CN107308953A - 高活性Au‑Cu双金属纳米可见光催化剂及其制备方法 - Google Patents

高活性Au‑Cu双金属纳米可见光催化剂及其制备方法 Download PDF

Info

Publication number
CN107308953A
CN107308953A CN201710367733.2A CN201710367733A CN107308953A CN 107308953 A CN107308953 A CN 107308953A CN 201710367733 A CN201710367733 A CN 201710367733A CN 107308953 A CN107308953 A CN 107308953A
Authority
CN
China
Prior art keywords
visible light
catalysts
nano
catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710367733.2A
Other languages
English (en)
Inventor
朱爱民
朱斌
李小松
刘景林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201710367733.2A priority Critical patent/CN107308953A/zh
Publication of CN107308953A publication Critical patent/CN107308953A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种高活性Au‑Cu双金属纳米可见光催化剂及其制备方法,是将可见光催化剂负载于金属氧化物载体表面,所述可见光催化剂为经过含氧气氛等离子体活化处理的Au和Cu纳米复合颗粒,金属总负载量为1~10wt%,Au与Cu的摩尔比为1~4:1~4。不仅制造成本显著低于常规纳米Au可见光催化剂,而且可见光催化活性及稳定性也远优于纳米Au可见光催化剂或Cu可见光催化剂;制备工艺简单,仅需采用等离子体快速的活化处理即可直接使用,极大地节省能量,缩短了催化剂的制备周期。

Description

高活性Au-Cu双金属纳米可见光催化剂及其制备方法
技术领域
本发明属于气体污染治理领域,尤其涉及一种成本低、稳定性好的高活性Au-Cu双金属纳米可见光催化剂及其制备方法。
背景技术
负载于半导体载体表面的纳米催化剂因其独特的可见光吸收性质及优异的催化性能,将成为环境领域极具应用前景的可见光催化剂,纳米Au催化剂就是其中一种。纳米Au催化剂在可见光下能激发强局域表面等离激元共振效应产生热电子/空穴对,从而驱动表面氧化还原反应的进行;同时纳米Au-载体界面处形成的肖特基能垒则可有效阻止热电子跃回与空穴复合以提高量子效率,因而其可应用于可见光催化脱除室内气体污染物。然而,纳米Au催化剂的昂贵成本及其较差的稳定性,限制了其实际应用。
发明内容
本发明为了解决现有技术所存在的上述技术问题,提供一种成本低、稳定性好的高活性Au-Cu双金属纳米可见光催化剂及其制备方法。
本发明的技术方案是:一种高活性Au-Cu双金属纳米可见光催化剂,是将可见光催化剂负载于金属氧化物载体表面,所述可见光催化剂为经过含氧气氛等离子体活化处理的Au和Cu纳米复合颗粒,金属总负载量为1~10wt%,Au与Cu的摩尔比为1~4:1~4。
一种如上所述高活性Au-Cu双金属纳米可见光催化剂的制备方法,依次按照如下步骤进行:
a. 分别配制Au的前驱体标准溶液和Cu的前驱体标准溶液;
b. 按照金属总负载量1~10wt%、Au与Cu的摩尔比为1~4:1~4的比例将两种前驱体溶液混合,然后将混合的前驱体溶液浸渍金属氧化物载体,得浸渍品;
c. 用碱液或热水清洗浸渍品并通过抽滤或离心的方法去除多余溶液;
d.将c步骤所得固体在60~100 oC干燥3~10 h;
e.用含氧气氛等离子体活化处理,活化处理气体流量50~300 ml/min,氧含量5~100%,输入功率5~10 W,处理时间10~40 min,制得金属氧化物上负载Au-Cu纳米复合颗粒的可见光催化剂。
本发明的可见光催化剂是经过含氧气氛等离子体活化处理的Au和Cu纳米复合颗粒,不仅制造成本显著低于常规纳米Au可见光催化剂,而且可见光催化活性及稳定性也远优于纳米Au可见光催化剂或Cu可见光催化剂;制备工艺简单,仅需采用等离子体快速的活化处理即可直接使用,极大地节省能量,缩短了催化剂的制备周期。
具体实施方式
实施例1:
依次按照如下步骤进行:
a. 称取1 g氯金酸溶于100 ml去离子水中配制2.43×10-2 mol/L的氯金酸标准溶液(Au的前驱体标准溶液),称取1.3 g硝酸铜溶于50 ml去离子水中配制0.11 mol/L的硝酸铜标准溶液(Cu的前驱体标准溶液);
b.称取1 g氧化铈(CeO2)置于25ml烧杯中,用移液管量取1.1 ml氯金酸标准溶液和2.25 ml硝酸铜溶液逐滴加入烧杯中浸渍氧化铈,并超声处理30 min,静置过夜,得以氧化铈为载体的浸渍品;
c.用大量80 oC热水清洗所得浸渍品并进行抽滤处理,直到在滤过液中滴加硝酸银溶液不产生白色沉淀为止,即彻底去除残留氯离子;
d.将所得固体在烘箱中70 oC干燥6 h;
e.将所得干燥固体用O2含量50%的氧氩混合气介质阻挡放电等离子体处理30 min,气体流速120 ml/min,输入功率5 W,制得金属担载量为2 wt%的Au-Cu/CeO2纳米可见光催化剂,两金属的摩尔比为Au:Cu = 0.5:1.5。
本发明实施例1的Au-Cu/CeO2纳米可见光催化剂在可见光辐照下,对模拟空气中甲醛氧化脱除实验如下:含50 ppm 甲醛、流量为100 SCCM的模拟空气,单程流过光催化反应器,当可见光光强为100 mW/cm2,高达90%的甲醛氧化为CO2,显示了高可见光催化活性且活性稳定;Au担载量2 wt%的Au/CeO2可见光催化剂,相同测试条件下甲醛转化率不足80%且活性逐渐下降;而担载量2 wt%的Cu/CeO2可见光催化剂,在相同测试条件下甲醛几乎无转化。
实施例2:
依次按照如下步骤进行:
a. 称取1 g氯金酸溶于100 ml去离子水中配制2.43×10-2 mol/L的氯金酸标准溶液(Au的前驱体标准溶液),称取1.3 g硝酸铜溶于50 ml去离子水中配制0.11 mol/L的硝酸铜标准溶液(Cu的前驱体标准溶液);
b.称取2 g氧化钛(TiO2)置于100ml烧杯中,用移液管量取a中4.4 ml氯金酸标准溶液和3.0 ml硝酸铜溶液逐滴加入烧杯中浸渍氧化钛,并超声处理30 min,静置过夜,得以氧化钛为载体的浸渍品;
c.采用pH≈9的氨水溶液对所得浸渍品进行10 min的超声清洗,后离心处理10 min除去上层清液,重复上述过程,直到在上层清液中滴加硝酸银溶液不产生白色沉淀为止,即彻底去除残留氯离子;
d.将所得固体在烘箱中80 oC干燥6 h;
e.将所得干燥固体用O2气氛介质阻挡放电等离子体处理30 min,气体流速100 ml/min,输入功率5 W,制得金属担载量为2 wt%的Au-Cu/ TiO2纳米可见光催化剂,两金属的摩尔比为Au:Cu =1:1。
本发明实施例2的Au-Cu/ TiO2纳米可见光催化剂在可见光辐照下,对模拟空气中CO氧化脱除实验如下:含1200 ppm CO、流量为100 SCCM的模拟空气,单程流过光催化反应器,当可见光光强为100 mW/cm2,高达87%的CO氧化为CO2,显示了高可见光催化活性且活性稳定;Au担载量2 wt%的Au/ TiO2可见光催化剂,相同测试条件下CO转化率不足60%且活性逐渐下降;而担载量2 wt%的Cu/ TiO2可见光催化剂,在相同测试条件下CO几乎无转化。
实施例3:
依次按照如下步骤进行:
a. 称取1 g氯金酸溶于100 ml去离子水中配制2.43×10-2 mol/L的氯金酸标准溶液(Au的前驱体标准溶液),称取1.3 g硝酸铜溶于50 ml去离子水中配制0.11 mol/L的硝酸铜标准溶液(Cu的前驱体标准溶液);
b.称取1 g氧化锌(ZnO)置于100ml烧杯中,用移液管量取a中4.4 ml氯金酸标准溶液和3.0 ml硝酸铜溶液逐滴加入烧杯中浸渍氧化锌,并超声处理30 min,静置过夜,得以氧化锌为载体的浸渍品;
c.称取0.72 g氢氧化钠溶于180 ml去离子水中配制0.1 mol/L的氢氧化钠碱性溶液,向所得浸渍品中加入氢氧化钠溶液并进行10 min的超声清洗,后离心处理10 min除去上层清液,重复上述过程,直到在上层清液中滴加硝酸银溶液不产生白色沉淀为止,即彻底去除残留氯离子;
d.将所得固体在烘箱中60 oC干燥6 h;
e.将所得干燥固体用O2气氛辉光放电等离子体处理30 min,气体流速100 ml/min,输入功率5 W,制得担载量2 wt% Au-Cu/ZnO纳米可见光催化剂,两金属的摩尔比为Au:Cu =1.5:0.5。
本发明实施例3的Au-Cu/ZnO纳米可见光催化剂在可见光辐照下,对模拟空气中CO氧化脱除实验如下:含1000 ppm CO、流量为200 SCCM的模拟空气,单程流过光催化反应器,当可见光光强为100 mW/cm2,高达70%的CO氧化为CO2,显示了高可见光催化活性且活性稳定;Au担载量2 wt%的Au/ ZnO可见光催化剂,相同测试条件下CO转化率不足50%且活性逐渐下降;而担载量2 wt%的Cu/ZnO可见光催化剂,在相同测试条件下CO几乎无转化。

Claims (2)

1.一种高活性Au-Cu双金属纳米可见光催化剂,是将可见光催化剂负载于金属氧化物载体表面,其特征在于:所述可见光催化剂为经过含氧气氛等离子体活化处理的Au和Cu纳米复合颗粒,金属总负载量为1~10wt%,Au与Cu的摩尔比为1~4:1~4。
2.一种如权利要求1所述高活性Au-Cu双金属纳米可见光催化剂的制备方法,其特征在于依次按照如下步骤进行:
a. 分别配制Au的前驱体标准溶液和Cu的前驱体标准溶液;
b. 按照金属总负载量1~10wt%、Au与Cu的摩尔比为1~4:1~4的比例将两种前驱体溶液混合,然后将混合的前驱体溶液浸渍金属氧化物载体,得浸渍品;
c. 用碱液或热水清洗浸渍品并通过抽滤或离心的方法去除多余溶液;
d.将c步骤所得固体在60~100 oC干燥3~10 h;
e.用含氧气氛等离子体活化处理,活化处理气体流量50~300 ml/min,氧含量5~100%,输入功率5~10 W,处理时间10~40 min,制得金属氧化物上负载Au-Cu纳米复合颗粒的可见光催化剂。
CN201710367733.2A 2017-05-23 2017-05-23 高活性Au‑Cu双金属纳米可见光催化剂及其制备方法 Pending CN107308953A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710367733.2A CN107308953A (zh) 2017-05-23 2017-05-23 高活性Au‑Cu双金属纳米可见光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710367733.2A CN107308953A (zh) 2017-05-23 2017-05-23 高活性Au‑Cu双金属纳米可见光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN107308953A true CN107308953A (zh) 2017-11-03

Family

ID=60182032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710367733.2A Pending CN107308953A (zh) 2017-05-23 2017-05-23 高活性Au‑Cu双金属纳米可见光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107308953A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590028A (zh) * 2018-11-28 2019-04-09 浙江工商大学 一种利用超声雾化等离子体反应制备纳米级催化剂的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935364A (zh) * 2012-11-13 2013-02-20 福州大学 一种室温下可见光催化氧化co的负载型双金属催化剂
CN103157469A (zh) * 2013-04-11 2013-06-19 北京化工大学 负载型双金属纳米晶催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935364A (zh) * 2012-11-13 2013-02-20 福州大学 一种室温下可见光催化氧化co的负载型双金属催化剂
CN103157469A (zh) * 2013-04-11 2013-06-19 北京化工大学 负载型双金属纳米晶催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUAN C. DURÁN-ÁLVAREZA等: ""Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag andCu) and bi- (Au–Ag and Au–Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight"", 《CATALYSIS TODAY》 *
邓晓清: "氧等离子体活化及羟基化增强氧化钛光催化剂活性的研究", 《大连理工大学博士学位论文》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590028A (zh) * 2018-11-28 2019-04-09 浙江工商大学 一种利用超声雾化等离子体反应制备纳米级催化剂的方法

Similar Documents

Publication Publication Date Title
Wu et al. Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen
CN104549368B (zh) 一种负载双金属型Cu‑Pt/TiO2‑NBs催化剂的制备方法与应用
Hao et al. Modification of heterogeneous photocatalysts for selective organic synthesis
Sun et al. Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts
Pathak et al. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction
CN104772110B (zh) 一种可见光响应型空气净化器光触媒滤网及其制备方法
CN105618066B (zh) 一种催化湿式氧化催化剂及其制备方法
CN108816233A (zh) 一种用于苯催化氧化的铜钴复合氧化物催化剂的制备方法
CN103586048A (zh) 一种纳米Pd磁性催化剂、制备及用于液相催化反应
CN106215932A (zh) 一种新型臭氧催化剂及其制备方法
CN108855078A (zh) 一种Ag-(010)晶面BiVO4@RGO光催化剂及其制备方法
CN109675607A (zh) Fe3O4@ZnO@N-C复合光催化材料的制备方法
CN101028596B (zh) 一种氮氧化物氧化催化剂的制备方法
CN102698777B (zh) Ag/AgCl/BiMg2VO6复合光催化剂的制备方法
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN105195143A (zh) 一种介孔光催化材料及其制备方法
CN102389836B (zh) 聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法
CN102101051A (zh) 一种能降解氮氧化物的碳纳米管负载型纳米光催化材料的制备方法
CN114985011A (zh) 一种TiO2/MXene/MOFs光催化材料及其制备方法
CN104368338B (zh) 一种具有氨基修饰的Pd/TiO2光催化剂的制备方法
CN107308953A (zh) 高活性Au‑Cu双金属纳米可见光催化剂及其制备方法
CN105709737B (zh) 催化湿式氧化催化剂及其制法
CN103816902A (zh) 一种磁载TiO2复合光催化剂材料的制备方法
CN102407109A (zh) 具有可见光活性暴露晶面的TiO2光催化剂的制备方法
CN101798092A (zh) 聚铁硅盐及其制备方法和其在水处理中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171103