻二唑、噻二唑并喹喔啉、吡嗪并喹喔啉、苯并二噻吩二酮、邻苯二甲酰亚胺并噻二唑或上述物质的衍生物中的任意1种或至少2种的组合。
2.根据权利要求1所述的空穴传输层,其特征在于,R1和R2均为2-乙基己基基团。
3.根据权利要求1所述的空穴传输层,其特征在于,所述n的范围为10~100。
4.根据权利要求1所述的空穴传输层,其特征在于,所述芳香环单元为联二噻吩。
5.根据权利要求1所述的空穴传输层,其特征在于,所述芳香环单元选自下面结构单元中的任意1种或至少2种的组合:
Figure FDA0002381647610000021
其中,R3选自C1至C20的烷基基团、烷氧基基团或烷硫基基团中的任意1种或至少2种的组合。
6.根据权利要求5所述的空穴传输层,其特征在于,R3为CH3、C2H5、C4H9、C6H13、C8H17、C12H25、2-己基癸基或2-辛基十二烷基中的任意1种或至少2种的组合。
7.根据权利要求1所述的空穴传输层,其特征在于,所述有机共轭高分子半导体材料的主链中,对烷氧基苯单元和芳香环单元交替排列。
8.根据权利要求1所述的空穴传输层,其特征在于,所述对烷氧基苯单元和芳香环单元的摩尔比为1:1。
9.一种光-电转换特性的电子器件,其特征在于,所述光-电转换特性的电子器件包含权利要求1-8任一项所述的空穴传输层。
10.根据权利要求9所述的光-电转换特性的电子器件,其特征在于,所述光-电转换特性的电子器件为钙钛矿太阳能电池。
CN201710551881.XA 2017-07-07 2017-07-07 一种含有有机共轭高分子半导体材料的空穴传输层及其用途 Active CN107365411B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710551881.XA CN107365411B (zh) 2017-07-07 2017-07-07 一种含有有机共轭高分子半导体材料的空穴传输层及其用途
PCT/CN2017/101171 WO2019006852A1 (en) 2017-07-07 2017-09-11 HOLES TRANSPORT LAYER CONTAINING CONJUGATED ORGANIC POLYMERIC SEMICONDUCTOR MATERIAL AND USE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710551881.XA CN107365411B (zh) 2017-07-07 2017-07-07 一种含有有机共轭高分子半导体材料的空穴传输层及其用途

Publications (2)

Publication Number Publication Date
CN107365411A CN107365411A (zh) 2017-11-21
CN107365411B true CN107365411B (zh) 2020-09-08

Family

ID=60306172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710551881.XA Active CN107365411B (zh) 2017-07-07 2017-07-07 一种含有有机共轭高分子半导体材料的空穴传输层及其用途

Country Status (2)

Country Link
CN (1) CN107365411B (zh)
WO (1) WO2019006852A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767469B (zh) * 2019-07-31 2021-09-24 东莞理工学院 用于有机电极材料的聚合物、其制备方法及应用
CN111253285A (zh) * 2020-02-22 2020-06-09 南京邮电大学 基于三联苯衍生物的高荧光量子效率材料及其制备方法
CN111430542A (zh) * 2020-03-16 2020-07-17 电子科技大学 一种基于空穴传输层的钙钛矿光电探测器及其制备方法
CN111430543B (zh) * 2020-03-16 2022-04-15 电子科技大学 一种基于空穴传输层的钙钛矿太阳能电池及其制备方法
CN112250677A (zh) * 2020-10-16 2021-01-22 南昌航空大学 基于螺[芴-9,9`-氧杂蒽]的有机小分子空穴传输材料及其制备方法和应用
CN112876657B (zh) * 2021-01-18 2022-08-09 合肥工业大学 一种高延展性的高性能半导体共轭聚合物及其制备方法
CN113402439A (zh) * 2021-04-12 2021-09-17 南京邮电大学 一种含异靛化合物的空穴传输材料及其制备方法和应用
CN114835731A (zh) * 2022-04-20 2022-08-02 南京邮电大学 基于二甲胺基取代萘酰亚胺-联噻吩的有机n型半导体材料及其制备方法与应用
CN114773580B (zh) * 2022-04-29 2024-04-30 太原理工大学 非规整三元共轭聚合物光催化材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307052A (ja) * 2005-04-28 2006-11-09 Nippon Shokubai Co Ltd 共重合体およびエレクトロルミネッセンス素子
CN103145956A (zh) * 2013-03-01 2013-06-12 南昌大学 一种侧链含氟聚噻吩及用于提高反向有机太阳能电池电极功函的方法
CN104292424A (zh) * 2013-07-19 2015-01-21 海洋王照明科技股份有限公司 一种聚合物电子传输材料及其制备方法和有机电致发光器件
KR20170014267A (ko) * 2015-07-29 2017-02-08 한국과학기술연구원 공액 고분자 전해질, 이의 제조방법 및 이를 포함하는 유기전자소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584921C (zh) * 2002-09-05 2010-01-27 奈米系统股份有限公司 促进电荷转移至纳米结构或自纳米结构转移出电荷的有机物
CN105218791A (zh) * 2015-10-28 2016-01-06 武汉理工大学 含2-(4-噻吩-2-苯基)噻吩的聚合物及其制备方法和应用
CN106008454B (zh) * 2016-05-19 2019-06-21 国家纳米科学中心 一种对苯二醚二噻吩类有机光电化合物及制备方法和应用
CN106893082B (zh) * 2017-01-25 2018-12-04 浙江大学 聚合物空穴提取层材料及其构成的钙钛矿太阳电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307052A (ja) * 2005-04-28 2006-11-09 Nippon Shokubai Co Ltd 共重合体およびエレクトロルミネッセンス素子
CN103145956A (zh) * 2013-03-01 2013-06-12 南昌大学 一种侧链含氟聚噻吩及用于提高反向有机太阳能电池电极功函的方法
CN104292424A (zh) * 2013-07-19 2015-01-21 海洋王照明科技股份有限公司 一种聚合物电子传输材料及其制备方法和有机电致发光器件
KR20170014267A (ko) * 2015-07-29 2017-02-08 한국과학기술연구원 공액 고분자 전해질, 이의 제조방법 및 이를 포함하는 유기전자소자

Also Published As

Publication number Publication date
CN107365411A (zh) 2017-11-21
WO2019006852A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
CN107365411B (zh) 一种含有有机共轭高分子半导体材料的空穴传输层及其用途
Qu et al. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics
Lee et al. Synthesis and characterization of a thiazolo [5, 4-d] thiazole-based copolymer for high performance polymer solar cells
JP5253146B2 (ja) 可溶性ポリチオフェン誘導体
JP4771888B2 (ja) 有機薄膜光電変換素子及びその製造方法
JP5179415B2 (ja) 可溶性ポリチオフェン誘導体
WO2010022058A1 (en) Active materials for photoelectric devices and devices that use the materials
Kim et al. Synthesis and photovoltaic properties of benzo [1, 2-b: 4, 5-b′] dithiophene derivative-based polymers with deep HOMO levels
KR20120130706A (ko) 전자 공여체 고분자 및 이를 포함하는 태양 전지
KR101743241B1 (ko) 높은 전자 이동도를 갖는 ndi계 공중합체 및 이의 합성방법
Park et al. Bulk heterojunction polymer solar cells based on binary and ternary blend systems
Cui et al. Efficient solar cells based on a new polymer from fluorinated benzothiadiazole and alkylthienyl substituted thieno [2, 3-f] benzofuran
Liu et al. Polymer Solar Cells Based on the Copolymers of Naphtho [1, 2‐c: 5, 6‐c] bis (1, 2, 5‐thiadiazole) and Alkoxylphenyl Substituted Benzodithiophene with High Open‐Circuit Voltages
CN109749061B (zh) 联受体型聚合物光伏材料及其制备和应用
KR101553806B1 (ko) 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지
KR101960614B1 (ko) 메틸렌 싸이오펜 카르복실레이트와 벤조다이싸이오펜을 함유하는 공액형 고분자 유도체와 이를 이용한 유기 태양전지
Keshtov et al. New iridium-containing conjugated polymers for polymer solar cell applications
Bildirir et al. New n‐Type Solution Processable All Conjugated Polymer Network: Synthesis, Optoelectronic Characterization, and Application in Organic Solar Cells
Kim et al. Synthesis and properties of copolymers composed of arylenevinylene and phenothiazine for organic solar cells
KR101678580B1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기 전자 소자 및 유기 태양전지 소자
KR101821971B1 (ko) 랜덤 삼원 공중합체 형태의 전자 수용체 고분자, 그의 제조방법 및 이를 포함하는 반전형 고분자 태양전지
Li et al. Synthesis and photovoltaic properties of conjugated copolymers containing cyclopentadithiophene and two different electron-deficient moieties in the polymer backbone
CN110536915B (zh) 用于电子和光子应用的垂直苯并二噻吩基给体-受体聚合物
KR101386049B1 (ko) 유기광전변환 파이-파이 공액 고분자 및 이의 제조방법
KR101012589B1 (ko) 공중합체 및 그를 포함하는 태양전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171121

Assignee: Shenzhen Putai Technology Co.,Ltd.

Assignor: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Contract record no.: X2021980002250

Denomination of invention: A hole transport layer containing organic conjugated polymer semiconductor material and its application

Granted publication date: 20200908

License type: Exclusive License

Record date: 20210330

EE01 Entry into force of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20240124

Address after: Building 103, Building A, Penglongpan High tech Park, No. 11 Dafu Industrial Zone, Dafu Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province, 518000

Patentee after: Shenzhen Putai Technology Co.,Ltd.

Country or region after: China

Address before: 518000 No. 1088, Xili, Xue Yuan Avenue, Nanshan District, Shenzhen, Guangdong.

Patentee before: SOUTH University OF SCIENCE AND TECHNOLOGY OF CHINA

Country or region before: China

TR01 Transfer of patent right