CN107335456A - 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法 - Google Patents

一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法 Download PDF

Info

Publication number
CN107335456A
CN107335456A CN201710422459.4A CN201710422459A CN107335456A CN 107335456 A CN107335456 A CN 107335456A CN 201710422459 A CN201710422459 A CN 201710422459A CN 107335456 A CN107335456 A CN 107335456A
Authority
CN
China
Prior art keywords
tio
photochemical catalyst
urea
graphite phase
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710422459.4A
Other languages
English (en)
Other versions
CN107335456B (zh
Inventor
张新宇
曹萌
秦家千
马明臻
刘日平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201710422459.4A priority Critical patent/CN107335456B/zh
Publication of CN107335456A publication Critical patent/CN107335456A/zh
Application granted granted Critical
Publication of CN107335456B publication Critical patent/CN107335456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种碳掺杂修饰石墨相氮化碳光催化剂,它的化学成分质量百分比为:C‑TiO2 0.1‑0.8、其余为g‑C3N4;上述碳掺杂修饰石墨相氮化碳光催化剂的制备方法主要是按取每30g尿素加入0.5‑6mg碳化钛的比例,将尿素和碳化钛置于玛瑙研钵中,充分研磨、搅动、混合10min;将混合均匀的尿素和碳化钛混合物装入容器中,然后放到马弗炉里进行热处理,其升温程序为:从室温以5‑30℃/min的升温速率,升到500‑600℃,并保温1‑2h,随后随炉冷却,整个热处理过程均在空气气氛下进行;将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2‑10μm的物质,制得C‑TiO2/g‑C3N4光催化剂。本发明制备方法简单,成本低廉,物理化学性质稳定,无毒,环境友好有利于实际应用和工业化生产。

Description

一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法
技术领域
本发明属于材料技术领域,特别涉及一种光催化材料及其制备方法。
背景技术
近年来,能源危机和环境污染已成为全球性尖锐问题。半导体催化剂能够有效地将太阳能转化为清洁能源并且降解有机污染物,从而缓解能源危机和减少环境污染,被广泛重视。非金属有机聚合物石墨相g-C3N4材料具有廉价易得,很好的化学及热稳定性,合适的能带结构,可见光响应等性质,在光解水制氢,有机物合成和污染物降解领域有潜在应用,能够很好的实现太阳能到化学能的转化。光催化材料技术的目的是制备成本低廉,高效稳定的催化剂。然而,纯g-C3N4仍在高效性及稳定性上存在不足,如对可见光利用效率低;光生电子空穴对容易复合,较低的量子效率;抗光腐蚀性差,催化稳定性不好。为了满足光催化技术的要求,需对g-C3N4改性处理,提高其光催化活性及稳定性。
TiO2作为半导体催化材料,同g-C3N4一样具有良好的物理化学性质,成本低,无毒,对环境友好等。但是,TiO2的带隙宽,只能吸收紫外光能量,同时光生电子空穴对复合速度快,量子效率偏低,不利于TiO2催化剂实用化和工业化应用。
发明内容
本发明的目的在于提供一种高催化活性、高稳定性、能工业化应用的碳掺杂修饰石墨相氮化碳光催化剂及其制备方法。本发明主要是在空气气氛下热处理TiC和尿素的混合物,合成有少量C-TiO2复合g-C3N4材料,使其能有效利用太阳光能,同时提高光解水制氢效率。
本发明的碳掺杂修饰石墨相氮化碳光催化剂的化学成分质量百分比(wt%)为:C-TiO2为0.1-0.8,其余为g-C3N4,C-TiO2/g-C3N4材料形貌为C-TiO2纳米颗粒分布在层状g-C3N4表面或者插入到g-C3N4层间。
上述碳掺杂修饰石墨相氮化碳光催化剂的制备方法:
(1)按取每30g尿素加入0.5-6mg碳化钛的比例,将尿素和碳化钛置于玛瑙研钵中,充分研磨、搅动、混合10min;
(2)将混合均匀的尿素和碳化钛混合物装入容器中,然后放到马弗炉里进行热处理,其升温程序为:从室温以5-30℃/min的升温速率,升到500-600℃,并保温1-2h,随后随炉冷却,整个热处理过程均在空气气氛下进行;
(3)将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。
本发明与现有技术相比具有如下优点:
1、制备方法简单,有利于实际应用和工业化生产。
2、制备的C-TiO2/g-C3N4光催化剂保留了纯的g-C3N4和TiO2的诸多优点,即成本低廉,物理化学性质稳定,无毒,环境友好等。
3、该光催化剂可应用于光解水制氢和环境污染物降解,其五小时光催化产氢量可达5.728mmol/g,相比纯的g-C3N4和TiO2分别为2.278mmol/g、0.010mmol/g,均比单相g-C3N4和TiO2高。
附图说明
图1为实施例1制得的C-TiO2/g-C3N4光催化剂的X射线粉末衍射图(XRD);
图2为实施例1制得的C-TiO2/g-C3N4光催化剂的透射电子显微镜图(TEM);
图3为实施例1、2、4所得的C-TiO2/g-C3N4复合材料及纯g-C3N4和TiO2的光解水制氢图。
具体实施方式
实施例1
取30g尿素(天津市凯通化学试剂有限公司)和1mg碳化钛(三河市海特科技有限公司,40nm)置于玛瑙研钵中,充分研磨、搅动、混合10min;将混合均匀的尿素和碳化钛混合物装入刚玉瓷方舟中,然后放到马弗炉里进行热处理,其升温程序为:从室温以5℃/min的升温速率升到500℃,并保温2h,随后随炉冷却,整个热处理过程均在空气气氛下进行。将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。
C-TiO2/g-C3N4复合材料光催化性能测试,其条件为:300W氙灯作为光源,催化剂用量为50mg,80ml三乙醇胺水溶液,三乙醇胺占10vol.%,其五小时产氢量达到了5.8mmol/g,相比纯的g-C3N4和TiO2分别为2.2mmol/g、0.01mmol/g
实施例2
取30g尿素(天津市凯通化学试剂有限公司)和0.5mg碳化钛(三河市海特科技有限公司,40nm)置于玛瑙研钵中,充分研磨、搅动、混合10min;将混合均匀的尿素和碳化钛混合物装入刚玉瓷方舟中,然后放到马弗炉里进行热处理,其升温程序为:从室温以30℃/min的升温速率升到500℃,并保温1h,随后随炉冷却,整个热处理过程均在空气气氛下进行。将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。
C-TiO2/g-C3N4复合材料光催化性能测试,其条件为:300W氙灯作为光源,催化剂用量为50mg,80ml三乙醇胺水溶液,三乙醇胺占10vol.%。其五小时产氢量达到了3.5mmol/g,相比纯的g-C3N4和TiO2分别为2.2mmol/g、0.01mmol/g。
实施例3
取30g尿素(天津市凯通化学试剂有限公司)和2mg碳化钛(三河市海特科技有限公司,40nm)置于玛瑙研钵中,充分研磨、搅动、混合10min。将混合均匀的尿素和碳化钛混合物装入刚玉瓷方舟中,然后放到马弗炉里进行热处理。其升温程序为:从室温以10℃/min的升温速率升到550℃,并保温2h,随后随炉冷却,整个热处理过程均在空气气氛下进行。将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。
实施例4
取30g尿素(天津市凯通化学试剂有限公司)和4mg碳化钛(三河市海特科技有限公司,40nm)置于玛瑙研钵中,充分研磨、搅动、混合10min。将混合均匀的尿素和碳化钛混合物装入刚玉瓷方舟中,然后放到马弗炉里进行热处理。其升温程序为:从室温以10℃/min的升温速率升到600℃,并保温2h,随后随炉冷却,整个热处理过程均在空气气氛下进行。将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。
C-TiO2/g-C3N4复合材料光催化性能测试,其条件为:300W氙灯作为光源,催化剂用量为50mg,80ml三乙醇胺水溶液,三乙醇胺占10vol.%。其五小时产氢量达到了4.2mmol/g,相比纯的g-C3N4和TiO2分别为2.2mmol/g、0.01mmol/g。
实施例5
取30g尿素(天津市凯通化学试剂有限公司)和6mg碳化钛(三河市海特科技有限公司,40nm)置于玛瑙研钵中,充分研磨、搅动、混合10min。将混合均匀的尿素和碳化钛混合物装入刚玉瓷方舟中,然后放到马弗炉里进行热处理。其升温程序为:从室温以20℃/min的升温速率升到600℃,并保温2h,随后随炉冷却,整个热处理过程均在空气气氛下进行。将得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。

Claims (2)

1.一种碳掺杂修饰石墨相氮化碳光催化剂,其特征在于:它的化学成分质量比wt%为:C-TiO2 0.1-0.8,其余为g-C3N4,C-TiO2/g-C3N4材料形貌为C-TiO2纳米颗粒分布在层状g-C3N4表面或者插入到g-C3N4层间。
2.权利要求1的碳掺杂修饰石墨相氮化碳光催化剂的制备方法,其特征在于:
(1)按取每30g尿素加入0.5-6mg碳化钛的比例,将尿素和碳化钛置于玛瑙研钵中,充分研磨、搅动、混合10min;
(2)将混合均匀的尿素和碳化钛混合物装入容器中,然后放到马弗炉里进行热处理,其升温程序为:从室温以5-30℃/min的升温速率,升到500-600℃,并保温1-2h,随后随炉冷却,整个热处理过程均在空气气氛下进行;
(3)将步骤(2)得到的复合材料倒入玛瑙研钵中,充分研磨成粒径为2-10μm的物质,制得C-TiO2/g-C3N4光催化剂。
CN201710422459.4A 2017-06-07 2017-06-07 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法 Active CN107335456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710422459.4A CN107335456B (zh) 2017-06-07 2017-06-07 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710422459.4A CN107335456B (zh) 2017-06-07 2017-06-07 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107335456A true CN107335456A (zh) 2017-11-10
CN107335456B CN107335456B (zh) 2020-11-06

Family

ID=60220460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710422459.4A Active CN107335456B (zh) 2017-06-07 2017-06-07 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107335456B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108499588A (zh) * 2018-03-02 2018-09-07 东华大学 一种g-C3N4/MXene复合材料的制备方法
CN109794281A (zh) * 2019-03-14 2019-05-24 东华大学 一种基于MXene材料制备碳氮共掺杂纳米TiO2光催化剂的方法
CN112076777A (zh) * 2020-09-23 2020-12-15 湖南大学 一种用于co2还原的光催化剂及其制备方法
CN114100664A (zh) * 2021-12-02 2022-03-01 塔里木大学 C-TiO2/g-C3N4复合光催化材料及其合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858714A (zh) * 2016-03-30 2016-08-17 燕山大学 氧化锌-类石墨结构碳氮片状纳米复合材料的制备方法
CN106179441A (zh) * 2016-07-01 2016-12-07 陕西科技大学 一种氮化碳‑碳掺杂介孔二氧化钛复合光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858714A (zh) * 2016-03-30 2016-08-17 燕山大学 氧化锌-类石墨结构碳氮片状纳米复合材料的制备方法
CN106179441A (zh) * 2016-07-01 2016-12-07 陕西科技大学 一种氮化碳‑碳掺杂介孔二氧化钛复合光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENGWU YANG ET AL.: "Porous carbon-doped TiO2 on TiC nanostructures for enhanced photocatalytic hydrogen production under visible light", 《JOURNAL OF CATALYSIS》 *
YAJUN ZOU ET AL.: "In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution", 《CHEMICAL ENGINEERING JOURNAL》 *
YONGMEI WU 等: "Mesoporous graphitic carbon nitride and carbon-TiO2 hybrid composite photocatalysts with enhanced photocatalytic activity under visible light irradiation", 《JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108499588A (zh) * 2018-03-02 2018-09-07 东华大学 一种g-C3N4/MXene复合材料的制备方法
CN109794281A (zh) * 2019-03-14 2019-05-24 东华大学 一种基于MXene材料制备碳氮共掺杂纳米TiO2光催化剂的方法
CN112076777A (zh) * 2020-09-23 2020-12-15 湖南大学 一种用于co2还原的光催化剂及其制备方法
CN112076777B (zh) * 2020-09-23 2022-02-08 湖南大学 一种用于co2还原的光催化剂及其制备方法
CN114100664A (zh) * 2021-12-02 2022-03-01 塔里木大学 C-TiO2/g-C3N4复合光催化材料及其合成方法

Also Published As

Publication number Publication date
CN107335456B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN107335456A (zh) 一种碳掺杂修饰石墨相氮化碳光催化剂及其制备方法
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN107837817B (zh) 一种碳点/氮化碳/二氧化钛复合材料及其制备方法和应用
CN104549500B (zh) 一种非金属液相掺杂制备B掺杂g-C3N4光催化剂的方法
Li et al. Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching
CN109289888B (zh) 一种硼掺杂多孔氮化碳材料的制备方法
CN107098323A (zh) 一种g‑C3N4纳米片及其制备方法与应用
CN107297217A (zh) 一种多孔薄层石墨相氮化碳载铂光催化剂及其制备方法和应用
CN106745226A (zh) 基于低共熔溶剂合成的微纳二氧化钛和制备方法及应用
CN111054417B (zh) 一种高效铁单原子芬顿催化剂、其合成方法及应用
CN109046425A (zh) 一种MOF基衍生的复合光催化剂TiO2/g-C3N4的制备方法
CN111203262B (zh) 快速制备氮化碳纳米片负载纳米铜的方法及其产品和应用
CN106582771A (zh) 一种宽光谱响应的磁性可见光催化剂的制备方法
CN110170330A (zh) 一种丝状氮化碳的制备方法及其产品和应用
CN109876841A (zh) 一种2-氨基对苯二甲酸和胺化合物共聚合制备石墨相氮化碳可见光催化剂的方法
CN107159289A (zh) 一种原位制备g‑C3N4‑TiO2纳米异质结光催化薄膜的方法
CN109663610B (zh) 一种二维氮化碳/二维二氧化钛复合材料的制备方法
CN106238089A (zh) 一种可见光响应g‑C3N4/SnS2复合光催化剂的制备方法
CN111203256A (zh) 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
CN111604053A (zh) 三元水滑石光催化剂及其制备方法与应用
CN111204829B (zh) 基于废纸和石墨的太阳能污水净化气凝胶及其制备方法
CN113663705B (zh) 一种钒酸镧/石墨相氮化碳复合材料及其制备方法和应用
CN105688965A (zh) 介孔五氧化二铌/掺氮石墨烯高效复合光催化剂的制备方法
CN114345394B (zh) 一种可见光响应氮化硼/氮化碳复合光催化剂及其制备方法和应用
CN108479776A (zh) 一种石墨烯/铁/二氧化钛复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant