CN107342172A - 一种三维连通网络结构电极材料及其制备方法 - Google Patents

一种三维连通网络结构电极材料及其制备方法 Download PDF

Info

Publication number
CN107342172A
CN107342172A CN201611201520.4A CN201611201520A CN107342172A CN 107342172 A CN107342172 A CN 107342172A CN 201611201520 A CN201611201520 A CN 201611201520A CN 107342172 A CN107342172 A CN 107342172A
Authority
CN
China
Prior art keywords
electrode material
dimensional
preparation
structure electrode
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611201520.4A
Other languages
English (en)
Inventor
张劲松
任志恒
孔凡磊
李旭
付超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAONING ZHUOYI NEW MATERIAL CO Ltd
Original Assignee
LIAONING ZHUOYI NEW MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIAONING ZHUOYI NEW MATERIAL CO Ltd filed Critical LIAONING ZHUOYI NEW MATERIAL CO Ltd
Priority to CN201611201520.4A priority Critical patent/CN107342172A/zh
Publication of CN107342172A publication Critical patent/CN107342172A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及多孔电极领域,尤其涉及一种三维连通网络结构电极材料及其制备方法。所述的电极材料由炭材料组成,呈三维连通网络结构的骨架;具有毫米级、微米级双孔隙尺寸特征,且毫米级孔隙尺寸在0.5~5毫米范围内可控;三维连通网络结构电极材料的孔隙率在10%~90%范围内可控。制备方法包括:将酚醛树脂、微米级碳粉、活性组分和乙醇混合配置浆料,以聚氨酯泡沫塑料为骨架,经挂料、固化,多次循环得到所需的孔隙率,最后热解制得三维连通网络结构电极材料。其制备工艺简单,电极材料孔隙率和孔径尺寸可控,成本低,可广泛应用于液相储能电池和燃料电池等电池领域、金属电解领域以及其他含有多孔电极作为组件的领域。

Description

一种三维连通网络结构电极材料及其制备方法
技术领域
本发明涉及多孔电极领域,尤其涉及一种三维连通网络结构电极材料及其制备方法。
背景技术
在资源和环境形势日趋严峻,急需发展清洁、高效能源的大趋势下,化学电源具有清洁高效的特点,在未来可再生能源发电、智能电网等领域发挥重要作用。电极作为化学电源的核心部件,对电池的性能起着决定性的作用。从应用角度而言,多孔电极分为两类,一类是多孔电极材料本身参与电化学氧化还原反应;一类是仅提供材料表面作为电化学反应场所,本身不参与电化学氧化还原反应。与平板电极相比,多孔电极具有极大的比表面积,可显著降低工作电流密度,减小极化电位,而且大大降低了电化学反应过程中扩散控制的影响。
目前,碳基多孔电极材料的制备方法包括流延法、等离子喷涂法、热辊成型以及压制法等。其中,流延法工艺复杂,孔径不可控,溶剂用量大,存在环境污染的问题;等离子喷涂成本高,工艺较复杂,较为适合较薄的电极薄膜;压制法工艺繁琐,制备条件苛刻,成本高不适合连续化生产。
发明内容
本发明目的在于提供一种孔隙率可控、孔径尺寸可控的三维连通网络结构电极材料及其制备方法,适合于液相储能电池和燃料电池等电池领域、金属电解领域以及其他含有多孔电极作为组件的领域。
本发明的技术方案是:
一种三维连通网络结构电极材料,该电极材料由炭材料组成,呈三维连通网络结构的骨架,具有毫米级、微米级双孔隙尺寸特征,且毫米级孔隙尺寸在0.5~5毫米范围内可控,三维连通网络结构电极材料的孔隙率在10%~90%范围内可控。
所述的三维连通网络结构电极材料的制备方法,具体步骤如下:
步骤一,根据需要选择聚氨酯泡沫塑料,将聚氨酯泡沫塑料裁剪成所需的形状和尺寸,并浸入以高残炭率配置的料浆中,取出挤压、吹扫除去多余料浆;
步骤二,将上述浸渍料浆的聚氨酯泡沫塑料烘干固化,并重复浸渍、挤压、吹扫的过程以获得所需的孔隙率;
步骤三,将固化后的聚氨酯泡沫塑料热解,获得三维连通网络结构电极材料。
所述的三维连通网络结构电极材料的制备方法,在步骤一中以高残炭率配置的料浆包含微米级碳粉、酚醛树脂、活性组分和乙醇,微米级碳粉、酚醛树脂、活性组分与乙醇之间重量百分比例为70wt%~15wt%:19wt%~50wt%:10%~15%:1wt%~20wt%,活性组分选自有机酸、弱无机酸、六次甲基四胺、NL促进剂之一种或两种以上。
所述的三维连通网络结构电极材料的制备方法,在步骤三中的热解工艺条件包括,热解气氛为真空或惰性保护气氛,升温速率为1~10℃/min,热解温度800~1000℃,保温10~300min。
所述的三维连通网络结构电极材料的制备方法,在步骤三中获得的三维连通网络结构电极材料以碳为主要成分,且包含活性组分,并可精确机加工处理。
本发明的优点及有益效果是:
本发明属于碳基多孔电极,既不同于双电层超级电容器的碳基多孔电极的几种制备方法,也不同与液流电池的大孔径多孔电极,而是具有毫米级、微米级双孔隙尺寸特征,将上述两种结构结合为一体的新型多孔电极材料。制备工艺简单,电极材料孔隙率和孔径尺寸可控,成本低,可广泛应用于液相储能电池和燃料电池等电池领域、金属电解领域以及其他含有多孔电极作为组件的领域。在使用过程中,将活性物质或催化剂分散于其中形成活性材料可高效利用的多孔电极体系。
附图说明
图1:三维连通网络结构多孔电极的制备工艺流程。
图2:本发明制备的多孔电极。a,宏观结构;b,骨架筋内微观结构。
具体实施方式
下面结合附图对本发明所提出的三维连通网络结构多孔电极的制备和应用做进一步说明。
实施例:
如图1所示,本实施例中,所述的三维连通网络结构电极材料的制备方法,将酚醛树脂、微米级碳粉、活性组分和乙醇混合配置浆料,以聚氨酯泡沫塑料为骨架,经挂料、固化,多次循环得到所需的孔隙率,最后热解制得三维连通网络结构电极材料,具体包括以下步骤:
步骤一,根据需要选择一定孔径尺寸的聚氨酯泡沫塑料,将聚氨酯泡沫塑料裁剪成所需的形状和尺寸,并浸入以高残炭率配置的料浆中,取出挤压、吹扫除去多余料浆;
步骤二,将上述浸渍料浆的聚氨酯泡沫塑料烘干固化,并重复浸渍、挤压、吹扫的过程以获得所需的孔隙率;
步骤三,将固化后的聚氨酯泡沫塑料热解,获得三维连通网络结构电极材料。
在步骤一中以高残炭率配置的料浆包含微米级碳粉、酚醛树脂、活性组分和乙醇,微米级碳粉、酚醛树脂、活性组分与乙醇之间重量百分比例为70wt%~15wt%:19wt%~50wt%:10%~15%:1wt%~20wt%,活性组分选自有机酸、弱无机酸、六次甲基四胺、NL促进剂之一种或两种以上。料浆的残炭率在70%以上,本实施例料浆的残炭率为75%。在步骤三中的热解工艺条件包括,热解气氛为真空或惰性保护气氛,升温速率为1~10℃/min(本实施例为5℃/min),热解温度800~1000℃(本实施例为900℃),保温10~300min(本实施例为120min)。从而,获得具有毫米级(图2a)、微米级(图2b)双孔隙尺寸特征的三维连通网络结构电极材料,以碳为主要成分,且包含活性组分,并可精确机加工处理。
实施例结果表明,本发明获得的电极材料由炭材料组成,呈三维连通网络结构的骨架,具有毫米级、微米级双孔隙尺寸特征,且毫米级孔隙尺寸在0.5~5毫米范围内可控,三维连通网络结构电极材料的孔隙率在10%~90%范围内可控。其制备工艺简单,电极材料孔隙率和孔径尺寸可控,成本低,可广泛应用于液相储能电池和燃料电池等电池领域、金属电解领域以及其他含有多孔电极作为组件的领域。

Claims (5)

1.一种三维连通网络结构电极材料,其特征在于,该电极材料由炭材料组成,呈三维连通网络结构的骨架,具有毫米级、微米级双孔隙尺寸特征,且毫米级孔隙尺寸在0.5~5毫米范围内可控,三维连通网络结构电极材料的孔隙率在10%~90%范围内可控。
2.一种权利要求1所述的三维连通网络结构电极材料的制备方法,其特征在于,具体步骤如下:
步骤一,根据需要选择聚氨酯泡沫塑料,将聚氨酯泡沫塑料裁剪成所需的形状和尺寸,并浸入以高残炭率配置的料浆中,取出挤压、吹扫除去多余料浆;
步骤二,将上述浸渍料浆的聚氨酯泡沫塑料烘干固化,并重复浸渍、挤压、吹扫的过程以获得所需的孔隙率;
步骤三,将固化后的聚氨酯泡沫塑料热解,获得三维连通网络结构电极材料。
3.根据权利要求2所述的三维连通网络结构电极材料的制备方法,其特征在于:在步骤一中以高残炭率配置的料浆包含微米级碳粉、酚醛树脂、活性组分和乙醇,微米级碳粉、酚醛树脂、活性组分与乙醇之间重量百分比例为70wt%~15wt%:19wt%~50wt%:10%~15%:1wt%~20wt%,活性组分选自有机酸、弱无机酸、六次甲基四胺、NL促进剂之一种或两种以上。
4.根据权利要求2所述的三维连通网络结构电极材料的制备方法,其特征在于:在步骤三中的热解工艺条件包括,热解气氛为真空或惰性保护气氛,升温速率为1~10℃/min,热解温度800~1000℃,保温10~300min。
5.根据权利要求2所述的三维连通网络结构电极材料的制备方法,其特征在于:在步骤三中获得的三维连通网络结构电极材料以碳为主要成分,且包含活性组分,并可精确机加工处理。
CN201611201520.4A 2016-12-23 2016-12-23 一种三维连通网络结构电极材料及其制备方法 Pending CN107342172A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201520.4A CN107342172A (zh) 2016-12-23 2016-12-23 一种三维连通网络结构电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201520.4A CN107342172A (zh) 2016-12-23 2016-12-23 一种三维连通网络结构电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107342172A true CN107342172A (zh) 2017-11-10

Family

ID=60222798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201520.4A Pending CN107342172A (zh) 2016-12-23 2016-12-23 一种三维连通网络结构电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107342172A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148753A (zh) * 2019-05-22 2019-08-20 佛山科学技术学院 一种镁离子电池基带处理方法及镁离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108785A1 (en) * 2001-12-10 2003-06-12 Wu L. W. Meso-porous carbon and hybrid electrodes and method for producing the same
CN101104893A (zh) * 2006-07-14 2008-01-16 中国科学院金属研究所 一种金属/碳基复合泡沫材料及其制备方法
CN102101785A (zh) * 2009-12-18 2011-06-22 中国科学院金属研究所 一种双尺度的碳化硅泡沫陶瓷材料及其制备方法
CN104986758A (zh) * 2015-06-25 2015-10-21 厦门凯纳石墨烯技术有限公司 一种锂电池用三维网络石墨烯及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108785A1 (en) * 2001-12-10 2003-06-12 Wu L. W. Meso-porous carbon and hybrid electrodes and method for producing the same
CN101104893A (zh) * 2006-07-14 2008-01-16 中国科学院金属研究所 一种金属/碳基复合泡沫材料及其制备方法
CN102101785A (zh) * 2009-12-18 2011-06-22 中国科学院金属研究所 一种双尺度的碳化硅泡沫陶瓷材料及其制备方法
CN104986758A (zh) * 2015-06-25 2015-10-21 厦门凯纳石墨烯技术有限公司 一种锂电池用三维网络石墨烯及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148753A (zh) * 2019-05-22 2019-08-20 佛山科学技术学院 一种镁离子电池基带处理方法及镁离子电池

Similar Documents

Publication Publication Date Title
CN103022509B (zh) 微型直接甲醇燃料电池膜电极及其制备方法
CN102891324B (zh) 一种钒电池用双极板及其制备方法
CN104241599B (zh) 一种采用干法上料辊压技术制作单体锂离子电池的方法
De las Heras et al. From the cell to the stack. A chronological walk through the techniques to manufacture the PEFCs core
CN102157741B (zh) 一种超薄质子交换膜燃料电池膜电极的制备方法
CN105591055A (zh) 一种高倍率锂离子电池及其制造方法
CN104821403A (zh) 一种锂离子电池的制备方法
CN108923022A (zh) 一种提高全固态电池锂负极稳定性的改性方法
CN102760887B (zh) 一种防漏双极性集流体和高电压电池及其制备方法
CN110504440B (zh) 一种钠硫电池正极材料的制备方法及其应用
CN106298262B (zh) 一种耐高压的超级电容器电极极片及其制备方法和应用
CN103746087A (zh) 一种锂离子电池隔膜制造方法及锂电池
CN107611337A (zh) 一种锂离子动力电池正极涂布的方法
CN106784846A (zh) 一种高倍率锂离子电池正极及其制备方法和应用
CN111682163A (zh) 一种锂电池用锂转移式补锂方法
CN104425829B (zh) 碱性阴离子交换膜燃料电池用带过渡层膜电极的制备方法
CN107146891A (zh) 一种贵金属催化剂颗粒呈梯度分布的mea制备方法
CN103107344A (zh) 催化剂浆料及制备催化剂浆料与膜电极组件的方法
CN103554549B (zh) 一种基于硅溶胶陶瓷隔膜的预处理方法
WO2013053679A3 (de) Verfahren zur herstellung einer kompositstruktur aus porösem kohlenstoff und elektrochemischem aktivmaterial
CN106531931A (zh) 一种金属氧化物‑纤维素复合隔膜的制备方法
CN101483240A (zh) 一种用于燃料电池的超薄型石墨双极板的加工方法
CN103613366A (zh) 一种用于锂电池的陶瓷膜浆料及涂有该陶瓷膜浆料极片的制备方法
CN103035952B (zh) 一种锂离子电池电解液注液方法
CN107342172A (zh) 一种三维连通网络结构电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171110

RJ01 Rejection of invention patent application after publication