CN112209424A - 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法 - Google Patents

一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法 Download PDF

Info

Publication number
CN112209424A
CN112209424A CN202011204841.6A CN202011204841A CN112209424A CN 112209424 A CN112209424 A CN 112209424A CN 202011204841 A CN202011204841 A CN 202011204841A CN 112209424 A CN112209424 A CN 112209424A
Authority
CN
China
Prior art keywords
powder
doped zinc
zinc
solution
zinc aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011204841.6A
Other languages
English (en)
Inventor
谭红琳
任翔
刘建琪
张正东
周燕
孙楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202011204841.6A priority Critical patent/CN112209424A/zh
Publication of CN112209424A publication Critical patent/CN112209424A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法,属于材料制备技术领域。本发明所述方法为将硝酸锌、硝酸铝和表面活性剂搅拌溶解,并置于反应釜中反应,通过过滤、干燥、球磨煅烧后形成锌铝尖晶石纳米粉体;接着将粉体置于硝酸镍溶液超声搅拌浸渍,接着干燥、煅烧得到Ni掺杂的锌铝尖晶石粉体。镍作为常见的过渡金属,掺杂在锌铝尖晶石上可提升其催化领域的应用,此方法可将镍掺杂在其锌铝尖晶石粉体表层部分,创造更多的催化活性位点。本发明所述方法所需材料低价安全,设备工艺简单,参数容易控制;可获得分散性较好,粒径较为均匀的纳米级粉体。

Description

一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法
技术领域
本发明涉及一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法,属于材料制备技术领域。
背景技术
尖晶石型氧化物的晶体结构属于立方晶系,面心立方点阵。具有立方对称性,空间群为Fd-3m(No227),尖晶石结构可看作氧离子形成立方最紧密堆积,由A离子占据64个四面体空隙的1/8,即8个A位,B离子占据32个八面体空隙的1/2.即16个B位,得出尖晶石单位晶胞的通式A8B16O32,简化后可表示为AB2O4
锌铝尖晶石是典型的宽带隙材料,多晶ZnAl2O4的光学带隙是3.8eV,这决定了ZnAl2O4对波长大于320nm的可见光有较好的透过性。它具有高熔点、低热膨胀系数、高的热稳定性、良好的机械性能、低介电性、且高抗化学腐蚀性以及优异的光学性能,已广泛的应用于各种工业领域。另一方面,ZnAl2O4作为催化剂载体也因其低酸度,高的热稳定性,良好的水热稳定性和与活性物质的良好相互作用等性质而备受关注在化工领域常被作为催化剂或者催化剂载体;ZnAl2O4作为催化剂在低链烷烃的脱氢催化反应中表现出了优异的活性,在加氢反应、光催化、选择性催化还原反应等其他反应中也均表现出良好的性能。而且尖晶石本身的结构容易形成空位,容易掺杂,过渡金属掺杂可以调节其带隙等电子性能;对于其催化、发光、磁学等性能都有较好的改善。
制备锌铝尖晶石的方法通常有水热法,溶胶凝胶法,固相烧结等方法,其中水热法是一种制备纳米粉体的常用方法,而浸渍法是将过渡金属掺杂到纳米粉体表层部分的简便有效的方法。还未发现有人用此方法制备镍掺杂锌铝尖晶石,镍掺杂的锌铝尖晶石可作为催化剂或载体应用到低链烷烃脱氢,氮氧化物脱除等反应中。
发明内容
本发明的目的在于提供一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法,该方法采用原料价格便宜,所需设备简单,容易控制工艺参数,具体包括以下步骤:
(1)按化学计量比称取硝酸锌、硝酸铝加水溶解,然后加入十六烷基三甲基溴化铵作为反应催化剂,搅拌使其完全溶解,滴加氨水,使pH值为9-10,然后加入联氨使水中的溶氧还原得到溶液A;联氨作为强还原剂,使水中的溶氧还原,具体反应为N2H4+O2→N2↑+2H2O。
(2)将溶液A放入反应釜中反应,然后冷却至室温,取出后,将其中溶液放入过滤器中,用乙醇和去离子水的混合溶液洗涤沉淀物,去除表面活性剂。
(3)取出步骤(2)所得产物,烘干后研磨成粉末,然后放入高温马弗炉中煅烧,煅烧完成可得到锌铝尖晶石粉末。
(4)称取六水硝酸镍,然后加去离子水溶解,制备质量百分比浓度为2~10%的镍盐溶液。
(5)将步骤(3)得到的锌铝尖晶石粉末样品置于镍盐溶液中(全部浸没即可),室温下充分磁力搅拌;在超声波条件下超声浸3~4小时,然后将溶液在70-90℃下磁力搅拌直至溶液蒸发,将蒸发后所得产物干燥后,球磨成均匀粉末,在马弗炉中焙烧即可得到掺杂镍的铝酸锌纳米粉体。
优选的,本发明步骤(1)中联氨的加入量为13-20ml/L。
优选的,本发明步骤(2)中反应条件为160~200℃反应15-20h。
优选的,本发明步骤(3)中煅烧条件为600~900℃下煅烧4~6小时。
优选的,本发明步骤(5)中的焙烧条件为600~800℃焙烧4~6小时。
本发明的有益效果:
(1)用简便的水热及浸渍方法就可以得到镍掺杂的锌铝尖晶石粉末,所用原料纯净,流程参数易于控制。
(2)所得纳米粉体粒径细小、均匀,有较好的弥散性。
(3)所掺杂的镍元素以2+的形式存在,可在表面生成更多催化活性位点,提升锌铝尖晶石在某些环境催化反应的催化性。
附图说明
图1是实施例1中烧结温度为600、700、800、900℃的锌铝尖晶石的XRD图;
图2是实施例1中烧结温度为600、700、800、900℃的锌铝尖晶石的SEM图;
图3是实施例1未浸渍和浸渍的锌铝尖晶石的EDS图;
图4是实施例2中不同浓度的Ni浸渍锌铝尖晶石的XRD图;
图5是实施例2中不同浓度的Ni浸渍锌铝尖晶石的SEM图;
图6是实施例2中未浸渍和8%浸渍的锌铝尖晶石的XPS图;
图7是实施例2中未浸渍和8%浸渍Zn元素的XPS分谱图;
图8是实施例2中8%浸渍后Ni元素的XPS分谱图。
具体实施方式
下面结合具体实施例本发明作进一步的详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法,具体包括以下步骤:
(1)称取7.5026g的Al(N03)3·9H2O,2.9749g的Zn(NO3)2·6H20,3.6445g的十六烷基三甲基溴化铵(CTAB),CTAB作为反应催化剂洗涤时除去;三种物质加80ml水溶解,用磁力搅拌器搅拌3小时;然后滴加氨水,使溶液的pH值等于10,再加入1.51ml联氨。
(2)将步骤(1)所得溶液放入反应釜中,将反应釜放进烘箱中于180℃反应18小时,然后冷却至室温,取出后,将其中的溶液放入过滤器中,用百分之三十的乙醇溶液(乙醇60ml,去离子水140ml)多次洗涤沉淀物,清除多余的表面活性剂。
(3)取出步骤(2)所得产物,放入烘干箱中于100℃干燥18小时,将产物放入研钵中研磨成粉末,然后放入高温马弗炉中分别在600℃,700℃,800℃,900℃下煅烧5小时,可得到锌铝尖晶石粉末。
(4)称取0.1723g(8%)的六水硝酸镍,放入烧杯中加去离子水溶解,制备不同浓度的镍盐溶液。
(5)将步骤(3)中煅烧好的ZnAl2O4粉末样品置于50mL镍盐溶液中,室温下充分磁力搅拌1小时后;在超声波条件下超声浸渍3小时,使溶液在80℃下磁力搅拌直至溶液蒸发,将蒸发后所得产物置于干燥箱内80℃干燥6小时;取出产物,球磨成均匀粉末,在马弗炉中600℃焙烧6小时,即可得到镍掺杂的铝酸锌纳米粉体。
本实施例制备得到锌铝尖晶石的XRD图如图1所示,经过与标准卡片对比表明四个温度下均能生成铝锌尖晶石,SEM图如图2所示,发现温度升高同时颗粒大小也稍有增加,但基本能保持在50nm左右,经过对比发现在600℃烧结时生成颗粒尺寸最小。图5是掺杂前后的锌铝尖晶石的EDS图,浸渍后发现Ni的出现,生成了Ni掺杂的锌铝尖晶石粉体。
实施例2
一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法,具体包括以下步骤:
(1)称取7.5026g的Al(N03)3·9H2O,2.9749g的Zn(NO3)2·6H20,3.6445g的十六烷基三甲基溴化铵(CTAB),CTAB作为反应催化剂洗涤时除去;三种物质加80ml水溶解,用磁力搅拌器搅拌3小时;然后滴加氨水,使溶液的pH值等于10,再加入1.6ml联氨。
(2)将步骤(1)所得溶液放入反应釜中,将反应釜放进烘箱中于200℃反应15小时,然后冷却至室温,取出后,将其中的溶液放入过滤器中,用百分之三十的乙醇溶液(乙醇60ml,去离子水140ml)多次洗涤沉淀物,清除多余的表面活性剂。
(3)取出步骤(2)所得产物,放入烘干箱中于100℃干燥18小时,将产物放入研钵中研磨成粉末,然后放入高温马弗炉中800℃下煅烧5小时,可得到锌铝尖晶石粉末。
(4)分别称取0.0505g(2%),0.1305g(5%),0.1723g(8%),0.2202g(10%)的六水硝酸镍,然后分别放入四个烧杯中加去离子水溶解,制备4个不同浓度的镍盐溶液。
(5)将步骤(3)煅烧好的ZnAl2O4粉末样品置于50mL不同浓度镍盐溶液中,室温下充分磁力搅拌1小时后;在超声波条件下超声浸渍3小时,使溶液在80℃下磁力搅拌直至溶液蒸发,将蒸发后所得产物置于干燥箱内80℃干燥6小时;取出产物,球磨成均匀粉末,在马弗炉中800℃焙烧4小时,即可得到不同掺杂比的镍浸渍铝酸锌纳米粉体。
本实施例制备得到锌铝尖晶石的XRD图如图3所示,SEM图如图4所示,由XRD图和SEM图表明浸渍后的粉体依旧为尖晶石结构,并无NiO等产物生成,颗粒有较小的增加,但基本在60nm以下,XPS图表明掺杂后在850eV左右出现了Ni的峰,这证明表面出现了Ni元素。
图7是Zn元素的分谱图,由图可以看出掺杂后Zn的含量有所降低,峰值有微小的偏移表明其配位环境有一定改变;图8是Ni元素的分谱图,由峰的形状和位置可以看出Ni元素主要以2价形式存在于表面,结合Zn含量的减少可推测,Ni成功掺杂到了Zn位点,进行了一定的置换。

Claims (5)

1.一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法,其特征在于,具体包括以下步骤:
(1)按化学计量比称取硝酸锌、硝酸铝加水溶解,然后加入十六烷基三甲基溴化铵作为反应催化剂,搅拌使其完全溶解,滴加氨水,使pH值等于9-10,然后加入联氨使水中的溶氧还原得到溶液A;
(2)将溶液A放入反应釜中反应,然后冷却至室温,取出后,将其中溶液放入过滤器中,用乙醇和去离子水的混合溶液洗涤沉淀物,去除表面活性剂;
(3)取出步骤(2)所得产物,烘干后研磨成粉末,然后放入高温马弗炉中煅烧,煅烧完成可得到锌铝尖晶石粉末;
(4)称取六水硝酸镍,然后加去离子水溶解,制备质量百分比浓度为2~10%的镍盐溶液;
(5)将步骤(3)得到的锌铝尖晶石粉末样品置于镍盐溶液中,室温下充分磁力搅拌;在超声波条件下超声浸渍3~4小时,然后将溶液在70-90℃下磁力搅拌直至溶液蒸发,将蒸发后所得产物干燥后,球磨成均匀粉末,在马弗炉中焙烧即可得到掺杂镍的铝酸锌纳米粉体。
2.根据权利要求1所述Ni掺杂的锌铝尖晶石纳米粉体的制备方法,其特征在于:步骤(1)中联氨的加入量为13-20ml/L。
3.根据权利要求1所述Ni掺杂的锌铝尖晶石纳米粉体的制备方法,其特征在于:步骤(2)中反应条件为160~200℃反应15-20h。
4.根据权利要求1所述Ni掺杂的锌铝尖晶石纳米粉体的制备方法,其特征在于:步骤(3)中煅烧条件为600~900℃下煅烧4~6小时。
5.根据权利要求1所述Ni掺杂的锌铝尖晶石纳米粉体的制备方法,其特征在于:步骤(5)中的焙烧条件为:600~800℃焙烧4~6小时。
CN202011204841.6A 2020-11-02 2020-11-02 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法 Pending CN112209424A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011204841.6A CN112209424A (zh) 2020-11-02 2020-11-02 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011204841.6A CN112209424A (zh) 2020-11-02 2020-11-02 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法

Publications (1)

Publication Number Publication Date
CN112209424A true CN112209424A (zh) 2021-01-12

Family

ID=74057988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011204841.6A Pending CN112209424A (zh) 2020-11-02 2020-11-02 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法

Country Status (1)

Country Link
CN (1) CN112209424A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033424A1 (en) * 1980-01-02 1981-08-12 Exxon Research And Engineering Company Removal of sulfur and/or sulfur compound from industrial process streams using metal alumina spinel
US20020147110A1 (en) * 2000-05-30 2002-10-10 Dodwell Glenn W. Desulfurization and sorbents for same
CN101447547A (zh) * 2008-12-26 2009-06-03 北京化工大学 一种制备镍离子掺杂氧化锌/锌铝尖晶石发光薄膜的方法
CN104475112A (zh) * 2014-12-15 2015-04-01 华烁科技股份有限公司 一种高温通水通氧条件下催化分解n2o催化剂及其制备方法
CN105363455A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂及其应用
CN106622204A (zh) * 2015-10-30 2017-05-10 中国石油天然气股份有限公司 一种含锌铝尖晶石的氧化锌材料及制备方法
CN107282048A (zh) * 2017-06-26 2017-10-24 厦门大学 一种通过原子置换制备高稳定性纳米催化剂的方法
CN108328634A (zh) * 2018-03-16 2018-07-27 昆明理工大学 一种铜负载铝酸锌纳米粉体及其制备方法
CN108483482A (zh) * 2018-03-16 2018-09-04 昆明理工大学 一种钴负载铝酸锌纳米粉体及其制备方法
CN109095487A (zh) * 2018-07-27 2018-12-28 昆明理工大学 一种铁负载铝酸锌纳米粉体及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033424A1 (en) * 1980-01-02 1981-08-12 Exxon Research And Engineering Company Removal of sulfur and/or sulfur compound from industrial process streams using metal alumina spinel
US20020147110A1 (en) * 2000-05-30 2002-10-10 Dodwell Glenn W. Desulfurization and sorbents for same
CN101447547A (zh) * 2008-12-26 2009-06-03 北京化工大学 一种制备镍离子掺杂氧化锌/锌铝尖晶石发光薄膜的方法
CN105363455A (zh) * 2014-08-27 2016-03-02 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂及其应用
CN104475112A (zh) * 2014-12-15 2015-04-01 华烁科技股份有限公司 一种高温通水通氧条件下催化分解n2o催化剂及其制备方法
CN106622204A (zh) * 2015-10-30 2017-05-10 中国石油天然气股份有限公司 一种含锌铝尖晶石的氧化锌材料及制备方法
CN107282048A (zh) * 2017-06-26 2017-10-24 厦门大学 一种通过原子置换制备高稳定性纳米催化剂的方法
CN108328634A (zh) * 2018-03-16 2018-07-27 昆明理工大学 一种铜负载铝酸锌纳米粉体及其制备方法
CN108483482A (zh) * 2018-03-16 2018-09-04 昆明理工大学 一种钴负载铝酸锌纳米粉体及其制备方法
CN109095487A (zh) * 2018-07-27 2018-12-28 昆明理工大学 一种铁负载铝酸锌纳米粉体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAWEL MIERCZYNSKI ET AL.: "Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction", 《CENT. EUR. J. CHEM.》 *
电力工业部生产司编: "《除氧器及其改造和运行经验》", 30 September 1979, 北京:水利电力出版社 *

Similar Documents

Publication Publication Date Title
Abraham et al. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites
Kombaiah et al. Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties
Bharathi et al. Structural, optical and magnetic properties of Pr doped CeO 2 nanoparticles synthesized by citrate–nitrate auto combustion method
Manikandan et al. Aloe vera plant extracted green synthesis, structural and opto-magnetic characterizations of spinel Co x Zn1-x Al2O4 nano-catalysts
Stanulis et al. Sol–gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates
Egorova et al. Liquid-phase synthesis and physicochemical properties of xerogels, nanopowders and thin films of the CeO 2–Y 2 O 3 system
Jang et al. Room-temperature synthesis of monodisperse mixed spinel (CoxMn1–x) 3O4 powder by a coprecipitation method
CN111908922A (zh) 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法
WO2017068444A1 (en) Method of synthesizing ceramic oxide nanoparticles having tailored properties
CN104797531A (zh) 包覆钛酸钡细颗粒及其制造方法
Yakout Inclusion of cobalt reinforced Ag doped SnO 2 properties: electrical, dielectric constant, magnetic and photocatalytic insights
CN112058272A (zh) 溶胶凝胶弱氧化煅烧法制备钙钛矿型催化剂及方法
Gunnewiek et al. Synthesis of spinel cobalt oxide nanoparticles using a modified polymeric precursor method
Siemons et al. Preparation of Nanosized Perovskite‐type Oxides via Polyol Method
Duan et al. Mn-doped ZnO nanotubes: from facile solution synthesis to room temperature ferromagnetism
Handal et al. Effect of Mn and Ni-doping on structure, photoluminescence and magnetic properties of perovskite-type BaSn0. 99Gd0. 01O3
Jiang et al. Effect of Bi/Ti ratio on (Na0. 5Bi0. 5) TiO3/Bi4Ti3O12 heterojunction formation and photocatalytic performance
Zhou et al. Synthesis and catalytic property of facet-controlled Co 3 O 4 structures enclosed by (111) and (113) facets
CN101486486B (zh) 强磁场下ZnO及其稀磁半导体材料的制备方法与装置
CN118106011A (zh) 一种非晶态铜复合材料及其制备方法和应用
Wang et al. Enhancing infrared emissivity of GdCoO3 with Ca doping: Potential for advanced thermal control materials
EP0127427A2 (en) Production of microcrystralline ferrimagnetic spinels
Li et al. Monodispersed Sc2O3 precursor particles via homogeneous precipitation: Synthesis, thermal decomposition, and the effects of supporting anions on powder properties
Batool et al. Sintering and property characterization of Copper doped Strontium Chromite by Sol gel method
CN112209424A (zh) 一种Ni掺杂的锌铝尖晶石纳米粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210112

RJ01 Rejection of invention patent application after publication