CN107330223A - 基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法 - Google Patents

基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法 Download PDF

Info

Publication number
CN107330223A
CN107330223A CN201710602816.5A CN201710602816A CN107330223A CN 107330223 A CN107330223 A CN 107330223A CN 201710602816 A CN201710602816 A CN 201710602816A CN 107330223 A CN107330223 A CN 107330223A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710602816.5A
Other languages
English (en)
Inventor
崔春义
孟坤
梁志孟
杨刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201710602816.5A priority Critical patent/CN107330223A/zh
Publication of CN107330223A publication Critical patent/CN107330223A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种基于径向非均质粘性阻尼土体模型的管桩纵向振动分析方法,假定桩周土和桩芯土为一系列相互独立的薄层,忽略土层间相互作用;桩周土体分为内部区域和外部区域,内部区域划分任意圈层,每一圈层土体各自为均质、各向同性线性粘弹性体,外部区域土体径向无限延伸,土体材料阻尼采用黏性阻尼,忽略土体径向位移;桩土界面及各圈层土界面两侧位移连续、应力平衡,且桩土系统振动为小变形;桩身混凝土为线弹性,应力波在桩身中的传播满足平截面假定;根据弹性动力学基本理论,建立平面应变条件下的桩周、桩芯土体和桩身纵向振动方程;使用Laplace变换,求解步骤5中所述的三个振动方程,得到任意激振力作用在桩顶的时域速度响应函数。

Description

基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法
技术领域
本发明涉及土建领域,更具体地,涉及一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法。
背景技术
桩-土耦合振动特性研究是桩基抗震、防震设计及桩基动力检测等工程技术领域的理论基础,一直以来亦是岩土工程和固体力学的热点问题。
众所周知,在桩基施工过程中,由于挤土、松弛以及其它扰动因素的影响,使得桩周土体沿桩基径向存在一定不均匀性,即径向非均质效应。为考虑此种径向非均质效应,国内外诸多学者取得了大量成果。这些成果可从不同角度加以分类,从作用的外荷载来看,可分为谐和荷载作用下的频域响应研究和任意荷载下时域、频域响应研究;从土体的材料阻尼来看,可分为滞回材料阻尼和粘性材料阻尼;从求解方法来看,可分为解析法、半解析法及数值方法。
土体的材料阻尼是由土体内部颗粒摩擦所引起的能量耗散,这种内摩擦是由介质颗粒结晶结构的缺损、介质颗粒之间的非弹性连接及其他热弹性过程引起的,是不可避免的,为了考虑这一内摩擦效应,采用考虑阻尼效应的土体线性本构方程,来研究材料阻尼对桩动力响应的影响是非常必要的。
在观测和实验基础上建立的常用线性阻尼本构方程可分为两类:时域本构方程和频域本构方程,前者从宏观物理模型线性粘弹性体出发直接在时域建立;后者则通过与经典的频域分析方法相匹配在频域内建立。
线性粘弹性体的时域本构模型,可以由线性弹簧和线性阻尼元件构成,线性阻尼元件的粘性应力与应变率成正比,由这两种线性单元可以构成各种线性粘弹性本构模型,可以反映真实固体的应力-应变性质。
线性滞回阻尼主要体现在频域本构中的滞回阻尼比,频域本构可以理解为时域本构的逆傅里叶变换,滞回阻尼比通常假设为常数,即假设材料处于弹性工作区域内,滞回阻尼比的变化不大,或无明显趋向性变化。另外,对谐和荷载下的稳态振动问题的频域分析,能够近似地反映土体的材料阻尼特性。然而,对非谐和振动(瞬态振动或随机振动)问题,滞回阻尼模型是不适合的,特别是在研究瞬态激振条件下桩的时域响应时,土阻尼力与振幅有关也与应变速率有关,采用滞回阻尼模型在概念上会引起矛盾,从而产生所谓“动响应的非因果性”,而此时粘性阻尼模型则比较适合,在物理上也更合理。
另外,目前大部分研究均是针对实心桩展开,而对于大直径管桩,由于桩芯土的存在,必然使得其与实心桩的振动特性存在差异。丁选明等和郑长杰等同时考虑桩周土和桩芯土,对径向均质土中管桩振动特性进行求解,并与实心桩结果进行对比,说明了在竖向荷载作用下管桩表现出与实心桩动力特性的不同。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,考虑桩周土体施工扰动,土体采用黏性阻尼模型,基于复刚度传递多圈层平面应变模型,对任意激振力作用下径向非均质黏性阻尼土中管桩纵向振动特性进行解析理论研究。
为实现上述目的,本发明的技术方案如下:
一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,包括以下步骤:
S1:假定桩周土和桩芯土为一系列相互独立的薄层,忽略土层间相互作用;
S2:桩周土体分为内部区域和外部区域,内部区域划分任意圈层,每一圈层土体各自为均质、各向同性线性粘弹性体,外部区域土体径向无限延伸,土体材料阻尼采用黏性阻尼,忽略土体径向位移;
S3:桩土界面及各圈层土界面两侧位移连续、应力平衡,且桩土系统振动为小变形;
S4:桩身混凝土为线弹性,应力波在桩身中的传播满足平截面假定;
S5:根据弹性动力学基本理论,建立平面应变条件下的桩周、桩芯土体和桩身纵向振动方程及边界条件;
S6:使用Laplace变换,求解步骤5中所述的三个振动方程,得到任意激振力作用在桩顶的时域速度响应函数,以对管桩的纵向振动进行分析。
进一步地,所述步骤S5中的桩周土体、桩芯土体和桩身纵向振动方程分别为:
桩周土体振动方程:
桩芯土体振动方程:
符合平截面假定的桩身纵向振动方程为:
其中,将桩周土体沿径向划分为n个圈层,第i圈层土的密度、剪切模量、黏性阻尼系数分别为ρi、Gi、ηi,桩芯土的密度、剪切模量、黏性阻尼系数分别为ρ0、G0、η0,设桩周第i圈层土体位移为ui(r,t),桩芯土体位移为u0(r,t),桩身位移为up(z,t),r为径向位移,t为时间,z为纵向位移,Ep为桩身弹性模量,Ap为桩身截面积;
所述步骤5中的边界条件包括:
桩芯土边界条件:
当r=0时,位移为有限值:
桩芯土与桩位移及力连续条件:
u0(r0,t)=up(r0,t) (5)
其中,r0为桩内半径,f0为桩芯土对桩身产生的切应力,τ0为桩芯土在管桩内壁的竖向剪应力,顺时针为正;
桩周土边界条件:
当r=∞时,位移为零:
其中,un+1(r,t)代表外部区域土体位移;
桩周土与桩位移及力连续条件:
u1(r1,t)=up(r1,t) (8)
其中,r1为桩外半径,u1为第1圈层土体位移,f1为桩周土对桩身产生的切应力,τ1为桩周土在管桩外壁的竖向剪应力,顺时针为正;
桩身边界条件:
桩顶作用力为p(t):
桩端处边界条件:
其中,Ep为桩身弹性模量,Ap为桩身截面积,kp,δp为桩底黏弹性支承常数。
进一步地,所述步骤S6包括以下具体步骤:
步骤1:对方程(1)、(7)进行Laplace变换,得到基于黏性阻尼的多圈层平面应变模型的土层剪切刚度递推公式为:
其中
其中,ri为第i圈层土的内边界,ri+1为第i圈层土的外边界,qi为第i圈层土固有参数,s为复变量,KKi为第i圈层土的内边界的剪切刚度,KKi+1为第i圈层土的外边界的剪切刚度,I0、I1为零阶和一阶第一类修正Bessel函数,K0、K1零阶和一阶第二类修正Bessel函数;
步骤2:对方程(2)和(4)进行Laplace变换,得到管桩内壁受到桩芯土体的剪切刚度公式
其中,q0为桩芯土固有参数;
步骤3:对方程(3)、(10)和(11)进行Laplace变换,得到桩顶复动刚度公式
其中P(iω)为p(t)的傅里叶变换,Kd′为桩顶复刚度Kd的无量纲参数,令Kd′=Kr+iKi,Kr代表桩顶动刚度,Ki代表桩顶动阻尼,α、ξ为求解化简参数,Up为up的傅里叶变换,H为桩长;
步骤4:根据(15)式得到桩顶速度导纳函数:
其中,ρp为桩身密度,VP为桩身弹性波速,Hv′为桩顶速度导纳函数Hv的无量纲化;
步骤5:根据(16)得到单位脉冲激励的时域响应为:
式中t′=t/Tc为无量纲时间,θ为无量纲频率;IFT为快速傅里叶逆变换符号;
步骤6:根据卷积定理得到任意激振力p(t)作用在桩顶的时域速度响应函数
g(t)=p(t)*h(t)=IFT[P(iω)·H(iω)] (7)
其中,h(t)为单位脉冲激励作用下时域速度响应,H(iω)为桩顶速度频率响应函数。
进一步地,所述步骤1中所述多圈层内、外区域土体剪切模量和黏性阻尼系数表达式为:
式中,G1、η1、Gn+1、ηn+1分别为桩土界面处及桩周土体内、外部区域分界面处的剪切模量和黏性阻尼系数,f(r)为描述桩周土内部区域土体性质变化的函数。
进一步地,所述步骤6中所述的激振力p(t)为半正弦脉冲激励t∈(0,T)时,T为脉冲宽度时,桩顶时域速度响应的半解析解答为:
其中,Qmax为半正弦脉冲振幅,Vv′为时域响应无量纲速度。
从上述技术方案可以看出,本发明通过采用径向非均质黏性阻尼土体模型对大直径管桩的纵向振动进行分析,黏性阻尼土体模型的阻尼力与应变速率相关,能适用于非谐和激振问题,特别是瞬态激振条件下时的桩体时域振动响应问题,同时,径向非均质性能考虑桩周土体施工扰动效应,更接近现实模型,另外,考虑了桩芯土对管桩振动特性的影响,使计算精度更高,可为桩基动力检测提供理论指导和参考作用。
附图说明
图1是本发明的基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法的流程图。
图2是本发明的桩土系统纵向耦合振动力学简化模型的示意图;
图3是本发明的桩周土多圈层模型划分示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
请参阅图1,图1是本发明的基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法的流程图。如图所示,一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,包括以下步骤:
S1:假定桩周土和桩芯土为一系列相互独立的薄层,忽略土层间相互作用。
S2:桩周土体分为内部区域和外部区域,内部区域划分任意圈层,每一圈层土体各自为均质、各向同性线性粘弹性体,外部区域土体径向无限延伸,土体材料阻尼采用黏性阻尼,忽略土体径向位移。
S3:桩土界面及各圈层土界面两侧位移连续、应力平衡,且桩土系统振动为小变形。
S4:桩身混凝土为线弹性,应力波在桩身中的传播满足平截面假定。
本发明基于平面应变模型,对任意圈层土中的黏弹性支承管桩的纵向振动特性进行研究,力学简化模型如图2所示。桩顶作用任意激振力p(t),桩芯土和桩周土对桩身产生的切应力分别为f0和f1,桩长、内半径、外半径、桩身密度、弹性模量和桩底黏弹性支承常数分别为H、r0、r1、ρp、Ep和δp、kp,桩周第i圈层土的密度、剪切模量、黏性阻尼系数分别为ρi、Gi、ηi,桩芯土的密度、剪切模量、黏性阻尼系数分别为ρ0、G0、η0
S5:根据弹性动力学基本理论,建立平面应变条件下的桩周、桩芯土体和桩身纵向振动方程和边界条件。
S6:使用Laplace变换,求解步骤5中所述的三个振动方程,得到任意激振力p(t)作用在桩顶的时域速度响应函数。
具体地,包括以下具体步骤:
步骤1:将桩周土体沿径向划分为n个圈层,第i圈层土的密度、剪切模量、黏性阻尼系数分别为ρi、Gi、ηi,桩芯土的密度、剪切模量、黏性阻尼系数分别为ρ0、G0、η0,设桩周第i圈层土体位移为ui(r,t),桩芯土体位移为u0(r,t),桩身位移为up(z,t),r为径向位移,t为时间,z为纵向位移,根据弹性动力学基本理论,建立平面应变条件下的桩周、桩芯土体和桩身纵向振动方程和边界条件分别如下:
桩周土体振动方程:
桩芯土体振动方程:
符合平截面假定的桩身纵向振动方程为:
桩芯土边界条件:
当r=0时,位移为有限值:
桩芯土与桩位移及力连续条件:
u0(r0,t)=up(r0,t) (5)
其中,r0为桩内半径,f0为桩芯土对桩身产生的切应力,τ0为桩芯土在管桩内壁的竖向剪应力,顺时针为正。
桩周土边界条件:
当r=∞时,位移为零:
其中,un+1(r,t)代表外部区域土体位移。
桩周土与桩位移及力连续条件:
u1(r1,t)=up(r1,t) (8)
其中,r1为桩外半径,u1为第1圈层土体位移,f1为桩周土对桩身产生的切应力,τ1为桩周土在管桩外壁的竖向剪应力,顺时针为正。
桩身边界条件:
桩顶作用力为p(t):
桩端处边界条件:
其中,Ep为桩身弹性模量,Ap为桩身截面积,kp,δp为桩底黏弹性支承常数。
步骤2:对方程(1)、(7)进行Laplace变换,得到基于黏性阻尼的多圈层平面应变模型的土层剪切刚度递推公式为:
其中
其中,ri为第i圈层土的内边界,ri+1为第i圈层土的外边界,qi为第i圈层土固有参数,s为复变量,KKi为第i圈层土的内边界的剪切刚度,KKi+1为第i圈层土的外边界的剪切刚度,I0、I1为零阶和一阶第一类修正Bessel函数,K0、K1零阶和一阶第二类修正Bessel函数。
步骤3:对方程(2)和(4)进行Laplace变换,得到管桩内壁受到桩芯土体的剪切刚度公式
其中,q0为桩芯土固有参数。
步骤4:对方程(3)、(10)和(11)进行Laplace变换,得到桩顶复动刚度公式
其中P(iω)为p(t)的傅里叶变换,Kd′为桩顶复刚度Kd的无量纲参数,令Kd′=Kr+iKi,Kr代表桩顶动刚度,Ki代表桩顶动阻尼,α、ξ为求解化简参数,Up为up的傅里叶变换,H为桩长。
步骤5:根据(15)式得到桩顶速度导纳函数:
其中,ρp为桩身密度,VP为桩身弹性波速,Hv′为桩顶速度导纳函数Hv的无量纲化。
步骤6:根据(16)得到单位脉冲激励的时域响应为:
式中t′=t/Tc为无量纲时间,θ为无量纲频率;IFT为快速傅里叶逆变换符号。
步骤7:根据卷积定理得到任意激振力p(t)作用在桩顶的时域速度响应函数
g(t)=p(t)*h(t)=IFT[P(iω)·H(iω)] (18)
其中,h(t)为单位脉冲激励作用下时域速度响应,H(iω)为桩顶速度频率响应函数。
当桩顶受到半正弦脉冲激励,即激振力p(t)为半正弦脉冲激励t∈(0,T)时,T为脉冲宽度,桩顶时域速度响应的半解析解答为:
其中,Qmax为半正弦脉冲振幅,Vv′为时域响应无量纲速度。
进一步的,基于桩顶速度导纳函数和桩顶速度时域响应函数,可以对桩身振动特性及桩身完整性进行评价。
上述步骤2中需要对多圈层参数进行确定。
请参阅图2和图3,假设内部区域径向厚度为b,内外部区域界面处的半径为rn+1,内部区域土层剪切模量和黏性阻尼系数随着距离圆柱体中心远近而改变,多圈层内、外区域土体剪切模量和黏性阻尼系数表达式如下:
式中,G1、η1、Gn+1、ηn+1分别为桩土界面处及桩周土体内、外部区域分界面处的剪切模量和黏性阻尼系数,f(r)为描述桩周土内部区域土体性质变化的函数。
综上所述,本发明的基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,其采用的阻尼模型为桩土耦合振动体系提供的阻尼力与应变速率相关,能适用于非谐和激振问题,特别是瞬态激振条件下时,桩体时域振动响应问题,而径向非均质性能考虑桩周土体施工扰动效应,可为桩基动力检测提供理论指导和参考作用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,其特征在于,包括以下步骤:
S1:假定桩周土和桩芯土为一系列相互独立的薄层,忽略土层间相互作用;
S2:桩周土体分为内部区域和外部区域,内部区域划分任意圈层,每一圈层土体各自为均质、各向同性线性粘弹性体,外部区域土体径向无限延伸,土体材料阻尼采用黏性阻尼,忽略土体径向位移;
S3:桩土界面及各圈层土界面两侧位移连续、应力平衡,且桩土系统振动为小变形;
S4:桩身混凝土为线弹性,应力波在桩身中的传播满足平截面假定;
S5:根据弹性动力学基本理论,建立平面应变条件下的桩周土体、桩芯土体和桩身纵向振动方程及边界条件;
S6:使用Laplace变换,求解步骤5中所述的三个振动方程,得到任意激振力作用在桩顶的时域速度响应函数,以对管桩的纵向振动进行分析。
2.根据权利要求1所述的一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,其特征在于,所述步骤S5中的桩周土体、桩芯土体和桩身纵向振动方程分别为:
桩周土体振动方程:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mi>i</mi> </msub> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>3</mn> </msup> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> <mo>&amp;part;</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>G</mi> <mi>i</mi> </msub> <mi>r</mi> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mi>r</mi> </mfrac> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
桩芯土体振动方程:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>0</mn> </msub> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>3</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> <mo>&amp;part;</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>G</mi> <mn>0</mn> </msub> <mi>r</mi> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>&amp;eta;</mi> <mn>0</mn> </msub> <mi>r</mi> </mfrac> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
符合平截面假定的桩身纵向振动方程为:
<mrow> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mn>0</mn> </msub> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mn>1</mn> </msub> <msub> <mi>f</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>&amp;rho;</mi> <mi>p</mi> </msub> <msub> <mi>E</mi> <mi>p</mi> </msub> </mfrac> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
其中,将桩周土体沿径向划分为n个圈层,第i圈层土的密度、剪切模量、黏性阻尼系数分别为ρi、Gi、ηi,桩芯土的密度、剪切模量、黏性阻尼系数分别为ρ0、G0、η0,设桩周第i圈层土体位移为ui(r,t),桩芯土体位移为u0(r,t),桩身位移为up(z,t),r为径向位移,t为时间,z为纵向位移,Ep为桩身弹性模量,Ap为桩身截面积;
所述步骤5中的边界条件包括:
桩芯土边界条件:
当r=0时,位移为有限值:
桩芯土与桩位移及力连续条件:
u0(r0,t)=up(r0,t) (5)
<mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>&amp;tau;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mrow> <mi>r</mi> <mo>=</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
其中,r0为桩内半径,f0为桩芯土对桩身产生的切应力,τ0为桩芯土在管桩内壁的竖向剪应力,顺时针为正;
桩周土边界条件:
当r=∞时,位移为零:
<mrow> <munder> <mi>lim</mi> <mrow> <mi>r</mi> <mo>&amp;RightArrow;</mo> <mi>&amp;infin;</mi> </mrow> </munder> <msub> <mi>u</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
其中,un+1(r,t)代表外部区域土体位移;
桩周土与桩位移及力连续条件:
u1(r1,t)=up(r1,t) (8)
<mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mrow> <mi>r</mi> <mo>=</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
其中,r1为桩外半径,u1为第1圈层土体位移,f1为桩周土对桩身产生的切应力,τ1为桩周土在管桩外壁的竖向剪应力,顺时针为正;
桩身边界条件:
桩顶作用力为p(t):
<mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>z</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
桩端处边界条件:
<mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>z</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>z</mi> <mo>=</mo> <mi>H</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>p</mi> </msub> <msub> <mi>u</mi> <mi>p</mi> </msub> <mo>(</mo> <mrow> <mi>z</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>&amp;delta;</mi> <mi>p</mi> </msub> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
其中,Ep为桩身弹性模量,Ap为桩身截面积,kp,δp为桩底黏弹性支承常数。
3.根据权利要求1所述的一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,其特征在于,所述步骤S6包括以下具体步骤:
步骤1:对方程(1)、(7)进行Laplace变换,得到基于黏性阻尼的多圈层平面应变模型的土层剪切刚度递推公式为:
<mrow> <msub> <mi>KK</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mi>i</mi> </msub> <msub> <mi>q</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mi>s</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>E</mi> <mi>i</mi> </msub> <msub> <mi>KK</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>D</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>KK</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
其中
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>q</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>q</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>r</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
其中,ri为第i圈层土的内边界,ri+1为第i圈层土的外边界,qi为第i圈层土固有参数,s为复变量,KKi为第i圈层土的内边界的剪切刚度,KKi+1为第i圈层土的外边界的剪切刚度,I0、I1为零阶和一阶第一类修正Bessel函数,K0、K1零阶和一阶第二类修正Bessel函数;
步骤2:对方程(2)和(4)进行Laplace变换,得到管桩内壁受到桩芯土体的剪切刚度公式:
<mrow> <msub> <mi>KK</mi> <mn>0</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mn>0</mn> </msub> <msub> <mi>&amp;tau;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>U</mi> <mi>p</mi> </msub> </mfrac> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;pi;r</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mfrac> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
其中,q0为桩芯土固有参数;
步骤3:对方程(3)、(10)和(11)进行Laplace变换,得到桩顶复动刚度公式:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>U</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <mo>,</mo> <mi>i</mi> <mi>&amp;omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> <mi>H</mi> </mfrac> <msup> <msub> <mi>K</mi> <mi>d</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <msub> <mi>K</mi> <mi>d</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mrow> <mi>&amp;xi;</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&amp;xi;</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
其中P(iω)为p(t)的傅里叶变换,Kd′为桩顶复刚度Kd的无量纲参数,令Kd′=Kr+iKi,Kr代表桩顶动刚度,Ki代表桩顶动阻尼,α、ξ为求解化简参数,Up为up的傅里叶变换,H为桩长;
步骤:4:根据(15)式得到桩顶速度导纳函数:
<mrow> <msub> <mi>H</mi> <mi>v</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>i&amp;omega;U</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <mi>i</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>i</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>i</mi> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>&amp;xi;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> <msub> <mi>V</mi> <mi>P</mi> </msub> </mrow> </mfrac> <msup> <msub> <mi>H</mi> <mi>v</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
其中,ρp为桩身密度,VP为桩身弹性波速,Hv′为桩顶速度导纳函数Hv的无量纲化;
步骤5:根据(16)得到单位脉冲激励的时域响应为:
<mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>I</mi> <mi>F</mi> <mi>T</mi> <mo>&amp;lsqb;</mo> <msub> <mi>H</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </munderover> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> <msub> <mi>V</mi> <mi>P</mi> </msub> </mrow> </mfrac> <msup> <msub> <mi>H</mi> <mi>v</mi> </msub> <mo>&amp;prime;</mo> </msup> <msup> <mi>e</mi> <mrow> <msup> <mi>i&amp;theta;t</mi> <mo>&amp;prime;</mo> </msup> </mrow> </msup> <mi>d</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
式中t′=t/Tc为无量纲时间,θ为无量纲频率;IFT为快速傅里叶逆变换符号;
步骤6:根据卷积定理得到任意激振力p(t)作用在桩顶的时域速度响应函数g(t)=p(t)*h(t)=IFT[P(iω)·H(iω)] (18)
其中,h(t)为单位脉冲激励作用下时域速度响应,H(iω)为桩顶速度频率响应函数。
4.根据权利要求3所述的一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,其特征在于步骤1中所述多圈层内、外区域土体剪切模量和黏性阻尼系数表达式为:
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mo>&amp;RightArrow;</mo> <mi>r</mi> <mo>=</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;RightArrow;</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <msub> <mi>r</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>G</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;RightArrow;</mo> <mi>r</mi> <mo>&amp;GreaterEqual;</mo> <msub> <mi>r</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mn>1</mn> </msub> <mo>&amp;RightArrow;</mo> <mi>r</mi> <mo>=</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&amp;RightArrow;</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <msub> <mi>r</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;RightArrow;</mo> <mi>r</mi> <mo>&amp;GreaterEqual;</mo> <msub> <mi>r</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
式中,G1、η1、Gn+1、ηn+1分别为桩土界面处及桩周土体内、外部区域分界面处的剪切模量和黏性阻尼系数,f(r)为描述桩周土内部区域土体性质变化的函数。
5.根据权利要求3所述的一种基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法,其特征在于步骤6中所述的激振力p(t)为半正弦脉冲激励时,T为脉冲宽度时,桩顶时域速度响应的半解析解答为:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>Q</mi> <mi>max</mi> </msub> <mi>I</mi> <mi>F</mi> <mi>T</mi> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> <msub> <mi>V</mi> <mi>P</mi> </msub> </mrow> </mfrac> <msup> <msub> <mi>H</mi> <mi>v</mi> </msub> <mo>&amp;prime;</mo> </msup> <mfrac> <mrow> <mi>&amp;pi;</mi> <mi>T</mi> </mrow> <mrow> <msup> <mi>&amp;pi;</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>T</mi> <mn>2</mn> </msup> <msup> <mi>&amp;omega;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>i</mi> <mi>&amp;omega;</mi> <mi>T</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <msub> <mi>Q</mi> <mi>max</mi> </msub> <mrow> <msub> <mi>&amp;rho;</mi> <mi>p</mi> </msub> <msub> <mi>A</mi> <mi>p</mi> </msub> <msub> <mi>V</mi> <mi>P</mi> </msub> </mrow> </mfrac> <msup> <msub> <mi>V</mi> <mi>v</mi> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
其中,Qmax为半正弦脉冲振幅,Vv′为时域响应无量纲速度。
CN201710602816.5A 2017-07-21 2017-07-21 基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法 Pending CN107330223A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710602816.5A CN107330223A (zh) 2017-07-21 2017-07-21 基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710602816.5A CN107330223A (zh) 2017-07-21 2017-07-21 基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法

Publications (1)

Publication Number Publication Date
CN107330223A true CN107330223A (zh) 2017-11-07

Family

ID=60199705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710602816.5A Pending CN107330223A (zh) 2017-07-21 2017-07-21 基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法

Country Status (1)

Country Link
CN (1) CN107330223A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416130A (zh) * 2018-02-27 2018-08-17 大连海事大学 轴对称径向非均质土中大直径桩纵向振动分析方法
CN108732242A (zh) * 2018-05-31 2018-11-02 大连海事大学 基于桩体三维轴对称模型的浮承桩纵向振动分析方法
CN108776173A (zh) * 2018-04-12 2018-11-09 山东大学 一种岩土结构动力安全设计不排水分析适应性判别方法
CN108842831A (zh) * 2018-05-30 2018-11-20 北京工业大学 层状横观黏弹性土中部分埋入群桩的竖向振动分析方法
CN109214123A (zh) * 2018-10-18 2019-01-15 大连海事大学 一种基于饱和虚土桩模型的浮承桩纵向振动分析方法
CN110147630A (zh) * 2019-05-29 2019-08-20 大连海事大学 一种横向惯性效应径向非均质土中管桩纵向振动分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424537A (zh) * 2013-08-21 2013-12-04 国家电网公司 检测饱和黏弹性土中圆柱形隧洞振动特性的方法
US9471721B1 (en) * 2012-01-18 2016-10-18 Bernard J. Gochis Process for dynamic design of pile foundation systems using tunable pile members capable of absorbing vibrations
CN106503332A (zh) * 2016-10-21 2017-03-15 福州大学 一种引入非线性弹簧的微型桩基‑土动力响应求解方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9471721B1 (en) * 2012-01-18 2016-10-18 Bernard J. Gochis Process for dynamic design of pile foundation systems using tunable pile members capable of absorbing vibrations
CN103424537A (zh) * 2013-08-21 2013-12-04 国家电网公司 检测饱和黏弹性土中圆柱形隧洞振动特性的方法
CN106503332A (zh) * 2016-10-21 2017-03-15 福州大学 一种引入非线性弹簧的微型桩基‑土动力响应求解方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨冬英: "复杂非均质土中桩土竖向振动理论研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
赵会杰: "径向非均质粘弹性单相土中管桩纵向振动特性分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416130A (zh) * 2018-02-27 2018-08-17 大连海事大学 轴对称径向非均质土中大直径桩纵向振动分析方法
CN108776173A (zh) * 2018-04-12 2018-11-09 山东大学 一种岩土结构动力安全设计不排水分析适应性判别方法
CN108776173B (zh) * 2018-04-12 2019-02-26 山东大学 一种岩土结构动力安全设计不排水分析适应性判别方法
CN108842831A (zh) * 2018-05-30 2018-11-20 北京工业大学 层状横观黏弹性土中部分埋入群桩的竖向振动分析方法
CN108732242A (zh) * 2018-05-31 2018-11-02 大连海事大学 基于桩体三维轴对称模型的浮承桩纵向振动分析方法
CN108732242B (zh) * 2018-05-31 2020-09-01 大连海事大学 基于桩体三维轴对称模型的浮承桩纵向振动分析方法
CN109214123A (zh) * 2018-10-18 2019-01-15 大连海事大学 一种基于饱和虚土桩模型的浮承桩纵向振动分析方法
CN110147630A (zh) * 2019-05-29 2019-08-20 大连海事大学 一种横向惯性效应径向非均质土中管桩纵向振动分析方法
CN110147630B (zh) * 2019-05-29 2022-10-04 大连海事大学 一种横向惯性效应径向非均质土中管桩纵向振动分析方法

Similar Documents

Publication Publication Date Title
CN107330223A (zh) 基于径向非均质黏性阻尼土体模型的管桩纵向振动分析方法
CN107620329A (zh) 考虑竖向波动效应径向非均质土中管桩纵向振动分析方法
CN107506564A (zh) 考虑竖向波动效应径向非均质土中桩纵向振动分析方法
CN107604957A (zh) 基于黏性阻尼模型复杂非均质土中管桩纵向振动分析方法
CN108416130B (zh) 轴对称径向非均质土中大直径桩纵向振动分析方法
Nasr Experimental and theoretical studies of laterally loaded finned piles in sand
CN108446460B (zh) 一种径向非均质、纵向成层土体中桩基纵向振动分析方法
Wang et al. Comparative study on buffeting performance of Sutong Bridge based on design and measured spectrum
Joshi et al. Dynamic analysis of a clamped wavy single walled carbon nanotube based nanomechanical sensors
CN110598262A (zh) 直桩垂直阻抗的计算方法
CN108732242A (zh) 基于桩体三维轴对称模型的浮承桩纵向振动分析方法
CN109446637B (zh) 一种基于层状饱和虚土桩的浮承桩纵向振动分析方法
CN109359390B (zh) 一种轴对称双向非均质黏性阻尼土中桩基扭转振动分析方法
CN106202817A (zh) 一种基于现场实测大型冷却塔综合等效阻尼比取值方法
CN109101752B (zh) 一种复杂水工建筑物局部结构自振频率计算方法
CN110222400B (zh) 一种横向惯性效应双向非均质土中管桩纵向振动分析方法
CN110147630B (zh) 一种横向惯性效应径向非均质土中管桩纵向振动分析方法
Chandrasekaran et al. Dynamic response of laterally loaded pile groups in clay
Tripathy et al. Investigation of dynamic behaviour for turbo generator frame foundation through experimental and computational approach
Kuo et al. Significance of subgrade damping on structural evaluation of pavements
Kjolsing et al. Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
Yang et al. Horizontal dynamic behavior of partially embedded pile groups in layer cross-anisotropic poroelastic saturated soils under lateral cyclic and axial coupling loadings
Wang et al. Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge
CN110093951B (zh) 一种基于虚土桩模型的摩擦桩纵向振动分析方法
Ghorbanpour Arani et al. Nonlinear viscose flow induced nonlocal vibration and instability of embedded DWCNC via DQM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171107

RJ01 Rejection of invention patent application after publication