CN107362830B - 一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法 - Google Patents
一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法 Download PDFInfo
- Publication number
- CN107362830B CN107362830B CN201710499590.0A CN201710499590A CN107362830B CN 107362830 B CN107362830 B CN 107362830B CN 201710499590 A CN201710499590 A CN 201710499590A CN 107362830 B CN107362830 B CN 107362830B
- Authority
- CN
- China
- Prior art keywords
- mil
- hydrogen production
- photocatalyst
- cds
- loaded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013178 MIL-101(Cr) Substances 0.000 title claims abstract description 74
- 239000001257 hydrogen Substances 0.000 title claims abstract description 69
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 69
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 65
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000012043 crude product Substances 0.000 claims abstract description 13
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 7
- 239000002244 precipitate Substances 0.000 claims description 22
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000005406 washing Methods 0.000 claims description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- 239000012153 distilled water Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 230000001699 photocatalysis Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 229910052724 xenon Inorganic materials 0.000 abstract description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 abstract description 4
- 230000006798 recombination Effects 0.000 abstract description 3
- 238000005215 recombination Methods 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 abstract description 2
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- 238000007146 photocatalysis Methods 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 50
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 50
- 239000000463 material Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000012621 metal-organic framework Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
一种MIL‑101(Cr)负载CdS制氢光催化剂的制备方法,它涉及一种制氢催化剂的制备方法。本发明的目的是要解决现有CdS半导体光催化剂易发生光腐蚀问题,导致其光生电子和空穴复合几率大,太阳光利用率低,从而光催化制氢速率低。方法:一、制备MIL‑101(Cr)负载CdS制氢光催化剂粗品;二、将MIL‑101(Cr)负载CdS制氢光催化剂粗品加入到反应釜中,经水热反应得到MIL‑101(Cr)负载CdS制氢光催化剂。本发明制备的MIL‑101(Cr)负载CdS制氢光催化剂在300W氙灯照射下分解H2O产氢速率可达到510.5μmol·h‑1·g‑1~586.1μmol·h‑1·g‑1。本发明可以获得一种MIL‑101(Cr)负载CdS制氢光催化剂的制备方法。
Description
技术领域
本发明涉及一种制氢催化剂的制备方法。
背景技术
日益严重的能源危机,由化石燃料燃烧造成的环境污染导致了对可再生能源和环境友好的替代能源资源的一个积极的搜索。氢,作为下一代能源,由于其具有的高能源效率、环境友好、可循环使用等特点吸引了无数科学家揭示和的利用。在早期,人们通常是用非可再生资源来获得氢气,但这种方法不可避免地导致了环境环境污染和化石燃料的燃烧,这违背了我们的初衷。受自然界中光合作用的启发,人们追求利用太阳光作为能源,然后用光催化剂分解水反应将太阳能转换成氢能。目前这类光催化材料中研究较多的是半导体光催化材料。
金属硫化物是一种强有力的候选材料,得到了广泛的研究。特别是,硫化镉(CdS)因为其较窄的带隙值(2.4 eV)和合适的导带电位,已经得到了广泛关注。然而,纯CdS颗粒倾向于聚集,形成大的颗粒,从而减少表面积和高的光诱导电子、空穴重组率。为了解决这些问题,我们我们希望能限制CdS粒子的长大及团聚,从而提高CdS粒子的光催化活性。金属有机骨架材料(MOFs)是一种由金属离子与有机配体自组装形成的新型网络状结构的类沸石材料。目前 MOFs 已被用到了多个不同的领域,如气体分离与储存、催化、药物缓释、化学传感和荧光材料等。MOFs 做载体具有很多优势,比如高比表面积和分等级大小的孔结构,有利于客体粒子的高度分散从而在催化中,MIL-101(Cr) 被认为是一种非常有发展前景的载体。因此,我们提出了用双溶剂法将CdS负载到MIL-101(Cr)孔道中,利用MOFs孔道提供的有限的空间作为一个微反应器,来限制CdS粒子的长大及团聚,从而提高CdS粒子的光催化活性。
发明内容
本发明的目的是要解决现有的纯CdS粒子光催化剂易团聚形成大的颗粒,从而减少表面积和高的光生电子、空穴重组率的问题,而提供一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法。
本发明的一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法是按以下步骤完成的:
一、将活化好的MIL-101(Cr)分散到正己烷中,超声分散15 min~20 min后转移到磁力搅拌器上在搅拌速度为300r/min~400r/min下搅拌1h~2h;后滴加Cd(AC)2水溶液,继续搅拌2h~3h,再滴加Na2S水溶液,持续搅拌10h~12h;离心得到沉淀,先用无水乙醇对沉淀物洗涤2次~3次,再用蒸馏水洗涤2次~3次,60℃~80℃真空干燥10h~12h得到MIL-101(Cr)负载CdS制氢光催化剂粗品;
步骤一中所述的活化好的MIL-101(Cr)的质量和正己烷体积比为100mg:(20mL~25mL);
步骤一中所述的Cd(AC)2水溶液物质的量浓度为0.7mol/L,所述的Cd(AC)2水溶液加入的量为0.1mL~0.2mL;
步骤一中所述的Na2S水溶液的物质的量浓度为0.7mol/L,所述的Na2S水溶液加入的量为0.1mL~0.2mL;
二、将步骤一中得到的MIL-101(Cr)负载CdS制氢光催化剂粗品置于高温水热反应釜中,加入在温度为180℃~200℃条件下保持10h~12h,再自然冷却至室温;离心得到沉淀,先用无水乙醇对沉淀物洗涤2次~3次,再用蒸馏水洗涤2次~3次;将洗涤后的沉淀物在温度为60℃~80℃下真空干燥10h~12h得到MIL-101(Cr)负载CdS制氢光催化剂;
步骤二中所述的高温水热反应釜的加热温度为180℃~200℃,反应时间为10h~12h,再自然冷却至室温。
光催化分解水产氢试验
为考察MIL-101(Cr)负载CdS制氢光催化剂材料在可见光下催化分解水产氢效果,按以下方法对其可见光光催化产氢性能进行测试。测试过程如下:光催化产氢实验在光催化活性评价在线分析系统进行,反应开始前,开启冷凝系统,通过真空泵排除体系内空气。300W的氙灯作为光源,通过紫外滤光片(≤ 420nm)滤掉波长在420nm以下部分得到可见光;
光催化制氢试验过程如下:将MIL-101(Cr)负载CdS制氢光催化剂材料用分析天平称量30mg加入到90mL蒸馏水和10mL乳酸的混合溶液中。为使光催化剂在反应过程均匀分散,溶液加入反应器前超声15min,随后将混合溶液转移到氢气发生装置中且在反应过程中持续搅拌,反应前对体系进行40min抽真空操作,开启光源后,光照条件下每隔1h进行采样,利用气相色谱仪进行分析,反应时长共计4h。
本发明的有益效果
本发明以双溶剂法将CdS负载到MIL-101(Cr)孔道中,利用MIL-101(Cr)孔道提供的有限的空间的孔道作为一个微反应器来限制CdS粒子的长大及团聚,并且,由于MIL-101(Cr)的包裹作用,又一定程度上减轻了CdS粒子的光腐蚀现象,从而综合提高CdS粒子的光催化活性。本发明制备的MIL-101(Cr)负载CdS制氢光催化剂在300W氙灯照射下进行光催化分解水反应。本发明制备的MIL-101(Cr)负载CdS制氢光催化剂在300W氙灯照射下分解H2O产氢速率可达到510.5μmol·h-1·g-1 ~586.1μmol·h-1·g-1。
附图说明
图1 MIL-101(Cr)负载CdS制氢光催化剂材料X射线粉末衍射图;
图2 MIL-101(Cr)负载CdS制氢光催化剂材料扫描电镜图;
图3 MIL-101(Cr)负载CdS制氢光催化剂材料可见光光催化产氢速率图。
具体实施方式
实施例1:本实施方式的一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法是按以下步骤完成的:
步骤一、将0.1656g的对苯二甲酸和0.3992g的 Cr(NO3)3·9H2O、0.05mL的 HF加入到蒸馏水中,用玻璃棒搅拌3min后转移到高温水热反应釜中,在220℃下反应8h,离心得到沉淀、80℃干燥得到0.2g MIL-101(Cr);
步骤二、将步骤一中得到的0.2g MIL-101(Cr)装入圆底烧瓶并加入到50mL蒸馏水,再在恒温油浴锅中110℃加热搅拌冷凝回流12h,离心得到沉淀、80℃干燥后,再将MIL-101(Cr)装入圆底烧瓶并加入50mL无水乙醇,在恒温油浴锅中80℃加热搅拌冷凝回流两次,每次12h;离心得到沉淀、干燥后,再将MIL-101(Cr)装入圆底烧瓶并加入50mL 浓度为0.3mol/L的NH4F溶液,室温下搅拌6h后离心得到沉淀、干燥;最后将MIL-101(Cr)装入圆底烧瓶并加入50mL无水乙醇,在恒温油浴锅中80℃加热搅拌冷凝回流12h后离心得到沉淀、150℃下真空干燥10h得到活化好的0.18g MIL-101(Cr);
步骤三、将步骤二中得到的活化好的100mg MIL-101(Cr)分散到20mL正己烷中,超声分散20 min后转移到磁力搅拌器上在搅拌速度为300r/min下搅拌2h;然后滴加0.1mL 浓度为0.7mol/L的 Cd(AC)2水溶液,15min内滴加完毕,继续搅拌2h,再滴加0.1mL浓度为0.7mol/L的Na2S水溶液,15min内滴加完毕并持续搅拌12h后离心得到沉淀,蒸馏水洗涤3次, 80℃干燥12h得到含MIL-101(Cr)质量分数90%,CdS质量分数10% 的MIL-101(Cr)负载CdS制氢光催化剂粗品;
步骤四、将步骤三中得到的MIL-101(Cr)负载CdS制氢光催化剂粗品,置于高温水热反应釜中,在温度为200℃条件下保持12h,再自然冷却至室温,离心得到沉淀,首先使用去离子水对沉淀物清洗3次,再使用无水乙醇清洗3次,将清洗后的沉淀物在温度为80℃下干燥10h得到含MIL-101(Cr)质量分数90%,CdS质量分数10%的MIL-101(Cr)负载CdS制氢光催化剂。
实施例2:
本实施方式与实施例1不同的是:步骤三中所述的Cd(AC)2水溶液物质的量浓度为0.7mol/L,加入的量为0.15mL; 步骤三中所述的Na2S水溶液物质的量浓度为0.7mol/L,加入的量为0.15mL。其他步骤及参数与实施例1相同。得到含MIL-101(Cr)质量分数85%,CdS质量分数15% 的 MIL-101(Cr)负载CdS制氢光催化剂。
负载CdS制氢光催化剂材料的表征及性能检测:
图1对实施例1、2得到的MIL-101(Cr)负载CdS制氢光催化剂材料进行X射线粉末衍射检测,得到如图1所示:1为PDF#41-1049:Hexagonal CdS ;2为MIL-101(Cr)的标准模拟峰;3为实施例1制备的MIL-101(Cr)负载CdS制氢光催化剂材料的XRD图,4为实施例2制备的MIL-101(Cr)负载CdS制氢光催化剂材料的XRD图;所得MIL-101(Cr)负载CdS制氢光催化剂材料均在2θ 为 2.77、3.30、5. 10、8.40° 及 9.00°处出现 5 个明显衍射峰,分别对应于MIL-101(Cr) 的 311、511、531、882 和 911 晶面衍射,表明所得样品均具有典型 MIL-101(Cr) 晶体结构,说明引入了CdS后MIL-101(Cr) XRD 峰没有变化,MIL-101(Cr)的晶型没变,说明MIL-101(Cr)结构保持完整,而且20~30°之间有一突起包峰,其对应CdS的峰,可能是由于CdS的含量太低或CdS颗粒足够小导致X射线衍射信号不明显。这些结果证明MIL-101(Cr)具有很好的稳定性和对CdS纳米颗粒良好的限域效应;
图2对实施例1得到的MIL-101(Cr)负载CdS制氢光催化剂材料进行扫描电镜检测,得到如图2所示的MIL-101(Cr)负载CdS制氢光催化剂材料扫描电镜图。由图2可以看出,MIL-101(Cr)负载CdS制氢光催化剂的粒径控制在几十到几百的纳米之间;
图3对实施例1、2得到的MIL-101(Cr)负载CdS制氢光催化剂材料进行可见光光催化分解水产氢速率对比,得到如图3所示的MIL-101(Cr)负载CdS制氢光催化剂材料产氢速率对比图。本发明制备的MIL-101(Cr)负载CdS制氢光催化剂材料 最大平均制氢速率可达586.1μmol·h-1·g-1。
Claims (4)
1.一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法,其特征在于一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法是按以下步骤完成的:
步骤一、将活化好的MIL-101(Cr)分散到正己烷中,超声分散15min~20min后转移到磁力搅拌器上在搅拌速度为300r/min~400r/min下搅拌1h~2h;后滴加Cd(AC)2水溶液,继续搅拌2h~3h,再滴加Na2S水溶液,持续搅拌10h~12h;离心得到沉淀,先用无水乙醇对沉淀物洗涤2次~3次,再用蒸馏水洗涤2次~3次,60℃~80℃真空干燥10h~12h得到MIL-101(Cr)负载CdS制氢光催化剂粗品;
步骤二、将步骤一中得到的MIL-101(Cr)负载CdS制氢光催化剂粗品置于高温水热反应釜中,加入在温度为180℃~200℃条件下保持10h~12h,再自然冷却至室温;离心得到沉淀,先用无水乙醇对沉淀物洗涤2次~3次,再用蒸馏水洗涤2次~3次;将洗涤后的沉淀物在温度为60℃~80℃下真空干燥10h~12h得到MIL-101(Cr)负载CdS制氢光催化剂;
2.根据权利要求1所述的一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法,其特征在于:步骤一中所述的活化好的MIL-101(Cr)的质量和正己烷体积比为100mg:(20mL~25mL)。
3.根据权利要求1所述的一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法,其特征在于:步骤一中所述的Cd(AC)2水溶液的物质的量浓度为0.7mol/L,所述的Cd(AC)2水溶液的加入量为0.1mL~0.2mL。
4.根据权利要求1所述的一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法,其特征在于:步骤一中所述的Na2S水溶液的物质的量浓度为0.7mol/L,所述的Na2S水溶液加入的量为0.1mL~0.2mL。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710499590.0A CN107362830B (zh) | 2017-06-27 | 2017-06-27 | 一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710499590.0A CN107362830B (zh) | 2017-06-27 | 2017-06-27 | 一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107362830A CN107362830A (zh) | 2017-11-21 |
CN107362830B true CN107362830B (zh) | 2020-01-10 |
Family
ID=60305005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710499590.0A Expired - Fee Related CN107362830B (zh) | 2017-06-27 | 2017-06-27 | 一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107362830B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108855216B (zh) * | 2018-06-11 | 2020-12-01 | 福州大学 | 硫化镉包裹的金属有机框架MIL-101(Cr)光催化复合材料及其制备方法与应用 |
CN110013880B (zh) * | 2019-05-20 | 2021-03-16 | 盐城工学院 | 一种mil-101复合光催化材料、制备方法及应用 |
CN110433866A (zh) * | 2019-08-13 | 2019-11-12 | 云南大学 | 一种Ni(OH)2掺杂CdS的复合光催化剂及其制备方法与应用 |
CN110586189B (zh) * | 2019-08-13 | 2022-05-10 | 云南大学 | 一种Ni掺杂CdS的复合光催化剂及其制备方法与应用 |
CN110813099B (zh) * | 2019-10-15 | 2021-02-02 | 同济大学 | 一种CdS/MIL-101(Cr)光催化剂改性的PVDF超滤膜及其制备方法与应用 |
CN113000071B (zh) * | 2021-03-05 | 2022-07-29 | 成都理工大学 | 一种多孔可见光光催化ZnFe2O4-TiO2/PVDF复合膜的制备方法及再生方法 |
CN113070042A (zh) * | 2021-04-28 | 2021-07-06 | 广东工业大学 | 一种CdS量子点/MIL-101(Cr)复合材料及其制备方法和应用 |
CN114917958B (zh) * | 2022-06-14 | 2023-06-23 | 攀枝花学院 | 三元可见光催化剂及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104262400A (zh) * | 2014-07-31 | 2015-01-07 | 华南理工大学 | 大孔容的多级孔道mil-101材料及制备方法和应用 |
CN104475165A (zh) * | 2014-12-12 | 2015-04-01 | 哈尔滨工业大学 | 一种氧化脱硫催化剂的制备方法 |
CN106582719A (zh) * | 2016-10-25 | 2017-04-26 | 上海大学 | 一种CdS/MIL‑53(Fe)可见光催化剂的制备方法 |
-
2017
- 2017-06-27 CN CN201710499590.0A patent/CN107362830B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104262400A (zh) * | 2014-07-31 | 2015-01-07 | 华南理工大学 | 大孔容的多级孔道mil-101材料及制备方法和应用 |
CN104475165A (zh) * | 2014-12-12 | 2015-04-01 | 哈尔滨工业大学 | 一种氧化脱硫催化剂的制备方法 |
CN106582719A (zh) * | 2016-10-25 | 2017-04-26 | 上海大学 | 一种CdS/MIL‑53(Fe)可见光催化剂的制备方法 |
Non-Patent Citations (1)
Title |
---|
"In situ growth of CdS nanoparticles on UiO-66 metal-organicframework octahedrons for enhanced photocatalytic hydrogenproduction under visible light irradiation";Jian-Jian Zhou et al;《Applied Surface Science》;20150408;第278-283页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107362830A (zh) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107362830B (zh) | 一种MIL-101(Cr)负载CdS制氢光催化剂的制备方法 | |
Jin et al. | Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution | |
CN109248694B (zh) | 一种非贵金属硫铟铜/硫铟锌复合光催化剂的制备方法及其应用 | |
CN108786849B (zh) | 一种硫化锡/二氧化钛复合材料的制备和应用 | |
CN112844412B (zh) | 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用 | |
CN103990472A (zh) | 一种稳定、高效率制氢助催化剂及其制备方法 | |
CN115845886B (zh) | 一种CdSe/MXene复合光催化剂及其制备方法和应用 | |
CN114849785B (zh) | 一种三嗪环共价有机框架材料掺杂卟啉钴光催化剂的制备 | |
Ding et al. | Nano‐SH‐MOF@ Self‐Assembling Hollow Spherical g‐C3N4 Heterojunction for Visible‐Light Photocatalytic Nitrogen Fixation | |
CN111632612B (zh) | 一种磷化铟-氧化铟p-n结多孔微球复合材料及其制备方法和应用 | |
CN114160169B (zh) | 一种共价有机框架材料封装钼硫团簇的制备方法及其应用 | |
CN104624219A (zh) | 高效C3N4-CdS复合光催化材料的原位转变制备方法 | |
Li et al. | 2D/3D ZIF‐9/Mo15S19 S‐Scheme Heterojunction for Productive Photocatalytic Hydrogen Evolution | |
CN111185199A (zh) | 一种z型异质结光催化剂及其制备方法和应用 | |
CN113058601B (zh) | 用于光解水催化制氢的三元复合催化剂的制备方法及应用 | |
CN112588324B (zh) | 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用 | |
Quan et al. | CdS Reinforced with CoSX/NiCo‐LDH Core‐shell Co‐catalyst Demonstrate High Photocatalytic Hydrogen Evolution and Durability in Anhydrous Ethanol | |
CN112354559A (zh) | 一种二维受体分子/多级孔TiO2复合光催化剂及其制备方法和光催化应用 | |
CN115920929B (zh) | MoO3-x/Cu0.5Cd0.5S复合光催化剂、制备方法及应用 | |
CN110841688A (zh) | 基于自组装氮化碳球/片同质异构结的共催化剂的制备方法 | |
CN107497490B (zh) | 一种金属有机凝胶负载CdS的催化剂制备及其在光解水制氢方面的应用 | |
CN111097475A (zh) | 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法 | |
CN114471730B (zh) | NH2-MIL-101(Fe)@SNW-1复合催化剂及其制备方法和应用 | |
CN110252349A (zh) | 一种原位光沉积制备CdS@MoS2复合光催化剂的制备方法 | |
Su et al. | In situ growth of cobalt on ultrathin Ti3C2Tx as an efficient cocatalyst of g-C3N4 for enhanced photocatalytic CO2 reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200110 Termination date: 20200627 |
|
CF01 | Termination of patent right due to non-payment of annual fee |