CN107275026A - 批量应用镧的富铈稀土永磁体及其制备方法 - Google Patents

批量应用镧的富铈稀土永磁体及其制备方法 Download PDF

Info

Publication number
CN107275026A
CN107275026A CN201710329853.3A CN201710329853A CN107275026A CN 107275026 A CN107275026 A CN 107275026A CN 201710329853 A CN201710329853 A CN 201710329853A CN 107275026 A CN107275026 A CN 107275026A
Authority
CN
China
Prior art keywords
principal phase
permanent magnet
cerium
rich
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710329853.3A
Other languages
English (en)
Other versions
CN107275026B (zh
Inventor
严密
彭白星
金佳莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710329853.3A priority Critical patent/CN107275026B/zh
Publication of CN107275026A publication Critical patent/CN107275026A/zh
Application granted granted Critical
Publication of CN107275026B publication Critical patent/CN107275026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Abstract

本发明公开一种批量应用镧的富铈稀土永磁体及其制备方法。本发明的稀土永磁体具有多主相结构,包括一种RE‑Fe‑B主相和一种或者多种添加镧的富铈主相。本发明中不同的主相分别设计成分、配料和制粉后,将相应主相合金粉末按照比例均匀混合,然后经磁场压型、烧结和热处理制备磁体。本发明旨在解决长期以来镧元素不能应用到稀土永磁体中的难题,实现了镧元素在稀土永磁体中的大量应用;同时通过在富铈主相成分中添加大原子半径的镧元素,保持甚至提高了富铈主相的磁性能,从而使得永磁体的磁性能达到商用的标准,可进行大量的生产应用。

Description

批量应用镧的富铈稀土永磁体及其制备方法
技术领域
本发明涉及批量应用镧的富铈稀土永磁体及其制备方法
背景技术
一般用丰度指标来衡量各元素在地壳中的含量百分比,地壳中含量最多的两种稀土元素Ce(铈)和La(镧)是名副其实的高丰度元素。近年来,将Ce或La应用到稀土永磁体中受到了广泛关注,国内外研究人员对此进行了大量的研究工作。虽然Ce2Fe14B和La2Fe14B的内禀磁性能都比Nd2Fe14B差很多,但是用Ce元素取代部分Nd元素后制备的富Ce稀土永磁体已经取得了较大的进展。研究人员通过优化传统的制备工艺,大大弱化了Ce加入到钕铁硼磁体后所产生的磁稀释效应,富Ce稀土永磁体的性能也有了较大的提高。但是将La元素应用到钕铁硼磁体中却遇到了很大的困难,现有研究结果表明La的2:14:1相不容易形成,而且La2Fe14B形成后也不能够在一个较大的温区内稳定存在,所以La元素单独替换Nd元素目前很难获得很好的磁性能。
在Nd2Fe14B型化合物中,Nd原子通常会占据4f和4g两个晶位。当其他稀土离子取代Nd原子后,通常也会占据这两个晶位,形成2:14:1化合物。而且半径较大的稀土离子会占据空间较大的晶位,半径较小的稀土离子会占据空间较小的晶位。Ce在形成化合物时,通常会出现两种价态:+3价和+4价。而+3价的Ce离子会有一个多余的4f电子,所以化合物的磁性就会变得更强。La的原子半径和离子半径在镧系元素中属最大,我们的研究发现,当半径较大的La添加到含有Ce的2:14:1化合物中后,不仅能够促使Ce的价态更加趋于+3价,也能够使得2:14:1相继续保持,这对于磁体性能的提高有着至关重要的作用。
本发明将La元素批量应用到富Ce的稀土磁体中,不仅能够解决长期以来La元素不能应用到稀土永磁体中的难题,同时也能够保持甚至提高富Ce磁体的性能。将两种高丰度稀土共同使用,能够进一步减少了价格高、丰度低的镨、钕、铽、镝等稀土元素的使用量,促进稀土产品的产销平衡;有效实现原料成本的控制,亦保护了我国的稀土资源。
发明内容
本发明的目的是克服长期以来镧元素不能批量应用到稀土永磁体中的不足,提供了批量应用镧的富铈稀土永磁体及其制备方法。
批量应用镧的富铈稀土永磁体具有多主相结构,包括一种RE-Fe-B主相和一种或者多种添加镧的富铈主相。
RE-Fe-B主相成分的质量百分数通式为REaFe100-a-b-cMbBc,一种或者多种添加镧的富铈主相成分的质量百分数通式均为[REx(LayCe1-y)1-x]aFe100-a-b-cMbBc,式中RE为Nd、Pr、Dy、Tb、Gd、Er、Ho中的一种或几种,M为Al、C、Co、Cr、Cu、F、Ga、Mn、Mo、N、Nb、Ni、P、Pb、S、Si、Ta、Ti、V、Zr元素中一种或几种;x、y、a、b、c满足以下关系:0.01≤x<1,0<y≤0.6,28≤a≤33,0.5≤b≤2,0.8≤c≤1.5。
所述的RE-Fe-B主相占主相总质量的10%~90%,所有添加镧的富铈主相占主相总质量的10%~90%;当稀土永磁体中包含两种或者两种以上添加镧的富铈主相时,则各添加镧的富铈主相成分是不同的。
批量应用镧的富铈稀土永磁体的制备方法具体如下:
1)按照设计的主相成分分别进行配料,在真空度高于10-2Pa的真空中频感应炉中熔炼不同主相合金,采用速凝铸带技术得到厚度为0.2~0.5mm的不同主相合金甩片,然后经过氢爆和气流磨工艺制备平均粒度为3~4μm的相应合金粉末;
2)将相应主相合金粉末按照比例均匀混合,得到不同La-Ce取代量的混合主相粉末,然后在1.5~2T的磁场下进行取向压型,得到生坯;
3)将得到的生坯进行真空封装,15~20MPa间冷等静压1~3min,放入高真空正压烧结炉,在980~1080℃间烧结2.5~5h,840~940℃间进行一级回火,500~700℃间进行二级回火,得到稀土永磁体。
本发明与现有技术相比具有的有益效果:1)本发明解决了长期以来镧元素不能应用到稀土永磁体中的难题,实现了镧元素在稀土永磁体中的大量应用;2)通过在富铈主相成分中添加大原子半径的镧元素,保持甚至提高了富铈主相的磁性能,从而使得永磁体的磁性能达到商用的标准,可进行大量的生产应用;3)通过对添加镧的富铈主相成分进行合金元素的优化设计,进一步抑制磁稀释效应,在镧和铈含量较高时磁体也保持了很好的磁性能;4)本发明所提供的批量应用镧的富铈稀土永磁体的制备方法,针对磁体中各稀土元素的含量不同,恰当地优化烧结工艺和热处理的工艺,使磁体充分致密的同时又防止了主相晶粒的长大,进一步满足了应用需求;5)本发明通过同时添加高丰度稀土元素镧和铈,进一步减少了价格高、丰度低的镨、钕、铽、镝等元素的使用量,促进稀土产品的产销平衡;有效实现原料成本的控制,亦保护了我国的稀土资源。
具体实施方式
批量应用镧的富铈稀土永磁体具有多主相结构,包括一种RE-Fe-B主相和一种或者多种添加镧的富铈主相。
RE-Fe-B主相成分的质量百分数通式为REaFe100-a-b-cMbBc,一种或者多种添加镧的富铈主相成分的质量百分数通式均为[REx(LayCe1-y)1-x]aFe100-a-b-cMbBc,式中RE为Nd、Pr、Dy、Tb、Gd、Er、Ho中的一种或几种,M为Al、C、Co、Cr、Cu、F、Ga、Mn、Mo、N、Nb、Ni、P、Pb、S、Si、Ta、Ti、V、Zr元素中一种或几种;x、y、a、b、c满足以下关系:0.01≤x<1,0<y≤0.6,28≤a≤33,0.5≤b≤2,0.8≤c≤1.5。
所述的RE-Fe-B主相占主相总质量的10%~90%,所有添加镧的富铈主相占主相总质量的10%~90%;当稀土永磁体中包含两种或者两种以上添加镧的富铈主相时,则各添加镧的富铈主相成分是不同的。
批量应用镧的富铈稀土永磁体的制备方法具体如下:
1)按照设计的主相成分分别进行配料,在真空度高于10-2Pa的真空中频感应炉中熔炼不同主相合金,采用速凝铸带技术得到厚度为0.2~0.5mm的不同主相合金甩片,然后经过氢爆和气流磨工艺制备平均粒度为3~4μm的相应合金粉末;
2)将相应主相合金粉末按照比例均匀混合,得到不同La-Ce取代量的混合主相粉末,然后在1.5~2T的磁场下进行取向压型,得到生坯;
3)将得到的生坯进行真空封装,15~20MPa间冷等静压1~3min,放入高真空正压烧结炉,在980~1080℃间烧结2.5~5h,840~940℃间进行一级回火,500~700℃间进行二级回火,得到稀土永磁体。
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
1)以质量百分数计,成分为[Nd0.6(La0.25Ce0.75)0.4]30.5Fe67.11Co0.8Zr0.59B1的主相A和Nd30.5Fe67.11Co0.8Zr0.59B1的主相B分别配料,在真空度高于10-2Pa的真空中频感应炉熔炼后,采用速凝铸带技术得到厚度为0.3mm的相应主相甩片;
2)将相应主相甩片经过氢爆和气流磨工艺制备平均粒度为3.3μm的相应合金粉末;
3)按照1:4的质量比将A、B主相合金粉末均匀混合后,在氮气保护下将混合主相粉末在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;
4)将生坯放在真空烧结炉中进行烧结,烧结温度为1070℃,烧结时间3h,在890℃间进行一级回火,560℃间进行二级回火,得到稀土永磁体;
5)磁体磁性能为Br=13.6kGs,Hcj=12.3kOe,(BH)max=45.2MGOe;
对比例1:
1)以质量百分数计,成分为(Nd0.6Ce0.4)30.5Fe68.5B1的主相A和Nd30.5Fe68.5B1的主相B分别配料,在真空度高于10-2Pa的真空中频感应炉熔炼后,采用速凝铸带技术得到厚度为0.3mm的相应主相甩片;
2)将相应主相甩片经过氢爆和气流磨工艺制备平均粒度为3.3μm的相应合金粉末;
3)按照1:4的质量比将A、B主相合金粉末均匀混合后,在氮气保护下将混合主相粉末在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;
4)将生坯放在真空烧结炉中进行烧结,烧结温度为1080℃,烧结时间3h,在890℃间进行一级回火,580℃间进行二级回火,得到稀土永磁体;
5)磁体磁性能为Br=13.2kGs,Hcj=11.9kOe,(BH)max=43.8MGOe。
说明:通过对比例1和实施例1的比较可以发现,实施例1中添加镧的富铈磁体的各项磁性能指标都好于对比例中的磁体,进一步说明了本发明不仅实现了镧元素在稀土永磁体中的大量应用,而且也能显著提高富铈磁体的磁性能。而且磁体的综合磁性能也达到了商用牌号的标准,进一步降低了原材料成本,满足了应用需求。同时,通过对比发现,本发明(实施例1)中成分合金元素的优化设计以及热处理工艺的改良优化都是保障磁体性能较高的原因。
实施例2:
1)以质量百分数计,成分为[Nd0.5(La0.25Ce0.75)0.5]30.5Fe67.11Ga1.39B1的主相A、[Nd0.7(La0.25Ce0.75)0.3]30.5Fe67.11Ga1.39B1的主相B和Nd30.5Fe67.11Ga1.39B1的主相C分别配料,在真空度高于10-2Pa的真空中频感应炉熔炼后,采用速凝铸带技术得到厚度为0.31mm的相应主相甩片;
2)将相应主相甩片经过氢爆和气流磨工艺制备平均粒度为3.2μm的相应合金粉末;
3)按照1:1:2的质量比将A、B和C主相合金粉末均匀混合后,在氮气保护下将混合主相粉末在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;
4)将生坯放在真空烧结炉中进行烧结,烧结温度为1065℃,烧结时间3h,在890℃间进行一级回火,580℃间进行二级回火,得到稀土永磁体。
5)磁体磁性能为Br=12.8kGs,Hcj=9.4kOe,(BH)max=38.1MGOe。
实施例3:
1)以质量百分数计,成分为[Nd0.5(La0.3Ce0.7)0.5]30.5Fe67.1Co1.4B1的主相A和Nd30.5Fe67.1Co1.4B1主相B的主相B分别配料,在真空度高于10-2Pa的真空中频感应炉熔炼后,采用速凝铸带技术得到厚度为0.33mm的相应主相甩片;
2)将相应主相甩片经过氢爆和气流磨工艺制备平均粒度为3.1μm的相应合金粉末;
3)按照1:4的质量比将A、B主相合金粉末均匀混合后,在氮气保护下将混合主相粉末在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;
4)将生坯放在真空烧结炉中进行烧结,烧结温度为1070℃,烧结时间3h,在890℃间进行一级回火,580℃间进行二级回火,得到稀土永磁体。
5)磁体磁性能为Br=13.6kGs,Hcj=12.1kOe,(BH)max=45.3MGOe。
实施例4:
1)以质量百分数计,成分为[Nd0.4(La0.25Ce0.75)0.6]30.8Fe66.87Co0.75Ga0.58B1的主相A和Nd30.8Fe66.87Co0.75Ga0.58B1的主相B分别配料,在真空度高于10-2Pa的真空中频感应炉熔炼后,采用速凝铸带技术得到厚度为0.33mm的相应主相甩片;
2)将相应主相甩片经过氢爆和气流磨工艺制备平均粒度为3.5μm的相应合金粉末;
3)按照7:3的质量比将A、B主相合金粉末均匀混合后,在氮气保护下将混合主相粉末在2T的磁场下取向成型,并经17MPa冷等静压制成生坯;
4)将生坯放在真空烧结炉中进行烧结,烧结温度为1070℃,烧结时间3h,在890℃间进行一级回火,560℃间进行二级回火,得到稀土永磁体;
5)磁体磁性能为Br=12.7kGs,Hcj=8.9kOe,(BH)max=36.5MGOe。

Claims (3)

1.批量应用镧的富铈稀土永磁体,其特征在于:该永磁体具有多主相结构,包括一种RE-Fe-B主相和一种或者多种添加镧的富铈主相;
RE-Fe-B主相成分的质量百分数通式为REaFe100-a-b-cMbBc,一种或者多种添加镧的富铈主相成分的质量百分数通式均为[REx(LayCe1-y)1-x]aFe100-a-b-cMbBc,式中RE为Nd、Pr、Dy、Tb、Gd、Er、Ho中的一种或几种,M为Al、C、Co、Cr、Cu、F、Ga、Mn、Mo、N、Nb、Ni、P、Pb、S、Si、Ta、Ti、V、Zr元素中一种或几种;x、y、a、b、c满足以下关系:0.01≤x<1,0<y≤0.6,28≤a≤33,0.5≤b≤2,0.8≤c≤1.5。
2.根据权利要求1所述的批量应用镧的富铈稀土永磁体,其特征在于:RE-Fe-B主相占主相总质量的10%~90%,所有添加镧的富铈主相占主相总质量的10%~90%;当稀土永磁体中包含两种或者两种以上添加镧的富铈主相时,则各添加镧的富铈主相成分是不同的。
3.一种如权利要求1或2所述的批量应用镧的富铈稀土永磁体的制备方法,其特征在于:所述制备方法具体如下:
1)按照设计的主相成分分别进行配料,在真空度高于10-2Pa的真空中频感应炉中熔炼不同主相合金,采用速凝铸带技术得到厚度为0.2~0.5mm的不同主相合金甩片,然后经过氢爆和气流磨工艺制备平均粒度为3~4μm的相应合金粉末;
2)将相应主相合金粉末按照比例均匀混合,得到不同La-Ce取代量的混合主相粉末,然后在1.5~2T的磁场下进行取向压型,得到生坯;
3)将得到的生坯进行真空封装,15~20MPa间冷等静压1~3min,放入高真空正压烧结炉,在980~1080℃间烧结2.5~5h,840~940℃间进行一级回火,500~700℃间进行二级回火,得到稀土永磁体。
CN201710329853.3A 2017-05-11 2017-05-11 批量应用镧的富铈稀土永磁体及其制备方法 Active CN107275026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710329853.3A CN107275026B (zh) 2017-05-11 2017-05-11 批量应用镧的富铈稀土永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710329853.3A CN107275026B (zh) 2017-05-11 2017-05-11 批量应用镧的富铈稀土永磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN107275026A true CN107275026A (zh) 2017-10-20
CN107275026B CN107275026B (zh) 2019-03-05

Family

ID=60073927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710329853.3A Active CN107275026B (zh) 2017-05-11 2017-05-11 批量应用镧的富铈稀土永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN107275026B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766703A (zh) * 2018-06-08 2018-11-06 江西理工大学 一种耐高温多主相高丰度稀土永磁材料及其制备方法
CN111341512A (zh) * 2020-03-09 2020-06-26 钢铁研究总院 一种高性价比稀土永磁体及制备方法
US11195645B2 (en) 2018-07-18 2021-12-07 Central Iron And Steel Research Institute Ce-containing sintered rare-earth permanent magnet with having high toughness and high coercivity, and preparation method therefor
CN117542601A (zh) * 2023-12-11 2024-02-09 宁波中杭实业有限公司 一种高韧性高铈含量钕铁硼磁体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123839A (zh) * 2013-01-30 2013-05-29 浙江大学 一种应用高丰度稀土Ce生产的稀土永磁体及其制备方法
CN103996524A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种含La和Ce的钕铁硼稀土永磁体的制造方法
CN105225781A (zh) * 2015-10-27 2016-01-06 钢铁研究总院 一种高耐蚀性多硬磁主相Ce永磁体及其制备方法
CN106128674A (zh) * 2016-07-08 2016-11-16 钢铁研究总院 一种双硬磁主相混合稀土永磁体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123839A (zh) * 2013-01-30 2013-05-29 浙江大学 一种应用高丰度稀土Ce生产的稀土永磁体及其制备方法
CN103996524A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种含La和Ce的钕铁硼稀土永磁体的制造方法
CN105225781A (zh) * 2015-10-27 2016-01-06 钢铁研究总院 一种高耐蚀性多硬磁主相Ce永磁体及其制备方法
CN106128674A (zh) * 2016-07-08 2016-11-16 钢铁研究总院 一种双硬磁主相混合稀土永磁体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN ET AL.: "Mechanical Properties of La–Ce-Substituted Nd–Fe–B Magnets", 《IEEE TRANSACTIONS ON MAGNETICS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766703A (zh) * 2018-06-08 2018-11-06 江西理工大学 一种耐高温多主相高丰度稀土永磁材料及其制备方法
US11195645B2 (en) 2018-07-18 2021-12-07 Central Iron And Steel Research Institute Ce-containing sintered rare-earth permanent magnet with having high toughness and high coercivity, and preparation method therefor
CN111341512A (zh) * 2020-03-09 2020-06-26 钢铁研究总院 一种高性价比稀土永磁体及制备方法
CN111341512B (zh) * 2020-03-09 2022-07-08 钢铁研究总院 一种高性价比稀土永磁体及制备方法
CN117542601A (zh) * 2023-12-11 2024-02-09 宁波中杭实业有限公司 一种高韧性高铈含量钕铁硼磁体及其制备方法
CN117542601B (zh) * 2023-12-11 2024-04-23 宁波中杭实业有限公司 一种高韧性高铈含量钕铁硼磁体及其制备方法

Also Published As

Publication number Publication date
CN107275026B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN102436889B (zh) 钛锆镓复合添加的低失重钕铁硼磁性材料及其制备方法
CN103093912B (zh) 一种应用高丰度稀土La生产的稀土永磁体及其制备方法
CN104681268B (zh) 一种提高烧结钕铁硼磁体矫顽力的处理方法
CN102610347B (zh) 稀土永磁合金材料及其制备工艺
CN106252009B (zh) 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法
CN106128674B (zh) 一种双硬磁主相混合稀土永磁体及其制备方法
CN101812606B (zh) 铸锭改铸片添加重稀土氧化物制备低成本钕铁硼的方法
CN107275027B (zh) 应用钇的富铈稀土永磁体及其制备方法
CN102412044B (zh) 一种超低失重烧结钕铁硼磁性材料及其制备方法
CN103035350B (zh) 一种利用混合稀土mm制备的低成本永磁体及其制备方法
CN107275026B (zh) 批量应用镧的富铈稀土永磁体及其制备方法
CN107146674B (zh) 免于热处理的富铈稀土永磁体及其生产方法
CN107195414A (zh) 一种(Nd,Y)‑Fe‑B稀土永磁体及其制备方法
CN101552062A (zh) 钆钬复合添加的中高牌号钕铁硼磁体
CN105702403B (zh) 一种烧结钕铁硼磁体及制备方法
CN104347216A (zh) 一种镧系元素复合添加的钕铁硼磁性材料及其制备方法
CN103794323A (zh) 一种应用高丰度稀土生产的商用稀土永磁体及其制备方法
CN102969112B (zh) 稀土永磁粉及其制备方法以及由其制备的磁体和磁性器件
CN103996477A (zh) 一种铜锡晶界改性抗蚀烧结钕铁硼磁体及其制备工艺
CN105427994A (zh) 一种耐腐蚀的富镧铈烧结钕铁硼磁体及制造方法
CN108231312A (zh) 一种基于混合稀土制备的永磁合金及其制备方法
CN103646742A (zh) 一种钕铁硼磁体及其制备方法
EP3955267A1 (en) Ndfeb alloy powder for forming high-coercivity sintered ndfeb magnets and use thereof
CN106847457A (zh) 一种稀土永磁体及制备稀土永磁体的方法
CN107689279A (zh) 一种提高烧结钕铁硼复合磁体矫顽力的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant