CN107342677B - 预驱动器短路保护 - Google Patents

预驱动器短路保护 Download PDF

Info

Publication number
CN107342677B
CN107342677B CN201710269175.6A CN201710269175A CN107342677B CN 107342677 B CN107342677 B CN 107342677B CN 201710269175 A CN201710269175 A CN 201710269175A CN 107342677 B CN107342677 B CN 107342677B
Authority
CN
China
Prior art keywords
power fet
pull
current
gate
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710269175.6A
Other languages
English (en)
Other versions
CN107342677A (zh
Inventor
T·亚马那卡
S·布拉萨布拉马尼安
T·檀娜卡
M·加格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN107342677A publication Critical patent/CN107342677A/zh
Application granted granted Critical
Publication of CN107342677B publication Critical patent/CN107342677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

本申请公开一种栅极驱动器电路108,其包括比较器204和栅极驱动器222。比较器204被配置为检测在第一功率场效应晶体管(FET)208中的短路。栅极驱动器222被配置为通过在第一驱动电流下产生第一信号来驱动第一功率FET 208的栅极。响应于比较器204检测到第一功率FET 208中的短路,栅极驱动器222还被配置为在第一下拉电流下脉冲第一信号。在脉冲结束之后,栅极驱动器222还被配置为在第一保持电流下驱动第一功率FET 208的栅极。第一保持电流小于第一下拉电流。

Description

预驱动器短路保护
技术领域
背景技术
在许多应用中,电动机需要大电流(即,大于100A)以进行操作。在许多情况下,利用特殊功率场效应晶体管(FET)驱动这些大电流。利用栅极驱动器电路控制功率FET操作。栅极驱动器电路可以包括多个栅极驱动器,该多个栅极驱动器中的一个可以通过在驱动电流(即,上拉电流)下产生信号来驱动功率FET,以使功率FET接通。类似地,栅极驱动器可以将电流(以下拉电流)下拉以将功率FET断开。以这种方式,栅极驱动器电路可以控制功率FET的操作。有时,在功率FET内或其物理布线中发生短路。在常规系统中,栅极驱动器被配置为一旦检测到功率FET内的短路立即产生用于系统所有功率FET的下拉电流。该下拉电流被一致地提供到功率FET的栅极,直到所有功率FET被断开。如果短路导致功率FET连接到电源且栅极驱动器电路响应于这些故障而继续下拉功率FET的栅极,则驱动器电路将最终由于过大功率而烧毁,从而导致驱动器芯片的失效。
发明内容
以上所指出问题在很大程度上由用于保护栅极驱动器电路免于短路的系统和方法解决。在一些实施例中,栅极驱动器电路包括比较器和栅极驱动器。比较器被配置为检测第一功率场效应晶体管(FET)中的短路。栅极驱动器被配置为通过在第一驱动电流下产生第一信号(即,在第一驱动电流下产生“接通”或“断开”信号)来驱动第一功率FET的栅极。响应于比较器检测到在第一功率FET的任何端子之间的短路,栅极驱动器还被配置为在第一下拉电流下对第一功率FET的栅极进行脉冲。在脉冲结束之后,栅极驱动器还被配置为在第一保持电流下驱动第一功率FET的栅极。第一保持电流小于第一下拉电流。
另一例示性实施例为控制系统,该控制系统包括微控制器(MCU)、第一功率FET,以及耦合到MCU和第一功率FET的栅极驱动器电路。MCU被配置为实现控制系统的状态改变。第一功率FET被配置为驱动电动机。栅极驱动器电路被配置为通过在驱动电流下产生第一信号来驱动第一功率FET的栅极。响应于第一功率FET中的短路,栅极驱动器电路还被配置为在第一下拉电流下脉冲第一信号。在脉冲结束之后,栅极驱动器电路还被配置为在第一保持电流下驱动第一功率FET的栅极。第一保持电流小于第一下拉电流。
另一例示性实施例为用于保护栅极驱动器电路免于短路的方法。该方法包括在驱动电流下驱动第一功率FET的栅极。该方法还包括检测第一功率FET中的短路。响应于检测到短路,该方法还包括在第一下拉电流下将第一信号脉冲到第一功率FET的栅极。响应于脉冲信号的结束,该方法包括在第一保持电流下驱动第一功率FET的栅极。
附图说明
对于各种示例的详细描述,现在将参考附图,其中:
图1示出根据各种实施例的控制系统的例示性方框图;
图2示出根据各种实施例的栅极驱动器电路和功率FET电路的例示性方框图;
图3示出根据各种实施例的功率FET的例示性信号对时间的曲线图;以及
图4示出根据各种实施例的用于保护栅极驱动器电路免于短路的方法的例示性流程图。
符号和声明
贯穿以下描述和权利要求使用某些术语指代特定系统组件。如本领域技术人员将理解的,公司可以通过不同的名称指代组件。本文档不打算区分名称不同而非功能不同的组件。在下面的论述和权利要求中,术语“包含”和“包括”以开放式的方式使用,且因此应被解释为意指“包括但不限于...”。另外,术语“耦合”或“耦接”旨在意指间接或直接连接。因此,如果第一设备耦合到第二设备,则该连接可以通过直接连接,或者通过经由其他设备和连接件的间接连接。“基于”的表述旨在意指“至少部分基于”。因此,如果X基于Y,则X可以基于Y以及任何数量的其他因素。
具体实施方式
以下论述涉及本发明的各种实施例。虽然这些实施例中的一个或更多个可为优选的,但是所公开的实施例不应被解释为或以其他方式用于限制本公开(包括权利要求)的范围。此外,本领域技术人员将理解,以下描述具有广泛的应用,且任何实施例的论述仅意指是该实施例的范例,而不旨在暗示本公开(包括权利要求)的范围限于该实施例。
在许多系统中,利用功率场效应晶体管(FET)驱动大电流以控制电动机。栅极驱动器通常控制这些功率FET的操作。栅极驱动器可以通过在驱动电流(即,上拉电流)下产生信号来驱动功率FET,以使功率FET接通。类似地,栅极驱动器可以将电流(以下拉电流)下拉以将功率FET断开。以这种方式,栅极驱动器电路可以控制功率FET的操作。有时,在功率FET内发生短路。在常规系统中,栅极驱动器被配置为一旦检测到功率FET内的短路立即产生用于系统的所有功率FET的下拉电流(有时约为1A)。该下拉电流被一致地提供到功率FET的栅极,直到所有的功率FET被断开。然而,在某些情况下,功率FET中的一个功率FET的栅极可能短路到提供高电压(例如,24V)的系统电源。因此,下拉电流可能不足以克服短路并且功率FET可保持接通。在常规系统中,当短路仍然存在时,但是即使不能克服短路,栅极驱动器仍继续产生下拉电流以试图将功率FET下拉。因此,当栅极驱动器连续地试图汲取(sink)下拉电流(约1A)时,许多电子组件可能由于过多的热积聚而被破坏。因此,希望设计安全系统,该安全系统在检测到短路时能够使功率FET下拉,但是如果短路不能克服,也不会破坏附加的电子组件。
根据所公开的原理,一旦在系统的功率FET中检测到短路,则栅极驱动器可以被配置为脉冲下拉电流以快速下拉所有的功率FET。然而,脉冲仅在预定(有时是短暂的)时间段内提供下拉电流。因此,如果不能克服短路,则栅极驱动器不会无限期地试图汲取下拉电流。一旦脉冲已经结束,栅极驱动器被配置为产生待提供至功率FET的栅极的更小(例如30mA)保持电流。这维持系统浮动,同时不产生可能破坏附加电子组件的过多的热。此外,如果曾经克服短路,则该保持电流可以最终下拉(即,断开)受影响的功率FET。因此,这些外部功率FET在需要时(即,在相位短路期间)被快速关停,同时避免由于过多的热导致的损坏(由于栅极到电源的短路)。
图1示出根据各种实施例的控制系统100的例示性方框图。控制系统100可以包括电源单元(PSU)102、功率FET电路104、微控制器(MCU)106、栅极驱动器电路108和电动机110。在一些实施例中,控制系统100被配置为控制电动机110的驱动。尽管图1所描绘的控制系统100被配置为控制电动机110,但在另选实施例中,控制系统100可以被配置为控制包括任何类型的电路的任何类型的设备。
PSU 102可以是任何类型的电气设备,该电气设备被配置为在给定电压(例如,24V)下产生电源124从而为控制系统100的其余组件(即,功率FET电路104、MCU 106、栅极驱动器电路108)提供电能以进行操作。PSU 102可以是包括DC电源、AC到DC电源、线性调节器、AC电源、切换式电源,不间断电源(UPS)、电池等的任何类型电源。
因为由PSU 102供应的电源可能太高而不能直接对一些组件供电,在一些实施例中,一个或更多个电压调节器(未示出)被配置为接收由PSU 102供应的电力,并在恒定电压下产生输出信号以直接为控制系统100的其他组件(例如,可以集成在相同集成电路上的MCU 106和栅极驱动器电路108)供电。这些一个或更多个电压调节器可为低压降(LDO)调节器、DC-DC降压转换器等。例如,电压调节器可以接收由PSU 102在24V供应的电力并且产生输出信号从而在稳定的5-6V下为系统100的其他组件供应电力。
MCU 106可以被配置为实现控制系统100的设备的状态改变。例如,MCU 106可以被配置为通过实现用于栅极驱动器电路108的状态改变而对控制系统100的整体操作进行控制。MCU 106可为任何类型的微控制器或其他电气处理设备,并且可以包括处理器核心、存储器和可编程的输入/输出外围设备。MCU 106的存储器可为以下形式:闪存、只读存储器、随机存取存储器或任何其他类型的存储器或存储器类型的组合。MCU 106的组件可以被实现为在单个集成电路上的片上系统(SoC)。在另选实施例中,可以跨多个集成电路实现MCU106。
栅极驱动器电路108可以被配置为响应于从MCU 106接收的信号而驱动电动机110。换句话讲,栅极驱动器电路108可以基于由MCU 106施加的在栅极驱动电路108中的状态改变来驱动电动机110。在一些实施例中,需要大电流(例如,数百安培)来驱动电动机100。因此,功率FET电路104(其在一些实施例中不在与MCU 106和栅极驱动器电路108相同的集成电路上实现,而是实现在相同封装(多芯片模块)中)用于驱动电动机110。更具体地,栅极驱动器电路108可以被配置为通过在驱动电流下产生信号122而驱动功率FET电路104内的功率FET的栅极(例如,接通和断开在功率FET电路104内的功率FET)。换句话讲,栅极驱动器电路108可以利用电流产生信号122,该电流具有足以驱动功率FET电路104内的功率FET的栅极的大小。虽然示出为单个信号,但信号122可为多个信号。例如,栅极驱动器电路108可产生与功率FET电路104内的功率FET一样多的驱动信号(例如,驱动六个功率FET的栅极的六个信号122)。
然后,功率FET电路104内的功率FET可以用电流驱动电动机110以通过产生信号126而操作电动机110。电动机110可为包括无刷DC电动机和更具体地为步进电动机的任何类型电动机。例如,电动机110可为三相无刷DC电动机。因为电动机110可为三相电动机,所以功率FET电路104可以产生三个信号126以驱动电动机110的每个相。在一些实施例中,控制系统100可以实现在汽车中。例如,控制系统100可以用于控制汽车的动力转向。在其他实施例中,控制系统100可以实现在其他控制系统中。
图2示出根据各种实施例的栅极驱动器电路108和功率FET电路104的例示性方框图。栅极驱动器电路108可以包括栅极驱动器组202A-N和比较器电路204。功率FET电路104可以包括功率FET组206A-N。在栅极驱动器组202A和202N之间以及在功率FET组206A-N之间的省略号指示可以存在任何数量的栅极驱动器组202A-N和/或功率FET组206A-N,但为了清楚起见每组仅示出两个。在一些实施例中,存在三个功率FET组206A-N,每个被配置为产生信号126以驱动电动机110的单个相。类似地,在一些实施例中,存在三个栅极驱动器组202A-N,每个被配置为驱动包括在单个功率FET组206A-N中的功率FET的栅极(例如,栅极驱动器组202A驱动在功率FET组206A中包括的功率FET的栅极,而栅极驱动器组202N驱动在功率FET组206N中包括的功率FET的栅极)。
每个功率FET组206A-N可以包括两个功率FET(例如功率FET组206A内的功率FET208-210和功率FET组206N内的功率FET 212-214)。此外,每个功率FET组206A-N的功率FET208-214可以布置成高压侧/低压侧配置。例如,功率FET 208可为用于功率FET组206A的高压侧功率FET,而功率FET 210为低压侧功率FET。类似地,功率FET 212可为用于功率FET组206N的高压侧功率FET,而功率FET 214为低压侧功率FET。每个高压侧功率FET(例如,功率FET 208和212)可以从PSU 102接收电源124。功率FET 208-214可以各自为FET,且更具体地可为n沟道金属氧化物半导体场效应(NMOS)晶体管。在另选实施例中,功率FET 208-214可为任何类型晶体管,包括p沟道金属氧化物半导体场效应(PMOS)晶体管、p型结栅极场效应晶体管(PJFET)、n型结栅极场效应晶体管(NJFET)和双极结晶体管(BJT)(包括PNP和NPN晶体管)。
每个栅极驱动器组202A-N可以包括两个栅极驱动器(例如,栅极驱动器组202A内的栅极驱动器222-224和栅极驱动器组202N内的栅极驱动器226-228)。在一些实施例中,每个栅极驱动器222-228可以被配置为响应于来自MCU 106的信号而驱动单个功率FET 208-214。例如,栅极驱动器222可以被配置为驱动功率FET 208,栅极驱动器224可以配置为驱动功率FET 210,栅极驱动器226可以被配置为驱动功率FET 212,而栅极驱动器228可以被配置为驱动功率FET 214。除了驱动功率FET 208-214的栅极之外,栅极驱动器222-228也可以驱动功率FET 208-214的源极。例如,除了在驱动电流下产生信号122以驱动功率FET 208的栅极之外,栅极驱动器222也可以产生信号以驱动功率FET 208的源极。以这种方式,栅极驱动器电路108可以驱动功率FET电路104以驱动电动机110。
比较器电路204可为包括运算放大比较器的任何类型的比较器电路。比较器电路204可以被配置为检测功率FET 208-214内的短路,包括任何功率FET 208-214的栅极到电源124的短路。更具体地,比较器电路204可以被配置为比较每个功率FET 208-210的栅极到源极电压和/或每个功率FET 208-210的漏极到源极电压。基于该比较,可以检测短路。
为了保护系统100的组件,响应于比较器电路204检测到在功率FET 208-214中的任一个中的短路,栅极驱动器222-228可以被配置为在下拉电流下将信号122脉冲到栅极驱动器222-228的对应功率FET 208-214。例如,如果比较器电路204检测到功率FET 208中的短路,则栅极驱动器222被配置为在下拉电流下(即,被配置为断开功率FET 208的电流)脉冲信号122。换句话讲,栅极驱动器222被配置为在预定的时间量内在下拉电流(在一些实施例中为1A)下产生信号。在一些实施例中,比较器电路204可以将比较结果传输和/或发送到MCU 106用于处理,并且MCU 106可以传输信号,该信号指示栅极驱动器222在下拉电流下产生信号。响应于功率FET 208中检测到的短路,栅极驱动器224-226也可以在它们各自下拉电流下将信号122脉冲到它们各自的功率FET 210-214。类似地,如果比较器电路204检测到功率FET 210中的短路,则栅极驱动器222可以被配置为在下拉电流下脉冲信号122,以试图断开功率FET 208,并且其余栅极驱动器224-228也可以被配置为在它们各自的下拉电流下将信号122脉冲到它们各自的功率FET 210-214。在一些实施例中,功率FET 208-214中的每个的下拉电流是相同的;然而,在另选实施例中,对于功率FET 208-214中的一些或全部,用于功率FET 208-214的下拉电流可为不同的。此外,用于功率FET 208-214中的每个的下拉电流的大小和脉冲的持续时间可在MCU 106中是可编程的。
因为电源124是相对高的电压,所以当功率FET 208-214中的任一个的短路为从栅极到电源时,下拉电流可能不克服电源。因此,即使在长时间接收下拉电流之后,具有栅极到电源短路的功率FET也可能不下拉并断开。下拉电流施加到具有从栅极到电源短路的功率FET 208-214的栅极历时越长,由于过多的热而破坏系统100的其他组件的可能性越高。如前所述,功率FET 208-214中的每个的脉冲的持续时间可在MCU中可编程。该持续时间可以基于在系统100的其它组件开始失效之前可以将下拉电流施加到功率FET 208-214中多长时间。
为了保护栅极驱动器电路108和MCU 106,一旦由栅极驱动器222-228产生的脉冲已经结束(即,一旦将下拉电流提供至功率FET 208-214的预定时间量截止),栅极驱动器222-228可以产生保持电流,其作为信号122的部分被提供至功率FET 208-214的栅极。例如,如果功率FET 208的栅极对电源124短路,则将下拉电流脉冲到每个功率FET 208-214。一旦脉冲结束,保持电流被提供至功率FET 208-214的栅极中的每个。用于功率FET 208-214中的每个的保持电流的大小可以小于并且在一些实施例中远小于下拉电流的大小。例如,虽然下拉电流的大小可为1A,但是保持电流的大小可为30mA。在一些实施例中,用于功率FET 208-214中的每个的保持电流相同;然而,在另选实施例中,对于功率FET 208-214中的一些或全部,用于功率FET 208-214的保持电流可为不同的。此外,保持电流的大小可以在MCU 106中可编程,并且可以足够低,使得当与在功率FET 208-214中的一个中的对电源短路的栅极进行组合时,栅极驱动器电路108和/或MCU 106不被破坏。当保持电流的大小小于下拉电流的大小时,如果短路被解决,其确实将足够的电流提供到功率FET 208-214中的任一个的栅极以下拉(即,断开)功率FET(与如果利用下拉电流的大小相比,将功率FET下拉将需要更长时间)。
图3示出根据各种实施例的功率FET的例示性信号对时间的曲线图300。线302描绘从MCU 106到栅极驱动器电路108的输入信号,其用于产生驱动电流以接通和断开功率FET208-214中的任一个。例如,线302为低(LOW),直到当其变为高(HIGH)的时间322,该HIGH指示输入信号请求功率FET 208-214中的一个接通。在该示例中,假设输入信号用于控制功率FET 208,在时间322,栅极驱动器电路108可以在驱动电流下将信号122发送到功率FET208,从而接通功率FET 208。在时间324,线302变为低,其指示输入信号正在请求功率FET208断开。这引起栅极驱动器电路108在下拉电流下将信号122发送到功率FET 208,从而断开功率FET 208。在时间326,线302再次转变成高,其指示输入信号正在请求功率FET 208中的一个接通,这引起栅极驱动器电路108在驱动电流下将信号122发送到功率FET 208,从而接通功率FET 208。
线304描绘(继续前面示例)功率FET 208的栅极到源极电压。在时间322之前,功率FET 208的栅极到源极电压为0V。当线302在时间322转变为高时,功率FET 208的栅极到源极电压斜升,因为功率FET 208在驱动电流下接收信号122。在时间324,线302转变为低,这引起功率FET 208的下拉,使得栅极到源极电压斜降到0V。当线302在时间326转变为高时,功率FET 208的栅极到源极电压再次斜升。
线306描绘基于比较器204检测到功率FET 208-214中任一个的短路而可以由MCU106产生的故障信号。如图3的示例所示,在时间328,如线306所示,故障信号变为高,其指示存在功率FET 208-214中的一个中的短路。因此,在时间328,栅极驱动器222-228可以在下拉电流下产生脉冲,以快速断开所有功率FET 208-214。因此,线304示出功率FET 208的栅极到源极电压斜降到0V。此外,线308-310描绘由栅极驱动器222-228产生的电流设定。在时间328之前,系统100以正常条件设定操作。换句话讲,栅极驱动器222-228在正常配置中在驱动电流和下拉电流下产生信号122。在时间328-330之间,栅极驱动器222-228在下拉电流下产生脉冲,以快速断开所有功率FET 208-214。然而,如果功率FET 222-228中的任一个从栅极到电源短路,则即使在下拉电流下,该脉冲也可能不断开该特定功率FET。因此,在时间330之后,栅极驱动器222-228在保持电流下产生信号122,以保护MCU 106和栅极驱动器电路108免于过度、有害的热积聚。
图4示出根据各种实施例的用于保护栅极驱动器电路免于短路的方法400的例示性流程图。虽然为了方便起见顺序地描绘,但是可以按不同顺序执行和/或并行执行所示的动作的至少一些。另外,一些实施例可以仅执行所示动作中的一些。在一些实施例中,方法400的操作中的至少一些以及本文描述的其它操作可以由MCU 106、栅极驱动器电路108和/或功率FET电路104执行,并且由执行存储在非暂时性计算机可读存储介质中的指令的处理器实现。
方法400在方框402中以驱动第一功率FET诸如功率FET 208的栅极而开始。在一些实施例中,第一功率FET的栅极由栅极驱动器诸如栅极驱动器222在驱动电流下驱动。在方框402中,方法400以确定在第一功率FET中是否已检测到短路而继续。例如,比较器诸如比较器204可以用于比较功率FET 208的栅极到源极电压和/或功率FET 208的漏极到源极电压,以确定功率FET 208中是否存在短路。如果在方框404中作出在第一功率FET中没有检测到短路的确定,则方法400在方框402中以驱动第一功率FET的栅极而继续。
如果在方框404中作出在第一功率FET中已经检测到短路的确定,则方法400在方框406和408中继续。在方框406中,信号在第一下拉电流下脉冲到第一功率FET的栅极。例如,可以在下拉电流下在预定的、可编程的时间量内脉冲信号122,以下拉第一功率FET并将其断开。类似地,在方框408中,信号在第二下拉电流下脉冲到第二功率FET诸如功率FET210的栅极。例如,信号122可以在下拉电流下在预定的、可编程的时间量内脉冲,以下拉第二功率FET并将其断开。第一下拉电流和第二下拉电流可以大小相等。
方法400在方框410中以确定用于第一功率FET的脉冲是否已经结束而继续。如果在方框410中作出脉冲尚未结束的确定,则方法400在方框406中以脉冲第一功率FET的栅极而继续。然而,如果在方框410中作出脉冲已经结束的确定,则方法400在方框414中以在第一保持电流下驱动第一功率FET的栅极而继续。
在方框412中,确定用于第二功率FET的脉冲是否已经结束。如果在方框412中作出脉冲尚未结束的确定,则方法400在方框408中以脉冲第二功率FET的栅极而继续。然而,如果在方框412中作出脉冲已经结束的确定,则方法400在方框416中以在第二保持电流下驱动第二功率FET的栅极而继续。第一保持电流和第二保持电流可以大小相等。
上述论述意在例示本发明的原理和各种实施例。一旦完全理解了上述公开内容,许多变化和修改对于本领域技术人员将变得明显。本发明旨在将所附权利要求解释为涵盖所有此类变化和修改。

Claims (20)

1.一种栅极驱动器电路,其包括:
比较器,其被配置为检测第一功率场效应晶体管即FET中的短路;以及
栅极驱动器,其被配置为:
通过在第一驱动电流下产生第一信号来驱动所述第一功率FET的栅极;以及
响应于所述比较器检测到所述第一功率FET中的短路,在第一下拉电流下脉冲所述第一信号,并且在所述脉冲结束之后,在第一保持电流下驱动所述第一功率FET的所述栅极,所述第一保持电流小于所述第一下拉电流。
2.根据权利要求1所述的栅极驱动器电路,其中:
所述比较器还被配置为检测第二功率FET中的短路;以及
所述栅极驱动器还被配置为:
通过在第二驱动电流下产生第二信号来驱动所述第二功率FET的栅极;以及
响应于所述比较器检测到所述第二功率FET中的短路,在第二下拉电流下脉冲所述第二信号,并且在所述脉冲结束之后,在第二保持电流下驱动所述第二功率FET的所述栅极,所述第二保持电流小于所述第二下拉电流。
3.根据权利要求2所述的栅极驱动器电路,其中所述栅极驱动器还被配置为响应于所述比较器检测到所述第一功率FET中的所述短路,在所述第二下拉电流下脉冲所述第二信号,并且在所述脉冲结束后,在所述第二保持电流下驱动所述第二功率FET的所述栅极。
4.根据权利要求2所述的栅极驱动器电路,其中所述栅极驱动器还被配置为响应于所述比较器检测到所述第二功率FET中的所述短路,在所述第一下拉电流下脉冲所述第一信号,并且在所述脉冲结束后,在所述第一保持电流下驱动所述第一功率FET的所述栅极。
5.根据权利要求1所述的栅极驱动器电路,其中所述比较器被配置为通过确定所述第一功率FET的栅极到源极电压以检测第一功率FET中的所述短路。
6.一种控制系统,其包括:
微控制器即MCU,其被配置为实现用于所述控制系统的状态改变;
第一功率场效应晶体管即FET,其被配置为驱动电动机;以及
栅极驱动器电路,其耦合到所述MCU和所述第一功率FET,所述栅极驱动器电路被配置为:
通过在驱动电流下产生第一信号来驱动所述第一功率FET的栅极;以及
响应于在所述第一功率FET中的短路,在第一下拉电流下脉冲所述第一信号,并且在所述脉冲结束之后,在第一保持电流下驱动所述第一功率FET的所述栅极,所述第一保持电流小于所述第一下拉电流。
7.根据权利要求6所述的控制系统,其还包括被配置为驱动所述电动机的第二功率FET,其中所述栅极驱动器电路还被配置为通过在所述驱动电流下产生第二信号来驱动所述第二功率FET的栅极,并且响应于所述第二功率FET中的短路,在第二下拉电流下脉冲所述第二信号,并且在所述脉冲结束之后,在第二保持电流下驱动所述第二功率FET的所述栅极,所述第二保持电流小于所述第二下拉电流。
8.根据权利要求7所述的控制系统,其还包括被配置为驱动所述电动机的第三功率FET、第四功率FET、第五功率FET和第六功率FET,其中所述栅极驱动器电路还被配置为通过产生第三信号来驱动所述第三功率FET的栅极,通过产生第四信号来驱动所述第四功率FET的栅极,通过产生第五信号来驱动所述第五功率FET的栅极,以及通过产生第六信号来驱动所述第六功率FET的栅极。
9.根据权利要求8所述的控制系统,其中所述第一功率FET和所述第二功率FET被配置为驱动所述电动机的第一相,所述第三功率FET和所述第四功率FET被配置为驱动所述电动机的第二相,以及所述第五功率FET和所述第六功率FET被配置为驱动所述电动机的第三相。
10.根据权利要求8所述的控制系统,其中所述栅极驱动器电路还被配置为响应于所述第一功率FET中的所述短路而在第三下拉电流下脉冲所述第三信号,在第四下拉电流下脉冲所述第四信号,在第五下拉电流下脉冲所述第五信号,以及在第六下拉电流下脉冲所述第六信号。
11.根据权利要求10所述的控制系统,其中所述第一下拉电流、所述第二下拉电流、所述第三下拉电流、所述第四下拉电流、所述第五下拉电流和所述第六下拉电流大小相等。
12.根据权利要求6所述的控制系统,其中所述第一下拉电流的大小在所述MCU中是可编程的。
13.根据权利要求6所述的控制系统,其中所述第一功率FET为n型金属氧化物半导体即NMOS晶体管。
14.一种保护栅极驱动器电路免于短路的方法,其包括:
在驱动电流下驱动第一功率FET的栅极;
检测所述第一功率FET中的短路;
响应于检测到所述短路,在第一下拉电流下将第一信号脉冲到所述第一功率FET的所述栅极;以及
响应于所述脉冲信号的结束,在第一保持电流下驱动所述第一功率FET的所述栅极。
15.根据权利要求14所述的方法,其中所述第一下拉电流大于所述第一保持电流。
16.根据权利要求14所述的方法,其还包括:
响应于检测到所述短路,在第二下拉电流下将第二信号脉冲到第二功率FET的栅极;以及
响应于所述脉冲信号的结束,在第二保持电流下驱动所述第二功率FET的所述栅极。
17.根据权利要求16所述的方法,其中所述第一下拉电流等于所述第二下拉电流并且所述第一保持电流等于所述第二保持电流。
18.根据权利要求14所述的方法,其中检测所述短路包括确定所述第一功率FET的栅极到源极电压。
19.根据权利要求14所述的方法,其中所述第一下拉电流的大小是可编程的,并且其中所述脉冲信号的持续时间是可编程的。
20.根据权利要求14所述的方法,其中所述第一下拉电流大于1A并且所述第一保持电流小于50mA。
CN201710269175.6A 2016-04-29 2017-04-24 预驱动器短路保护 Active CN107342677B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/142,852 2016-04-29
US15/142,852 US10700586B2 (en) 2016-04-29 2016-04-29 Predriver short protection

Publications (2)

Publication Number Publication Date
CN107342677A CN107342677A (zh) 2017-11-10
CN107342677B true CN107342677B (zh) 2021-04-13

Family

ID=60159124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710269175.6A Active CN107342677B (zh) 2016-04-29 2017-04-24 预驱动器短路保护

Country Status (2)

Country Link
US (1) US10700586B2 (zh)
CN (1) CN107342677B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291163B2 (en) * 2016-04-29 2019-05-14 Texas Instruments Incorporated Cascode structure for linear regulators and clamps
US10756538B2 (en) 2017-04-24 2020-08-25 Silicon Laboratories Inc. Current limiting for high current drivers
US10809777B2 (en) * 2017-05-04 2020-10-20 Silicon Laboratories Inc. Energy estimation for thermal management
US11139812B2 (en) * 2019-09-26 2021-10-05 Infineon Technologies Ag IGBT emitter current sensing for early desaturation detection and short circuit protection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202260995U (zh) * 2011-10-14 2012-05-30 广东易事特电源股份有限公司 一种igbt驱动电路
CN104852714A (zh) * 2014-02-19 2015-08-19 株式会社电装 栅极驱动器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168200A (en) * 1989-12-18 1992-12-01 Payne Kenneth R Automatic powered flowmeter valves and control thereof
JP4657796B2 (ja) * 2004-10-19 2011-03-23 本田技研工業株式会社 脚式移動ロボットの過電流防止装置
DE102009007790B3 (de) * 2009-02-06 2010-08-12 Continental Automotive Gmbh Treiberchip zum Treiben einer induktiven Last
US8174214B2 (en) * 2009-09-28 2012-05-08 Harris Corporation Three-phase low-loss rectifier with active gate drive
JP5093268B2 (ja) * 2010-03-11 2012-12-12 株式会社デンソー 電力変換システムの放電制御装置
JP5352570B2 (ja) * 2010-12-13 2013-11-27 株式会社日立製作所 回転機の制御装置,回転機系,車両,電気自動車または発電システム
US8872561B2 (en) * 2013-03-14 2014-10-28 Cirrus Logic, Inc. Systems and methods for edge control based on detecting current direction in a switched output stage
JP5846152B2 (ja) * 2013-04-15 2016-01-20 株式会社デンソー 駆動対象スイッチング素子の駆動回路
JP6169044B2 (ja) * 2014-05-30 2017-07-26 株式会社東芝 ブラシレスモータ駆動回路、および、ブラシレスモータ駆動システム
US10254327B2 (en) * 2016-02-29 2019-04-09 Infineon Technologies Ag Method and device for short circuit detection in power semiconductor switches

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202260995U (zh) * 2011-10-14 2012-05-30 广东易事特电源股份有限公司 一种igbt驱动电路
CN104852714A (zh) * 2014-02-19 2015-08-19 株式会社电装 栅极驱动器

Also Published As

Publication number Publication date
CN107342677A (zh) 2017-11-10
US10700586B2 (en) 2020-06-30
US20170317619A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
CN107342677B (zh) 预驱动器短路保护
US8531851B2 (en) Start-up circuit and method thereof
JP5315026B2 (ja) 半導体装置
WO2017057079A1 (ja) 負荷駆動装置
US8330406B2 (en) Motor drive circuit
US20140285935A1 (en) Electronic fuse apparatus and method of operating the same
US9871440B2 (en) Internal power supply circuit and semiconductor device
US9917437B2 (en) Hot swap controller with individually controlled parallel current paths
JP2012134828A (ja) 出力回路
US20220021199A1 (en) Mitigation of microcontroller restart from post-failure shutdown condition
EP3038223A1 (en) Load driving circuit
CN110226287B (zh) 具有无源保护电路的电源电路切换装置
US10291163B2 (en) Cascode structure for linear regulators and clamps
US20160126233A1 (en) Method and circuitry for on-chip electro-static discharge protection scheme for low cost gate driver integrated circuit
US10666039B2 (en) Electronic fuse circuit, corresponding device and method
JP2012235683A (ja) 負荷制御および保護システム、並びにその動作および使用方法
US9819257B2 (en) DC-to-DC converter input node short protection
US6762576B2 (en) Motor driving device for supplying driving current to a three-phase motor through output transistors
JP2010206974A (ja) 電源システム及びその動作方法
JP4007227B2 (ja) 誘導性負荷制御装置
US11563430B2 (en) Transistor diagnostic circuit
JP2014225841A (ja) 負荷駆動回路
EP3654530B1 (en) Low voltage drop rectifier
JP4590387B2 (ja) グロープラグ駆動装置
KR102297127B1 (ko) 모터 구동 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant