CN108265291A - 一种软质基体表面的碳基涂层及其制备方法 - Google Patents

一种软质基体表面的碳基涂层及其制备方法 Download PDF

Info

Publication number
CN108265291A
CN108265291A CN201810089810.7A CN201810089810A CN108265291A CN 108265291 A CN108265291 A CN 108265291A CN 201810089810 A CN201810089810 A CN 201810089810A CN 108265291 A CN108265291 A CN 108265291A
Authority
CN
China
Prior art keywords
transition zone
transition
carbon
matrix
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810089810.7A
Other languages
English (en)
Inventor
王永欣
孙尚琪
李金龙
鲁侠
曾志翔
王立平
薛群基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201810089810.7A priority Critical patent/CN108265291A/zh
Publication of CN108265291A publication Critical patent/CN108265291A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Abstract

本发明公开一种软质基体表面的碳基涂层,自基体(1)表面向上依次为过渡层(2)与耐磨层(3);过渡层(2)由第一过渡层(21)、第二过渡层(22)与第三过渡层(23)组成,并且第一过渡层(21)是位于基体(1)表面的Cr层,第二过渡层(22)是位于第一过渡层(21)表面的CrC层,第三过渡层(23)是位于第二过渡层(22)表面的CrSiC层,耐磨层(3)是位于第三过渡层(23)表面的掺杂Cr元素的非晶碳薄膜层。该碳基涂层在保证硬度及耐磨性的前提下,能够在软质基体上具有优异的摩擦学承载能力,使膜基结合力提升1~3倍,对软质基体起到有效防护作用。

Description

一种软质基体表面的碳基涂层及其制备方法
技术领域
本发明涉及基体表面处理技术领域,尤其涉及一种软质基体表面的碳基涂层及其制备方法。
背景技术
一些常用软质基体,例如软质金属及其合金材质的机械零部件,由于其低硬度等特点,很容易在摩擦等过程中变形、开裂和失效,严重影响设备使用寿命,提高成本。现阶段尽管非晶碳基涂层材料具有优异的减摩抗磨作用,但是非晶碳基涂层与软质基体的硬度、弹性模量、热膨胀系数等匹配性较差,极易因结合不牢而导致剥落失效,从而丧失对工件的保护。
发明内容
本发明提供了一种软质基体表面的碳基涂层,如图1所示,自基体1表面向上依次为过渡层2和耐磨层3。即,过渡层2位于基体1的表面,过渡层由第一过渡层21、第二过渡层22与第三过渡层23组成,其中第一过渡层21位于基体1的表面,第二过渡层22位于第一过渡层21表面,第三过渡层23位于第二过渡层22表面,耐磨层3位于第三过渡层23的表面;
软质基体不限,包括易熔且具有低硬度、低耐磨性和韧性的金属、合金及其化合物,例如铝基材料、铜基材料和不锈钢等材料。
其中,第一过渡层21为铬(Cr)层,以Cr层为第一过渡层的目的在于:Cr为高硬度金属,能够与碳生成稳定结构。使用Cr做过渡,能够与基体进行良好化学键结合,充分缓解非晶碳薄膜与基体间因热膨胀因数不匹配而引起的内应力,提高膜基结合力。
第二过渡层22为碳化铬(CrC)层,以CrC层为第二过渡层的目的在于:通过金属到碳化物的梯度设计,逐渐增加硬度,可以提升薄膜与基体的结合力,尽管该层的摩擦学性能低于非晶碳薄膜,但能够有效缓解界面应力,进而有效提高薄膜的结合力和承载力。作为优选,第二过渡层22中,沿着基体表面向上的方向,CrC含量逐渐升高,形成CrC梯度化过渡层,梯度化过渡层既保持了高硬度、低摩擦,又降低了脆性,而且提高了薄膜承载能力、膜基结合力及磨损抗力。
第三过渡层23为铬硅碳(CrSiC)层,以CrSiC层为第三过渡层的目的在于:CrC碳化物,其体系性能低于非晶碳薄膜,可以有效缓解界面应力,可以有效提高薄膜的承载力。硅与碳的结合能够部分取代碳基网络结构中的C,改变sp2-C/sp3-C的比例,进一步缓解复合涂层内部层间界面应力。同时Si掺杂后会促使涂层内部生成少量非晶碳结构,在表面耐磨层失效后可继续保持润滑和耐磨作用,延长机械零部件使用寿命。作为优选,第三过渡层23中,沿着基体表面向上的方向,Cr元素含量逐渐降低,Si元素含量逐渐升高,形成CrSiC梯度化过渡层。
耐磨层3为掺杂铬元素的非晶碳薄膜层,形成a-C:Cr薄膜,使用a-C:Cr薄膜作为耐磨层的目的在于:非晶碳基涂层材料可兼具自润滑、耐磨损、耐腐蚀特性,尤其是以等离子体增强化学气相沉积法制备的类金刚石薄膜具有高sp2含量,在摩擦剪切力作用下,能够快速形成石墨化转移膜,使基体在乳化液环境中迅速达到稳定低摩擦和低磨损,在少量Cr元素存在情况下可形成纳米晶镶嵌非晶结构,涂层可在保持良好减摩抗磨性能前提下表现出较低的内应力,获得较高的综合摩擦学性能。
本发明提供的基体表面的碳基涂层的有益效果为:在保证掺杂Cr元素的类金刚石薄膜具有良好的硬度和耐磨性的同时,使膜基结合力提升1~3倍,不易失效,并且在一些常用的软质金属及合金材质的零部件上,能够对基体起到有效防护作用,能搞显著提升其摩擦学承载能力,延长使用寿命,降低成本。例如,该涂层可用于铝基合金材质的发动机零部件,提升其耐磨性及摩擦学承载能力,为延长工件使用寿命和增加效益提供潜在可能。
本发明还提供了一种软质金属及合金表面的碳基涂层其制备方法,包括如下步骤:
(1)采用磁控溅射技术,在基体表面制备Cr过渡层,即,通入氩气,磁控溅射铬靶,基体施加偏压,得到过渡层21;
作为优选,通入氩气100~200sccm;
作为优选,铬靶溅射功率为3KW~5KW;
作为优选,基体偏压范围为20V~60V;
(2)采用磁控溅射技术复合等离子体增强化学气相沉积法,在Cr过渡层表面制备CrC过渡层,即,保持氩气流量不变,保持基体偏压不变,磁控溅射铬靶,并且通入乙炔,得到过渡层22;
作为优选,铬靶溅射功率逐渐升高至6KW~8KW;进一步优选,在20~40min以内,铬靶溅射功率逐渐升高至6KW~8KW;
作为优选,乙炔流量逐渐增加至40sccm~60sccm;
(3)采用磁控溅射技术复合等离子体增强化学气相沉积法,在CrC过渡层表面制备CrSiC过渡层,即,保持氩气流量不变,保持基体变压不变,保持乙炔流量不变,磁控溅射铬靶,并且开启硅靶溅射,得到过渡层23;
作为优选,铬靶溅射功率逐渐降低至3KW~5KW;进一步优选,在20~40min以内,铬靶溅射功率逐渐升高至3KW~5KW;
作为优选,硅靶溅射功率逐渐增加至2KW~4KW;
(4)采用磁控溅射技术复合等离子体增强化学气相沉积法,在CrSiC层表面制备铬掺杂非晶碳基耐磨工作层,即,保持氩气流量不变,保持基体变压不变,关闭硅靶电源停止其沉积,降低磁控溅射铬靶功率至1~2KW,增加乙炔流量至80~100sccm,沉积得到耐磨层3。
附图说明
图1是本发明软质金属及合金表面碳基复合涂层的结构示意图;
图2是本发明实施例1制得的碳基复合涂层的形貌图;
图3为本发明实施例1制得的碳基复合涂层的硬度及弹性模量测试结果图;
图4是本发明实施例1与对比实施例1制得的碳基复合涂层的结合力图;
图5是本发明实施例1制得的碳基复合涂层在大气环境中的摩擦曲线;
图6是本发明实施例2与对比实施例2制得的碳基复合涂层的结合力图;
图7是本发明实施例2制得的碳基复合涂层在大气环境中的摩擦曲线。
具体实施方式
下面结合附图实施例对本发明作进一步详细描述,需要说明的是,以下所述实施例和术语旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,基体1为铝基合金材质基体,该基体1表面为DLC复合涂层,结构如图1所示,自基体1表面向上依次为过渡层2、耐磨层3。即,过渡层2位于基体1的表面,过渡层2由第一过渡层21、第二过渡层22与第三过渡层23组成,其中第一过渡层21位于基体1的表面,第二过渡层22位于第一过渡层21表面,第三过渡层23位于第二过渡层22表面,耐磨层3位于第三过渡层23的表面。
其中,第一过渡层21为Cr层,第二过渡层22为CrC层,第三过渡层23为CrSiC层,磁控溅射Cr和Si靶,通入乙炔气体,形成CrSiC梯度化过渡层。
该基体表面的碳基涂层的制备方法如下:
(1)将基体进行丙酮、酒精和去离子水超声清洗后,放在磁控溅射腔体内部的样品台上,基体与磁控溅射靶的距离为100mm,对腔体抽真空,抽至4.0×10-5mbar以下;样品台旋转速度为3r/min,在通入纯Ar气0.2Pa的条件下,基体在250V负偏压下刻蚀30min。
(2)制备过渡层2
对腔体通Ar气的流量为150sccm,基体偏压为30V,沉积温度200℃以下,在基体表面进行如下沉积:
首先,溅射铬靶,铬靶功率为4KW,氩气流量150sccm,沉积时间为15min,制备Cr层;
然后,保持氩气流量150sccmb不变,在30min以内,改变Cr靶功率由4KW并逐渐上升至5KW,通入乙炔气体且逐渐增大流量至50sccm;
接着,保持氩气流量150sccm和乙炔流量50sccm不变,在30min以内,改变Cr靶功率由5KW逐渐降低至3KW,开启Si靶溅射将功率由0逐渐上升至3KW,制备CrSiC层。
(3)制备耐磨层3
保持Ar气流量为150sccm,基体偏压为30V,将Cr靶功率降低至2KW,乙炔流量增加至80sccm,在经步骤(2)处理后的过渡层表面沉积Cr掺杂的碳质涂层,沉积时间120分钟。
上述制得的基体表面的碳基涂层的形貌如图2所示,显示薄膜体系厚度约为4.2μm,由基体表面向上依次为过渡层2(21,22,23)以及工作层3。
对比实施例1:
本实施例中,基体1与实施例1中的基体完全相同。
本实施例中,基体表面是Cr掺杂的碳质涂层作为耐磨层,制备方法如下:
该基体表面的碳基涂层的制备方法如下:
(1)将基体进行丙酮、酒精和去离子水超声清洗后,放在磁控溅射腔体内部的样品台上,基体与磁控溅射靶的距离为100mm,对腔体抽真空,抽至4.0×10-5mbar以下;样品台旋转速度为3r/min,在通入纯Ar气0.2Pa的条件下,基体在250V负偏压下刻蚀30min。
(2)制备耐磨层
保持Ar气流量为150sccm,基体偏压为30V,将Cr靶功率提升至2KW,乙炔流量增加至80sccm,在经步骤(2)处理后的过渡层表面沉积Cr掺杂的碳质涂层a-C:Cr,沉积时间120分钟。
对上述实施例1与对比实施例1制得的碳基涂层进行性能测试,结果如下:
硬度及弹性模量测试结果如图3所示,显示该碳基涂层具有良好的硬度。
采用划痕测试仪测试其膜基结合力,结果如图4所示,显示实施例1中制得的Cr/CrC/CrSiC/a-C:Cr复合涂层的膜基结合力约为18N,而对比实施例制得的a-C:Cr涂层的膜基结合力4N。即,与对比实施例1制得的a-C:Cr涂层相比,实施例1中制得的梯度碳质涂层在铝合金表面呈现出了良好的膜基结合。
图5为上述实施例1制得的Cr/CrC/CrSiC/a-C:Cr涂层在大气环境中的摩擦系数测试结果图,显示其摩擦系数为0.11,具有优异的综合摩擦学性能。
实施例2:
本实施例中,基体1为铜基合金材质基体,该基体1表面为DLC复合涂层,结构如图1所示,自基体1表面向上依次为过渡层2、耐磨层3。即,过渡层2位于基体1的表面,过渡层2由第一过渡层21、第二过渡层22与第三过渡层23组成,其中第一过渡层21位于基体1的表面,第二过渡层22位于第一过渡层21表面,第三过渡层23位于第二过渡层22表面,耐磨层3位于第三过渡层23的表面。
其中,第一过渡层21为Cr层,第二过渡层22为CrC层,第三过渡层23为CrSiC层,磁控溅射Cr和Si靶,通入乙炔气体,形成CrSiC梯度化过渡层。
该基体表面的碳基涂层的制备方法如下:
(1)将基体进行丙酮、酒精和去离子水超声清洗后,放在磁控溅射腔体内部的样品台上,基体与磁控溅射靶的距离为100mm,对腔体抽真空,抽至4.0×10-5mbar以下;样品台旋转速度为3r/min,在通入纯Ar气0.2Pa的条件下,基体在250V负偏压下刻蚀30min。
(2)制备过渡层2
对腔体通Ar气的流量为160sccm,基体偏压为35V,沉积温度200℃以下,在基体表面进行如下沉积:
首先,溅射铬靶,铬靶功率为5KW,氩气流量160sccm,沉积时间为15min,制备Cr层;
然后,保持氩气流量160sccmb不变,在30min以内,改变Cr靶功率由5KW并逐渐上升至6KW,通入乙炔气体且逐渐增大流量至60sccm;
接着,保持氩气流量160sccm和乙炔流量60sccm不变,在30min以内,改变Cr靶功率由6KW逐渐降低至4KW,开启Si靶溅射将功率由0逐渐上升至4KW,制备CrSiC层。
(3)制备耐磨层3
保持Ar气流量为160sccm,基体偏压为35V,将Cr靶功率降低至3KW,乙炔流量增加至75sccm,在经步骤(2)处理后的过渡层表面沉积Cr掺杂的碳质涂层,沉积时间120分钟。
对上述制得的碳基涂层进行如下性能测试:
采用划痕测试仪测试其膜基结合力,结果如图6所示,显示其膜基结合力约为7N。
对比实施例2:
本实施例中,基体2与实施例2中的基体完全相同。
本实施例中,基体表面是Cr掺杂的碳质涂层作为耐磨层,制备方法如下:
该基体表面的碳基涂层的制备方法如下:
(1)将基体进行丙酮、酒精和去离子水超声清洗后,放在磁控溅射腔体内部的样品台上,基体与磁控溅射靶的距离为100mm,对腔体抽真空,抽至4.0×10-5mbar以下;样品台旋转速度为3r/min,在通入纯Ar气0.2Pa的条件下,基体在250V负偏压下刻蚀30min。
(2)制备耐磨层
保持Ar气流量为160sccm,基体偏压为35V,将Cr靶功率提升至3KW,乙炔流量增加至75sccm,在经步骤(2)处理后的过渡层表面沉积Cr掺杂的碳质涂层a-C:Cr,沉积时间120分钟。
对上述实施例与对比实施例制得的碳基涂层进行性能测试,结果如下:
采用划痕测试仪测试其膜基结合力,结果如图6所示,显示实施例2中制得的Cr/CrC/CrSiC/a-C:Cr复合涂层的膜基结合力约为7N,而对比实施例制得的a-C:Cr涂层的膜基结合力33N。即,与对比实施例2制得的a-C:Cr涂层相比,实施例2中制得的梯度碳质涂层在铜合金表面呈现出了良好的膜基结合。
图7为上述实施例2制得的Cr/CrC/CrSiC/a-C:Cr涂层在大气环境中的摩擦系数测试结果图,显示其摩擦系数为0.09,具有优异的综合摩擦学性能。
以上所述仅为本发明的说明实施例,在上述说明书的描述中提到的数值及数值范围并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种软质基体表面的碳基涂层,其特征是:自基体(1)表面向上依次为过渡层(2)与耐磨层(3);
过渡层(2)由第一过渡层(21)、第二过渡层(22)与第三过渡层(23)组成,其中第一过渡层(21)是位于基体(1)表面的Cr层,第二过渡层(22)是位于第一过渡层(21)表面的CrC层,第三过渡层(23)是位于第二过渡层(22)表面的CrSiC层,耐磨层(3)是位于第三过渡层(23)表面的掺杂Cr元素的非晶碳薄膜层。
2.如权利要求1所述的软质基体表面的碳基涂层,其特征是:沿着基体表面向上的方向,第二过渡层(22)中CrC含量逐渐升高,形成CrC梯度化过渡层。
3.如权利要求1所述的软质基体表面的碳基涂层,其特征是:沿着基体表面向上的方向,在第二过渡层(23)中,Cr元素含量逐渐降低,Si元素含量逐渐升高,形成CrSiC梯度化过渡层。
4.如权利要求1所述的软质基体表面的碳基涂层,其特征是:所述的软质基体包括铝基合金材料、铜基合金材料和不锈钢。
5.如权利要求1、2、3或4所述的软质基体表面的碳基涂层的制备方法,其特征是:包括如下步骤:
(1)采用磁控溅射技术,在基体表面制备Cr过渡层,即,通入氩气,磁控溅射铬靶,基体施加偏压,得到过渡层(21);
(2)采用磁控溅射技术复合等离子体增强化学气相沉积法,在Cr过渡层制备CrC过渡层,即,保持氩气流量不变,保持基体变压不变,磁控溅射铬靶,并且通入乙炔,得到过渡层(22);
(3)采用磁控溅射技术复合等离子体增强化学气相沉积法,在CrC过渡层表面制备CrSiC过渡层,即,保持氩气流量不变,保持基体变压不变,保持乙炔流量不变,磁控溅射铬靶,同时开启Si靶溅射,得到过渡层(23);
(4)采用磁控溅射技术复合等离子体增强化学气相沉积法,在CrSiC层表面制备掺杂Cr元素的非晶碳薄膜层,即,保持氩气流量不变,保持基体变压不变,关闭Si靶电源,降低磁控溅射Cr靶功率至1KW~2KW,增加乙炔流量至80sccm~100sccm,沉积得到耐磨层(3)。
6.如权利要求5所述的软质基体表面的碳基涂层的制备方法,其特征是:所述的步骤(1)中,铬靶溅射功率为3KW~5KW;
作为优选,所述的步骤(1)中,基体偏压范围为20V~60V;
作为优选,所述的步骤(1)中,通入氩气100~200sccm。
7.如权利要求5所述的软质基体表面的碳基涂层的制备方法,其特征是:所述的步骤(2)中,铬靶溅射功率逐渐升高至6KW~8KW;
作为优选,在20~40min以内,铬靶溅射功率逐渐升高至6KW~8KW。
8.如权利要求5所述的软质基体表面的碳基涂层的制备方法,其特征是:所述的步骤(2)中,乙炔流量逐渐增加至40sccm~60sccm。
9.如权利要求5所述的软质基体表面的碳基涂层的制备方法,其特征是:所述的步骤(3)中,铬靶溅射功率逐渐降低至3KW~5KW;
作为优选,在20~40min以内,铬靶溅射功率逐渐升高至3KW~5KW。
10.如权利要求5所述的软质基体表面的碳基涂层的制备方法,其特征是:所述的步骤(4)中,硅靶溅射功率逐渐增加至2KW~4KW。
CN201810089810.7A 2018-01-30 2018-01-30 一种软质基体表面的碳基涂层及其制备方法 Pending CN108265291A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810089810.7A CN108265291A (zh) 2018-01-30 2018-01-30 一种软质基体表面的碳基涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810089810.7A CN108265291A (zh) 2018-01-30 2018-01-30 一种软质基体表面的碳基涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN108265291A true CN108265291A (zh) 2018-07-10

Family

ID=62777103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810089810.7A Pending CN108265291A (zh) 2018-01-30 2018-01-30 一种软质基体表面的碳基涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108265291A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402577A (zh) * 2018-12-27 2019-03-01 广东省新材料研究所 一种超硬碳基薄膜及其制备方法
CN110205586A (zh) * 2019-06-24 2019-09-06 精研(东莞)科技发展有限公司 一种物理气相沉积法制备黑色碳化铬硅绝缘复合涂层的方法
CN117344107A (zh) * 2023-09-14 2024-01-05 成都飞机工业(集团)有限责任公司 一种应用于苛刻工况的复合润滑涂层及其制备和使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444985A (zh) * 2007-12-19 2009-06-03 中国人民解放军装甲兵工程学院 一种非晶碳涂层及其制备方法和用途
CN102453858A (zh) * 2010-10-29 2012-05-16 中国科学院兰州化学物理研究所 轻质软金属表面碳基薄膜材料的制备方法
CN102703859A (zh) * 2012-06-15 2012-10-03 上海大学 非晶碳基薄膜与金属基体间梯度过渡层的制备方法
CN103160780A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 凸轮轴表面多层纳米复合类金刚石薄膜的制备方法
CN103635602A (zh) * 2011-03-02 2014-03-12 欧瑞康贸易股份公司(特吕巴赫) 用于在润滑条件下通过摩擦应用改进磨损和摩擦性能的用含金属碳层涂布的滑动组件
CN103987872A (zh) * 2011-12-12 2014-08-13 高科涂层有限公司 碳基涂层

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444985A (zh) * 2007-12-19 2009-06-03 中国人民解放军装甲兵工程学院 一种非晶碳涂层及其制备方法和用途
CN102453858A (zh) * 2010-10-29 2012-05-16 中国科学院兰州化学物理研究所 轻质软金属表面碳基薄膜材料的制备方法
CN103635602A (zh) * 2011-03-02 2014-03-12 欧瑞康贸易股份公司(特吕巴赫) 用于在润滑条件下通过摩擦应用改进磨损和摩擦性能的用含金属碳层涂布的滑动组件
CN103987872A (zh) * 2011-12-12 2014-08-13 高科涂层有限公司 碳基涂层
CN103160780A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 凸轮轴表面多层纳米复合类金刚石薄膜的制备方法
CN102703859A (zh) * 2012-06-15 2012-10-03 上海大学 非晶碳基薄膜与金属基体间梯度过渡层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONGZHEN WU ETAL: "Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering", 《APPLIED SURFACE SCIENCE》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402577A (zh) * 2018-12-27 2019-03-01 广东省新材料研究所 一种超硬碳基薄膜及其制备方法
CN110205586A (zh) * 2019-06-24 2019-09-06 精研(东莞)科技发展有限公司 一种物理气相沉积法制备黑色碳化铬硅绝缘复合涂层的方法
CN117344107A (zh) * 2023-09-14 2024-01-05 成都飞机工业(集团)有限责任公司 一种应用于苛刻工况的复合润滑涂层及其制备和使用方法

Similar Documents

Publication Publication Date Title
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
Li et al. Continuously growing ultrathick CrN coating to achieve high load-bearing capacity and good tribological property
CN100506527C (zh) 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
Cao et al. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology
Gadow et al. Composite coatings with dry lubrication ability on light metal substrates
US8574715B2 (en) Laminated film and laminated film-coated member
CN107034440B (zh) 一种复合类金刚石碳膜及其制备方法
WO2010021285A1 (ja) 窒素含有非晶質炭素系皮膜、非晶質炭素系積層皮膜および摺動部材
CN111500982B (zh) 一种四面体非晶碳复合涂层及其制备方法
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN101469402B (zh) 类富勒烯碳膜的制备方法
CN108265291A (zh) 一种软质基体表面的碳基涂层及其制备方法
Du et al. Tribochemistry dependent tribological behavior of superhard TaC/SiC multilayer films
CN102994947A (zh) 类金刚石复合二硫化钼纳米多层薄膜及其制备方法
Cao et al. High temperature tribological performance and thermal conductivity of thick Ti/Ti-DLC multilayer coatings with the application potential for Al alloy pistons
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
Li et al. Optimizing mechanical and tribological properties of DLC/Cr3C2-NiCr duplex coating via tailoring interlayer thickness
Wu et al. Microstructure, mechanical and tribological properties of CrSiC coatings sliding against SiC and Al2O3 balls in water
Wu et al. Wear behavior of AlCrSiVN coatings at elevated temperature up to 700° C
Zhao et al. The study of the tribological properties of TiB2/Cr multilayered coatings over a wide temperature range
Chen et al. Microstructure and tribological properties of CrAlTiN coating deposited via multi-arc ion plating
Su et al. Improvement the tribological properties of diamond-like carbon film via Mo doping in diesel condition
Zhao et al. Enhanced tribological and corrosion properties of DLC/CrN multilayer films deposited by HPPMS
Naghashzadeh et al. Nanoindentation and tribological behavior of TiN-TiCN-TiAlN multilayer coatings on AISI D3 tool steel
Zhao et al. Effect of the bias-graded increment on the tribological and electrochemical corrosion properties of DLC films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180710

RJ01 Rejection of invention patent application after publication