CN107267917A - 一种纳米多层结构WSx/DLC润滑膜及制备方法 - Google Patents

一种纳米多层结构WSx/DLC润滑膜及制备方法 Download PDF

Info

Publication number
CN107267917A
CN107267917A CN201710423541.9A CN201710423541A CN107267917A CN 107267917 A CN107267917 A CN 107267917A CN 201710423541 A CN201710423541 A CN 201710423541A CN 107267917 A CN107267917 A CN 107267917A
Authority
CN
China
Prior art keywords
dlc
target
film
wsx
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710423541.9A
Other languages
English (en)
Other versions
CN107267917B (zh
Inventor
郑晓华
林玲玲
杨芳儿
鲁叶
常新新
王贡启
王贵葱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710423541.9A priority Critical patent/CN107267917B/zh
Publication of CN107267917A publication Critical patent/CN107267917A/zh
Application granted granted Critical
Publication of CN107267917B publication Critical patent/CN107267917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种纳米多层结构WSx/DLC润滑膜及制备方法,制备方法主要包括:(1)对基体进行前处理,使其表面清洁、光滑;(2)在多靶磁控溅射沉积系统中安装WS2靶、石墨靶和前处理后的基体,并将沉积室气压抽至1.5×10‑3Pa以下,调整靶基距和基体直流负偏压,通入高纯氩气并获得稳定气压;(3)加热基体到一定温度,然后以WS2靶和石墨靶为溅射靶材,在基体表面交替沉积WSx膜和DLC膜,通过沉积时间控制多层膜的调制周期、DLC膜厚和薄膜厚度等参数,从而获得特定结构特征的WSx/DLC纳米多层膜。本发明方法工艺简单、经济性好,制得的纳米多层膜硬度高(>9.5GPa)、结合力好(>36N)、内应力小(<370MPa),在真空及潮湿大气环境中的耐磨性能优异(大气、真空中的摩擦因数低于0.17和0.1,磨损率<3×10‑15m3/Nm量级),摩擦学性能的环境敏感性显著降低,具有较好的应用前景。

Description

一种纳米多层结构WSx/DLC润滑膜及制备方法
技术领域
本发明涉及一种磁控溅射纳米多层膜及制备方法,特别涉及一种WS2和类金刚石碳(DLC)构成的固体润滑膜的制备方法,属于材料摩擦磨损与固体润滑领域。
背景技术
过渡族金属硫化物(MX2)具有优异的自润滑特性,目前已被广泛用作固体润滑剂。其中,WS2因其在真空环境下摩擦因数低、工作温度高、耐磨性能好等优点而被广泛应用于机械加工和航天航空等领域中。然而,纯WS2薄膜结构疏松,其硬度及承载能力有限,且在潮湿环境中易潮解和氧化,耐磨性能差。
目前,提高WS2润滑膜在潮湿环境中的摩擦学性能的方法主要有金属掺杂、形成复合膜或多层膜等手段。研究表明,在WS2薄膜中掺入金属单质如Ti,Ag等,可改善薄膜的抗氧化性和耐磨性,但该方法成本高,薄膜摩擦因数上升,耐磨性能提升有限。专利(申请号201010274926.1)公开了一种W-S-C复合膜的制备方法,采用离子源轰击基体,直流磁控溅射沉积金属过渡层,中频磁控溅射沉积WS2和磁控溅射石墨靶沉积DLC,获得了摩擦因数约为0.02~0.15的W-S-C复合膜,但所得复合膜硬度较低(HV350~500)、制备工艺较为复杂,耐磨性能有待进一步提高。专利(申请号201410253262.9)公开了一种CrAlN/WS2纳米多层涂层及其制备方法,采用磁控溅射方式交替溅射CrAl合金靶和WS2靶,保持CrAlN纳米层的厚度5.0nm不变,而WS2纳米层厚度为0.4~1.2nm。该发明以CrAlN纳米层为主体,WS2纳米层则用于降低摩擦因数,涂层硬度超过36GPa,但大气中涂层与GCr15钢球间的摩擦因数高达0.24~0.30。王松等人(《材料热处理学报》,2016,37:159-163)采用离子束辅助沉积和低温离子渗硫技术制备了二硫化钨/钨掺杂类金刚石(WS2/W-DLC)复合膜,使硬质相纳米WC和软质润滑相WS2、FeS均匀地镶嵌于类金刚石基体内形成复合结构,薄膜在大气环境下的摩擦因数约为0.03,磨损率约10-19m3/Nm。杨芳儿等人(《中国有色金属学报》,2016,1:96-102)采用磁控溅射法制备了WSx/a-C纳米多层膜,但其a-C膜层硬度低(5.1GPa),多层膜的磨损率约为10-13m3/Nm量级,耐磨性较差。
上述WS2相关薄膜的制备方法中,以WS2为主体的薄膜,其耐磨性能较低,而以WS2为辅助的薄膜,尽管可以获得很高的硬度和耐磨性,但具有较高摩擦因数或者制备工艺复杂,且薄膜在真空环境中的摩擦学性能未知。本发明以WS2作为主体相,DLC作为辅助相,通过纳米多层方式形成新型WSx/DLC纳米多层膜,所得薄膜具有硬度高、内应力小,在潮湿大气和真空环境中的摩擦因数低、耐磨性能好等优点。
发明内容
为解决上述问题,本发明利用磁控溅射沉积技术,将DLC膜的高硬度和WS2膜的良好润滑性能相结合,提出一种高性能WSx/DLC纳米多层固体润滑膜的制备方法,通过在纳米多层界面形成WC相提高界面结合力并降低薄膜内应力,设计多层结构特征参数获得强烈的界面强化效应,显著提高薄膜硬度的同时进一步降低薄膜内应力,从而大幅度提高WS2基固体润滑膜在潮湿大气和真空环境中的摩擦学性能。相较于纯WS2薄膜及其他掺杂或复合技术所制备的WS2薄膜具有更高的硬度、耐磨性和抗氧化性能,更低的成本,更长的寿命,拓展其在航空航天等军工高技术领域和民用工业领域的应用。
本发明采用的技术方案如下:
一种纳米多层结构WSx/DLC润滑膜的制备方法,包括如下步骤:
(1)基体预处理:对基体进行前处理,使基体表面清洁,粗糙度不高于Ra 0.1;所述基体为单晶硅片或低碳钢板;
(2)实验准备:将石墨靶、WS2靶和步骤(1)预处理后的基体装入多靶磁控溅射沉积室,调整靶基距,并将沉积室内的气压抽至1.5×10-3Pa以下;加负偏压至基体上并调整基体温度,通入工作气体,调整沉积气压;
(3)纳米多层结构WSx/DLC润滑膜的制备:所述纳米多层结构WSx/DLC润滑膜的制备为单个多层周期内WS2膜厚度固定而DLC膜厚度变化的制备方法,根据每个多层周期内所需WS2膜和DLC膜的厚度以及WS2膜和DLC膜的沉积速率,确定装有基体的样品台在WS2靶和石墨靶上的周期性停留时间;根据薄膜厚度和调制周期Λ,确定多层结构的交替次数n,也即交替次数n=薄膜厚度/调制周期Λ并向上取整,所述调制周期Λ等于单个多层周期内WS2膜厚度与DLC膜厚度之和;
确定周期性停留时间及交替次数n后,将基体正对WS2靶,沉积所述周期性停留时间后获得一层WS2薄膜,随后转动基体使其正对石墨靶,在WS2薄膜之上沉积一层DLC薄膜,然后再在DLC薄膜上沉积WS2薄膜,如此循环重复n次,直至完成各个调制周期的制备,薄膜的最上层为DLC薄膜,冷却后最终获得所述纳米多层结构WSx/DLC润滑膜。
进一步,本发明所述WS2膜和DLC膜的沉积速率与靶基距、靶功率等参数相关。
进一步,本发明所述纳米多层结构WSx/DLC润滑膜的多层结构简图如图1所示,在基体表面上WS2薄膜与DLC薄膜依次交替沉积n次构成了本发明所述纳米多层结构WSx/DLC润滑膜。
进一步,本发明步骤(1)所述前处理,主要包括机械打磨、机械/化学抛光、常规除油(锈)、干燥等环节。
进一步,本发明步骤(2)中所述靶基距为60~70mm。
进一步,本发明步骤(2)中所述基体温度为80~200℃。
进一步,本发明步骤(2)中所述负偏压为-50V。
进一步,本发明步骤(2)中所述沉积气压为0.6Pa。
进一步,本发明步骤(2)所述工作气体为氩气。
进一步,本发明步骤(3)中所述调制周期Λ为9.5~11.0nm,其中单个多层周期内WS2膜厚度为9nm,DLC膜厚度为0.5~2.0nm。
进一步,本发明步骤(3)中所述薄膜厚度为427~600nm。
进一步,本发明步骤(3)中所述靶功率中WS2靶溅射功率为120W,石墨靶溅射功率为90W。
本发明制得的WSx/DLC纳米多层膜界面强化效应显著,硬度、弹性模量和结合力均有提升,多界面设计有助于降低薄膜的内应力、摩擦因数和磨损率,提升薄膜的综合性能。本发明方法工艺简单、经济性好,制得的纳米多层膜硬度高(>9.5GPa)、结合力好(>36N)、内应力小(<370MPa),在真空及潮湿大气环境中的耐磨性能优异(大气、真空中的摩擦因数低于0.17和0.1,磨损率<3×10-15m3/Nm量级),摩擦学性能的环境敏感性显著降低,具有较好的应用前景。
本发明的有益效果在于:
(1)与纯WS2薄膜相比,本发明交替沉积的多层结构设计,细化了薄膜晶粒,在多层界面处形成WC相,提高了界面结合力并降低薄膜内应力;在恰当的多层结构特征参数下获得强烈的界面强化效应,显著提高薄膜硬度的同时进一步降低薄膜内应力,提升了薄膜的硬度、弹性模量,降低了薄膜的内应力,并且大幅度降低薄膜在真空和潮湿大气中的磨损率,综合性能优异。
(2)由于多层膜表层为DLC膜,其结构致密,化学惰性优异,阻隔了WSx与空气直接接触,因而显著增强薄膜的抗氧化性和抗潮解性能,使薄膜在潮湿大气环境中的使用寿命得以延长。采取本发明方法制备的WSx/DLC纳米多层膜成本低,制取简便,适用范围广,寿命长。
附图说明
图1为多层膜的结构示意简图
图2为实施例1~3的纳米压入硬度实测值与理论计算值对比
图3为实施例1(a)和对比例1(b)表面形貌SEM图
图4为实施例2(a)和对比例1(b)截面形貌SEM图
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
本发明所用的薄膜制备、表征和测量用主要仪器:
JGP-450型多靶磁控溅射系统,中科院沈阳科学仪器研制中心。Nano IndenterG200型纳米压痕仪,美国安捷伦科技公司。FST150型薄膜应力测试仪,深圳市速普仪器有限公司。WS-2005型涂层附着力划痕仪,兰州中科凯华科技开发有限公司。附着力测试条件:加载速率100N/min,划痕长度4mm,划痕速率4mm/min。WTM-1E型球盘式摩擦磨损试验机,兰州中科凯华科技开发有限公司。摩擦磨损测试条件:球-盘摩擦副,GCr15钢球,直径3mm,法向载荷0.5N,相对滑动速率0.11m/s,测试时长15min,真空环境:气压<0.1Pa,大气环境:空气相对湿度为70~85%。
实施例1
(1)基体预处理:将经过抛光的单晶硅片放在超声波清洗仪器中,依次用体积分数为10%的氢氟酸溶液-丙酮-无水乙醇各清洗15min,使其表面清洁,清洗后用热风吹干,安装到磁控溅射腔室样品台上。
(2)实验准备:将石墨靶、WS2靶和前处理后的基体装入多靶磁控溅射沉积室后,将沉积室内的气压抽至1.2×10-3Pa,靶基距调整为65mm,加50V直流负偏压至基体,开启基体温控系统,使基体温度稳定在200℃,通入工作气体氩气并使沉积气压恒定在0.6Pa。
(3)纳米多层膜WSx/DLC的制备:启动基体位置切换机构,让单晶硅片远离WS2靶和石墨靶,然后开启溅射电源,点燃WS2靶(溅射功率为120W)和石墨靶(溅射功率为90W)。将单晶硅片迅速切换至正对WS2靶的位置,停留13秒后迅速将基体切换至正对石墨靶的位置,停留23秒,完成一个多层膜周期,然后再将基体切换至正对WS2靶的位置,停留13秒,…如此反复直至60个周期。关闭溅射电源和温控系统电源,待基体自然冷却至室温后取出,得到调制周期为10nm(WS2 9nm+DLC1.0nm)、厚度约为600nm的纳米多层膜。
实施例2
(1)基体预处理:同实施例1。
(2)实验准备:将石墨靶、WS2靶和前处理后的基体装入多靶磁控溅射沉积室后,将沉积室内的气压抽至1.2×10-3Pa,靶基距调整为70mm,加50V直流负偏压至基体,开启基体温控系统,使基体温度稳定在150℃,通入工作气体氩气并使沉积气压恒定在0.6Pa。
(3)纳米多层膜WSx/DLC的制备:启动基体位置切换机构,让单晶硅片远离WS2靶和石墨靶,然后开启溅射电源,点燃WS2靶(溅射功率为120W)和石墨靶(溅射功率为90W)。将单晶硅片迅速切换至正对WS2靶的位置,停留14秒后迅速将基体切换至正对石墨靶的位置,停留7秒,完成一个多层膜周期,然后再将基体切换至正对WS2靶的位置,停留14秒,…如此反复直至45个周期。关闭溅射电源和温控系统电源,待基体自然冷却至室温后取出,得到调制周期为9.5nm(WS2 9nm+DLC0.5nm)、厚度约为427nm的纳米多层膜。
实施例3
(1)基体预处理:将经过打磨和机械抛光的低碳钢板进行常规碱性除油15min,清水漂洗后放入体积分数为1%的盐酸溶液中浸泡5min,清水漂洗后放在超声波清洗仪中用无水乙醇清洗15min,热风吹干后安装到磁控溅射腔室样品台上。
(2)实验准备:将石墨靶、WS2靶和前处理后的基体装入多靶磁控溅射沉积室后,将沉积室内的气压抽至1.2×10-3Pa,靶基距调整为60mm,加50V直流负偏压至基体,开启基体温控系统,使基体温度稳定在80℃,通入工作气体氩气并使沉积气压恒定在0.6Pa。
(3)纳米多层膜WSx/DLC的制备:启动基体位置切换机构,让单晶硅片远离WS2靶和石墨靶,然后开启溅射电源,点燃WS2靶(溅射功率为120W)和石墨靶(溅射功率为90W)。将单晶硅片迅速切换至正对WS2靶的位置,停留12秒后迅速将基体切换至正对石墨靶的位置,停留45秒,完成一个多层膜周期,然后再将基体切换至正对WS2靶的位置,停留12秒,…如此反复直至50个周期。关闭溅射电源和温控系统电源,待基体自然冷却至室温后取出,得到调制周期为11nm(WS2 9nm+DLC 2nm)、厚度约为550nm的纳米多层膜。
对比例1
(1)基体预处理:同实施例1。
(2)实验准备:将WS2靶和前处理后的基体装入多靶磁控溅射沉积室后,将沉积室内的气压抽至1.2×10-3Pa,靶基距调整为65mm,加50V直流负偏压至基体,开启基体温控系统,使基体温度稳定在200℃,通入工作气体氩气并使沉积气压恒定在0.6Pa。
(3)纯WS2膜的制备:启动基体位置切换机构,让单晶硅片远离WS2靶,然后开启溅射电源,点燃WS2靶(溅射功率为120W)。将单晶硅片迅速切换至正对WS2靶的位置,停留750s后关闭溅射电源和温控系统电源,待基体自然冷却至室温后取出,得到厚度约为560nm的纳米多层膜。
实施例1~实施例3和对比例1的制备工艺参数见表1。经检测,实施例1~实施例3所获WSx/DLC纳米多层膜具有非晶或微晶结构,薄膜表面致密,横截面呈层状结构生长,层间结合好,与基体结合力较高,内应力较小,其硬度显著高于混合法则计算值(见图2),磨损率显著低于纯WS2薄膜,详细力学及摩擦学性能测试结果见表2。图3所示为实施例1和对比例1的表面形貌SEM照片,可以看出,实施例1薄膜表面平整光滑、致密无针孔,表现为无特征膜形式,而对比例1薄膜表面由尺寸为几十纳米的“小颗粒”状物质聚集而成,结构疏松,易吸潮氧化。图4所示为实施例2和对比例1的截面SEM照片,从截面图中可见多层膜各界面之间无明显间隙,结合良好,且逐渐呈层状结构生长,而对比例1的截面呈典型的柱状生长特征。
表1实施例1~实施例3和对比例1的沉积工艺参数
表2实施例1~实施例3和对比例1的的性能测试数据

Claims (8)

1.一种纳米多层结构WSx/DLC润滑膜的制备方法,其特征在于所述的制备方法包括如下步骤:
(1)基体预处理:对基体进行前处理,使基体表面清洁,粗糙度不高于Ra 0.1;所述基体为单晶硅片或低碳钢板;
(2)实验准备:将石墨靶、WS2靶和步骤(1)预处理后的基体装入多靶磁控溅射沉积室,调整靶基距,并将沉积室内的气压抽至1.5×10-3Pa以下;加负偏压至基体上并调整基体温度,通入工作气体,调整沉积气压;
(3)纳米多层结构WSx/DLC润滑膜的制备:所述纳米多层结构WSx/DLC润滑膜的制备为单个多层周期内WS2膜厚度固定而DLC膜厚度变化的制备方法,根据每个多层周期内所需WS2膜和DLC膜的厚度以及WS2膜和DLC膜的沉积速率,确定装有基体的样品台在WS2靶和石墨靶上的周期性停留时间;根据薄膜厚度和调制周期Λ,确定多层结构的交替次数n,也即交替次数n=薄膜厚度/调制周期Λ并向上取整,所述调制周期Λ等于单个多层周期内WS2膜厚度与DLC膜厚度之和;
确定周期性停留时间及交替次数n后,将基体正对WS2靶,沉积所述周期性停留时间后获得一层WS2薄膜,随后转动基体使其正对石墨靶,在WS2薄膜之上沉积一层DLC薄膜,然后再在DLC薄膜上沉积WS2薄膜,如此循环重复n次,直至完成各个调制周期的制备,薄膜的最上层为DLC薄膜,冷却后最终获得所述纳米多层结构WSx/DLC润滑膜。
2.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:所述调制周期Λ为9.5~11.0nm,单个多层周期内WS2膜厚度为9nm,DLC膜厚度为0.5~2.0nm。
3.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:步骤(2)中所述靶基距为60~70mm。
4.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:步骤(2)中所述基体温度为80~200℃。
5.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:步骤(2)中所述负偏压为-50V;所述沉积气压为0.6Pa。
6.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:所述工作气体为氩气。
7.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:步骤(3)中所述薄膜厚度为427~600nm。
8.如权利要求1所述的纳米多层结构WSx//DLC润滑膜的制备方法,其特征在于:步骤(3)中所述靶功率中WS2靶溅射功率为120W,石墨靶溅射功率为90W。
CN201710423541.9A 2017-06-07 2017-06-07 一种纳米多层结构WSx/DLC润滑膜及制备方法 Active CN107267917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710423541.9A CN107267917B (zh) 2017-06-07 2017-06-07 一种纳米多层结构WSx/DLC润滑膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710423541.9A CN107267917B (zh) 2017-06-07 2017-06-07 一种纳米多层结构WSx/DLC润滑膜及制备方法

Publications (2)

Publication Number Publication Date
CN107267917A true CN107267917A (zh) 2017-10-20
CN107267917B CN107267917B (zh) 2019-12-24

Family

ID=60067508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710423541.9A Active CN107267917B (zh) 2017-06-07 2017-06-07 一种纳米多层结构WSx/DLC润滑膜及制备方法

Country Status (1)

Country Link
CN (1) CN107267917B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977765A (zh) * 2018-07-03 2018-12-11 浙江工业大学 一种WSx/Me/a-C/Me纳米多层结构固体润滑膜及其制备方法
CN114959617A (zh) * 2022-06-28 2022-08-30 西安工程大学 Ag/WS2-DLC涂层及其制备方法
CN115074683A (zh) * 2022-06-07 2022-09-20 上海航天设备制造总厂有限公司 一种重载荷耐潮解润滑膜层

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994947A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 类金刚石复合二硫化钼纳米多层薄膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994947A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 类金刚石复合二硫化钼纳米多层薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨芳儿 等: ""不同调制周期WSx/a-C多层膜的组织结构及摩擦学特性"", 《中国有色金属学报》 *
杨芳儿 等: ""调制比对WSx/a-C多层膜微观组织及摩擦学性能的影响"", 《摩擦学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977765A (zh) * 2018-07-03 2018-12-11 浙江工业大学 一种WSx/Me/a-C/Me纳米多层结构固体润滑膜及其制备方法
CN115074683A (zh) * 2022-06-07 2022-09-20 上海航天设备制造总厂有限公司 一种重载荷耐潮解润滑膜层
CN114959617A (zh) * 2022-06-28 2022-08-30 西安工程大学 Ag/WS2-DLC涂层及其制备方法
CN114959617B (zh) * 2022-06-28 2024-01-26 西安工程大学 Ag/WS2-DLC涂层及其制备方法

Also Published As

Publication number Publication date
CN107267917B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN107267917A (zh) 一种纳米多层结构WSx/DLC润滑膜及制备方法
CN102216487A (zh) 硬质多层膜成型体及其制造方法
Azushima et al. Coefficients of friction of TiN coatings with preferred grain orientations under dry condition
CN102994947B (zh) 类金刚石复合二硫化钼纳米多层薄膜及其制备方法
Xing et al. Fabrication and tribological properties of Al2O3/TiC ceramic with nano-textures and WS2/Zr soft-coatings
Dong et al. Combined effect of laser texturing and carburizing on the bonding strength of DLC coatings deposited on medical titanium alloy
Gao et al. Structural, mechanical, and tribological properties of WS 2-Al nanocomposite film for space application
Birkholz et al. Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering
Podgornik et al. Wear and friction behaviour of duplex-treated AISI 4140 steel
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN111041442B (zh) 一种宽温域纳米复合结构碳基自润滑薄膜及其制备方法
Guo et al. Microstructure and properties of the Cp/AlSn coatings deposited by magnetron sputtering/multi-arc ion plating
Chen et al. Microstructure and tribological properties of CrAlTiN coating deposited via multi-arc ion plating
CN101921983B (zh) 一种w-s-c复合膜的制备方法
CN100387750C (zh) 磁控溅射制备减摩IF-WS2/IF-MoS2复合薄膜的方法
Sun Tribological rutile-TiO2 coating on aluminium alloy
CN109371363A (zh) 一种硬质硼化锆/氧化锆纳米多层膜及其制备方法与应用
CN109930108A (zh) 一种高温耐磨自润滑TiB2基涂层及其制备方法和应用
CN108265291A (zh) 一种软质基体表面的碳基涂层及其制备方法
Liu et al. Structure, mechanical properties and tribological behavior of sp2-C: Ti/sp3-C: Ti multilayer films deposited by magnetron sputtering
Li et al. Study of tribological performance of ECR–CVD diamond-like carbon coatings on steel substrates: Part 1. The effect of processing parameters and operating conditions
CN107326363A (zh) 基体表面的高硬度、耐磨损,且在乳化液环境中耐腐蚀的碳基涂层及其制备方法
CN106467959B (zh) 一种基体表面的固体润滑复合涂层及其制备方法
Wang et al. Microstructure and tribological properties of GLC/MoS2 composite films deposited by magnetron sputtering
CN111378928B (zh) 一种纳米晶MoS2固体润滑薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant