CN107282048B - 一种通过原子置换制备高稳定性纳米催化剂的方法 - Google Patents

一种通过原子置换制备高稳定性纳米催化剂的方法 Download PDF

Info

Publication number
CN107282048B
CN107282048B CN201710492178.6A CN201710492178A CN107282048B CN 107282048 B CN107282048 B CN 107282048B CN 201710492178 A CN201710492178 A CN 201710492178A CN 107282048 B CN107282048 B CN 107282048B
Authority
CN
China
Prior art keywords
nial
obtains
nano catalyst
nanocatalyst
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710492178.6A
Other languages
English (en)
Other versions
CN107282048A (zh
Inventor
张先华
王理
刘畅
杨海亮
林敬东
王勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Sinochem Quanzhou Petrochemical Co Ltd
Original Assignee
Xiamen University
Sinochem Quanzhou Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University, Sinochem Quanzhou Petrochemical Co Ltd filed Critical Xiamen University
Priority to CN201710492178.6A priority Critical patent/CN107282048B/zh
Publication of CN107282048A publication Critical patent/CN107282048A/zh
Application granted granted Critical
Publication of CN107282048B publication Critical patent/CN107282048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

一种通过原子置换制备高稳定性纳米催化剂的方法,涉及纳米催化剂。将活性组分从复合氧化物纳米结构中置换;由得到的复合氧化物晶体结构用金属替换,得纳米催化剂。由于活性金属和载体具有相关性,两者之间相互作用会比较强。催化表征结果证明,制备的纳米催化剂,较同类浸渍法催化剂稳定性更高、性质更加稳定。合成方法有望推广制备出一系列的高稳定性纳米催化剂。

Description

一种通过原子置换制备高稳定性纳米催化剂的方法
技术领域:
本发明涉及纳米催化剂,尤其是涉及一种通过原子置换制备高稳定性纳米催化剂的方法。
背景技术
近年来,复合过渡金属氧化物以及过渡金属与后过渡金属氧化物复合生成的尖晶石类等整比或者非整比复合氧化物(AxB3-xO4)材料在学术界和工业界都引起了广泛关注,这源自于其优良的理化性质,包括电性质、高熔点、高机械强度以及合适的化学惰性等等。此类化合物在实际应用过程中具有使用寿命长、造价低等优点,其在能源,环保领域展现出良好的应用前景。
在能源存储与转化方面,传统电池材料受制于使用寿命和成本等因素目前还难于满足低价、超长待机等实际需求。而AxB3-xO4材料有望在降低成本和延长使用寿命方面发挥重要的作用。除了用作电极材料,此类复合氧化物还被用作催化剂的载体材料以制备高活性、高稳定性的纳米催化剂,有望在能源利用与转化方面发挥重大作用。纳米催化剂的高稳定性对于其规模化应用至关重要。一方面需要载体具有很好的稳定性,另一方面活性组分在载体材料上要实现固载,两者缺其一都会最终影响到催化剂的寿命。前者恰好是此类复合氧化物材料的特色,而后者则需要开发合适的固载方法。目前最常见的方法有浸渍法、共沉淀法和溶胶-凝胶法等。其中浸渍法具有操作简单,适于批量生产等优点,在工业生产中广泛应用。然而浸渍法制备的催化剂活性组分和载体之间的相互作用比较弱,导致这种方法制备的纳米催化剂稳定性通常比较差。共沉淀和溶胶-凝胶法一般是载体和活性组分一锅法生成,不太适合既得载体的担载和调控,而且对于精确控制载体和活性组分的形貌方面也不具优势。基于此,非常有必要开发更多的合成方法,以适应纳米催化剂的多样性需求。
参考文献:Changzhou Yuan,Hao Nin Wu,Yi Xie,Xiong Wen(David)Lou,MixedTransition-Metal Oxides:Design,Synthesis,and Energy-Related Applications,Angew.Chem.Int.Ed.,2014,53,1488-1504.
发明内容
本发明的目的在于提供一种通过原子置换制备高稳定性纳米催化剂的方法。
所述通过原子置换制备高稳定性纳米催化剂的方法,包括以下步骤:
1)将活性组分从复合氧化物纳米结构中置换;
在步骤1)中,所述复合氧化物可选自AxB3-xO4,其中A=Mg,Zn,Ni,Co,Ca,Cu,稀土元素Ln等,B=Al,Si,Cr,Bi,Fe,Ga等。
2)由步骤1)得到的复合氧化物晶体结构用金属替换,得到纳米催化剂。
本发明由于活性金属和载体具有相关性,两者之间相互作用会比较强。催化表征结果证明,本发明制备的纳米催化剂,较同类浸渍法催化剂稳定性更高、性质更加稳定。这种合成方法有望推广制备出一系列的高稳定性纳米催化剂。
附图说明
图1为本发明Ni/ZnAl2O4纳米催化剂置换法制备示意图。
图2为本发明置换法制备Ni/ZnAl2O4纳米催化剂的SEM图.
图3为本发明实施例的XRD图。在图3中,a为置换得到的Ni/ZnAl2O4纳米催化剂(Ni/ZnAl2O4nanocatalysts),b为锌铝尖晶石复合氧化物载体XRD曲线(ZnAl2O4nanostructures)。
图4为置换法制备Ni/MgAl2O4纳米催化剂SEM图。
图5为置换法制备Ni/MgAl2O4纳米催化剂与NiAl2O4直接还原XRD对比图。
图6为浸渍法制备Ni/γ-Al2O3纳米催化剂合成气甲烷化反应催化性能表征结果,反应条件:5.0mg Cat.+995mg quartz,450℃,3.0Mpa,60mL/min。
图7为置换法法制备Ni/ZnAl2O4纳米催化剂合成气甲烷化反应催化性能表征结果,反应条件:200mg+800mg quartz,3.0Mpa,450℃,30mL/min。
具体实施方式
合成实施例1:Ni/ZnAl2O4纳米催化剂的合成
(1)NiAl2O4纳米结构的合成,将Ni(NO3)2和Al(NO3)3可溶性盐按照1︰2摩尔比溶解在异丙醇中,充分搅拌1h,所得澄清液转移到高压釜中(聚四氟内衬)200℃反应24h,离心得到前驱物,800℃空气中煅烧10h。得到尖晶石类NiAl2O4纳米结构粉体。
(2)热置换过程,首先通过浸渍法在NiAl2O4纳米结构表面均匀浸渍Zn(NO3)2组分,随后进行一个高温还原过程,实现尖晶石框架内Ni和Zn原子的置换。高温(650℃)条件下通氢气2h,即可完成图1(Ni nanoparticle)所示的置换过程。
合成实施例2:Ni/MgAl2O4纳米催化剂的合成
同上(1)步骤首先合成NiAl2O4纳米结构,浸渍Mg(NO3)2后,完成一个同样的步骤(2)的高温(800℃)置换过程。
表征结果:
(1)形貌组成表征如图2~5所示。
上述结果表明,置换法制备的催化剂保持了原有的尖晶石类晶体结构,而且活性组分在表面分布比较均匀。直接还原则只剩下Ni的XRD峰,尖晶石结构被破坏了。
(2)催化剂稳定性评价。
催化表征结果:以合成气甲烷化反应为模型反应,分别以本发明的置换法制备Ni/ZnAl2O4纳米催化剂和传统的等体积浸渍法制备Ni/γ-Al2O3纳米催化剂,进行催化剂的稳定性进行比较。其中γ-Al2O3为购买的商业产品(Aladdin Co.),两者Ni的担载量均为5wt%。通过控制反应条件,使得CO转化率低于理论平衡转化率(3.0MPa,450℃,CO Conv.<99%)条件下进行比较。图6为Ni/γ-Al2O3纳米催化剂的活性变化图,图7为Ni/ZnAl2O4纳米催化剂的活性变化图。评价结果表明,本发明制备的Ni/ZnAl2O4纳米催化剂稳定性更高,失活速度更慢,明显优于传统载体与浸渍法合成的纳米催化剂。

Claims (2)

1.一种通过原子置换制备高稳定性纳米催化剂的方法,其特征在于包括以下步骤:
1)NiAl2O4纳米结构的合成:将Ni(NO3)2和Al(NO3)3可溶性盐按1︰2摩尔比溶解在异丙醇中,充分搅拌1h,所得澄清液转移到高压釜的聚四氟内衬中,在200℃反应24h,离心得到前驱物,800℃空气中煅烧10h,得到尖晶石类NiAl2O4纳米结构粉体;
2)热置换过程:首先通过浸渍法在NiAl2O4纳米结构表面均匀浸渍Zn(NO3)2组分,然后进行高温还原过程,实现尖晶石框架内Ni和Zn原子的置换,在650℃条件下通氢气2h,即完成置换过程,得Ni/ZnAl2O4高稳定性纳米催化剂。
2.一种通过原子置换制备高稳定性纳米催化剂的方法,其特征在于包括以下步骤:
1)NiAl2O4纳米结构的合成:将Ni(NO3)2和Al(NO3)3可溶性盐按1︰2摩尔比溶解在异丙醇中,充分搅拌1h,所得澄清液转移到高压釜的聚四氟内衬中,在200℃反应24h,离心得到前驱物,800℃空气中煅烧10h,得到尖晶石类NiAl2O4纳米结构粉体;
2)热置换过程:首先通过浸渍法在NiAl2O4纳米结构表面均匀浸渍Mg(NO3)2组分,然后进行高温还原过程,实现尖晶石框架内Ni和Mg原子的置换,在800℃条件下通氢气2h,即完成置换过程,得Ni/MgAl2O4高稳定性纳米催化剂。
CN201710492178.6A 2017-06-26 2017-06-26 一种通过原子置换制备高稳定性纳米催化剂的方法 Active CN107282048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710492178.6A CN107282048B (zh) 2017-06-26 2017-06-26 一种通过原子置换制备高稳定性纳米催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710492178.6A CN107282048B (zh) 2017-06-26 2017-06-26 一种通过原子置换制备高稳定性纳米催化剂的方法

Publications (2)

Publication Number Publication Date
CN107282048A CN107282048A (zh) 2017-10-24
CN107282048B true CN107282048B (zh) 2019-05-10

Family

ID=60099742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710492178.6A Active CN107282048B (zh) 2017-06-26 2017-06-26 一种通过原子置换制备高稳定性纳米催化剂的方法

Country Status (1)

Country Link
CN (1) CN107282048B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013842B (zh) * 2019-04-15 2020-07-10 厦门大学 一种原位生成尖晶石基纳米催化剂及其合成方法
CN112209424A (zh) * 2020-11-02 2021-01-12 昆明理工大学 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125849A (zh) * 2010-12-15 2011-07-20 新奥新能(北京)科技有限公司 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN103503218A (zh) * 2011-04-20 2014-01-08 松下电器产业株式会社 非水电解质二次电池
CN104162432A (zh) * 2014-06-24 2014-11-26 北京化工大学 一种均分散高效的生物质重整催化剂及其制备方法
CN105013482A (zh) * 2014-04-24 2015-11-04 现代自动车株式会社 用于减少氮氧化物的催化剂、其制备方法和用于减少氮氧化物的催化剂体系
CN105148907A (zh) * 2015-09-06 2015-12-16 南京大学 一种1,2-二氯乙烷选择性加氢脱氯反应催化剂及其制备方法和应用
CN106140244A (zh) * 2015-03-25 2016-11-23 中国石油化工股份有限公司 一种铂铼重整催化剂的再生方法
CN106582602A (zh) * 2016-12-28 2017-04-26 厦门大学 一种高效的系列尖晶石纳米结构材料的合成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125849A (zh) * 2010-12-15 2011-07-20 新奥新能(北京)科技有限公司 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN103503218A (zh) * 2011-04-20 2014-01-08 松下电器产业株式会社 非水电解质二次电池
CN105013482A (zh) * 2014-04-24 2015-11-04 现代自动车株式会社 用于减少氮氧化物的催化剂、其制备方法和用于减少氮氧化物的催化剂体系
CN104162432A (zh) * 2014-06-24 2014-11-26 北京化工大学 一种均分散高效的生物质重整催化剂及其制备方法
CN106140244A (zh) * 2015-03-25 2016-11-23 中国石油化工股份有限公司 一种铂铼重整催化剂的再生方法
CN105148907A (zh) * 2015-09-06 2015-12-16 南京大学 一种1,2-二氯乙烷选择性加氢脱氯反应催化剂及其制备方法和应用
CN106582602A (zh) * 2016-12-28 2017-04-26 厦门大学 一种高效的系列尖晶石纳米结构材料的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
稀土改性Ni/MgAl2O4催化剂用于甲烷二氧化碳重整反应;连洁等;《中国化学会第九届全国无机化学学术会议论文集-L能源材料化学》;20150725;12
高铁赤泥煤基直接还原过程中;梅贤功等;《轻金属》;19940731;8-12

Also Published As

Publication number Publication date
CN107282048A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
Kang et al. Improving syngas selectivity of Fe2O3/Al2O3 with yttrium modification in chemical looping methane conversion
CN105921163B (zh) 一种Fe‑N‑C氧还原催化剂及其合成方法和应用
CN109119646B (zh) 一种高性能Co3O4-CeO2/Co-N-C复合催化剂及其制备方法和应用
CN107282048B (zh) 一种通过原子置换制备高稳定性纳米催化剂的方法
CN110841661A (zh) 1t-2h二硫化钼@硫化镉复合纳米材料的制备方法及其应用
CN105107515A (zh) 一种甲烷干重整制合成气的镍-碳化钼复合催化剂
CN103663559B (zh) 钼酸铋纳米晶、制备方法及其应用
CN109821562B (zh) 一种MoP-Zn3In2S6复合纳米材料的制备方法
CN101983102A (zh) 用于费-托合成的钴/锆-磷/二氧化硅催化剂及其制备方法
CN108579744A (zh) 一种负载钌的铈锆基催化剂的制备及应用方法
Yousaf et al. Synergistic effect of interfacial phenomenon on enhancing catalytic performance of Pd loaded MnO x–CeO 2–C hetero-nanostructure for hydrogenation and electrochemical reactions
Sun et al. CO 2 electrochemical reduction using single-atom catalysts. Preparation, characterization and anchoring strategies: a review
Yang et al. Significantly enhanced photocatalytic hydrogen evolution under visible light over LaCoO3-decorated cubic/hexagonal Mn0. 25Cd0. 75S
KR20210000309A (ko) 활성 금속이 담체 내에서 원자 규모로 분산되는 부하형 촉매, 및 그 제조 방법 및 사용 방법
CN109273289A (zh) 溶剂法制备镍基钴酸镁复合材料及其应用
Reith et al. Preparative history vs driving force in water oxidation catalysis: parameter space studies of cobalt spinels
CN112427041A (zh) 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用
Gu et al. A freestanding SiO 2 ultrathin membrane with NiCu nanoparticles embedded on its double surfaces for catalyzing nitro-amination
CN116371447A (zh) 一种双z型异质结光催化剂及其制备方法和应用
CN116196937B (zh) 一种负载型单原子合金催化剂及其制备方法和应用
CN114452982B (zh) 一种W18O49/CoO/CoWO4/NF自支撑电催化材料及其制备方法
CN115025784A (zh) 一种CoOx/BiVO4纳米片及其制备方法和应用
Bi et al. Boosting the photogenerated charge separation of gC 3 N 4 by constructing a Ni@ Ni 2 P cocatalyst with a core–shell structure
CN103386307A (zh) 一种Ni-Mg/Al2O3催化剂的制备方法
CN109160489A (zh) 一种固相化学反应合成碘酸氧铋纳米片的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant