CN107256954A - 一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用 - Google Patents

一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN107256954A
CN107256954A CN201710457881.3A CN201710457881A CN107256954A CN 107256954 A CN107256954 A CN 107256954A CN 201710457881 A CN201710457881 A CN 201710457881A CN 107256954 A CN107256954 A CN 107256954A
Authority
CN
China
Prior art keywords
carbon nano
transition metal
nano tube
metal oxide
compound material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710457881.3A
Other languages
English (en)
Inventor
侯峰
蒋小通
李国君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710457881.3A priority Critical patent/CN107256954A/zh
Publication of CN107256954A publication Critical patent/CN107256954A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用,包括以下步骤:(1)分别将碳纳米管、过渡金属硝酸盐、葡萄糖、碱性环境促进剂和表面活性剂分散于乙醇和水的混合溶液中,超声分散20~60min,(2)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为160℃~190℃,反应时间为12h~24h;(3)将步骤(2)反应所得体系经过静置、洗涤至中性,在60~100℃空气条件下干燥12h~24h,最终得到过渡金属氧化物碳纳米管复合材料。本发明的有益效果是:改善了材料的循环性能和稳定性能。

Description

一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用
技术领域
本发明涉及电极材料技术领域,特别是涉及一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用。
背景技术
过渡金属氧化物具有比容量大、无毒、环境友好和安全性高等优点,且原料来源丰富、价格低廉,因此它是一类很有发展潜力的锂离子电池负极材料。但是和其他过渡金属氧化物一样,其导电性较差(2×104S/m,25℃),而且伴随着锂离子的嵌入和脱出有高达200%的体积变化,因此其电化学性能(包括循环稳定性和倍率性能)并不理想。碳纳米管结晶性良好,具有独特的力学、电学性质及结构特点,能在电极中形成导电性优越的导电网络。将活性材料复合在碳纳米管中,形成杂化网格结构能改善过渡金属氧化物之间以及过渡金属氧化物和集流体之间的导电性,有利于过渡金属氧化物/电解质界面的电荷传输,同时缓解过渡金属氧化物与锂反应导致材料体积膨胀引起的应力作用,从而使得复合材料具有较高的倍率性能和循环性能。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用。
为实现本发明的目的所采用的技术方案是:
本发明的过渡金属氧化物碳纳米管复合材料的制备方法,包括以下步骤:
(1)分别将碳纳米管、过渡金属硝酸盐、葡萄糖、碱性环境促进剂和表面活性剂分散于乙醇和水的混合溶液中,超声分散20~60min,其中羟基化碳纳米管的质量份与葡萄糖的摩尔份、碱性环境促进剂的摩尔份和表面活性剂的摩尔份的为40:(1~1.4):(0~2):(5~20):(0.1~0.15),其中质量份的单位为mg,摩尔份的单位为mmol。
(2)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为160℃~190℃,反应时间为12h~24h;
(3)将步骤(2)反应所得体系经过静置、洗涤至中性,在60~100℃空气条件下干燥12h~24h,最终得到过渡金属氧化物碳纳米管复合材料。
优选的,所述步骤(1)的金属硝酸盐为硝酸铁、硝酸钴或硝酸镍。
优选的,所述步骤(1)中的碳纳米管为羟基化碳纳米管或王水处理的碳纳米管膜,所述羟基化碳纳米管为无定型粉状,碳纳米管的管径为2~20nm,所述王水处理的碳纳米管膜为膜状形态。
优选的,所述步骤(1)的碱性环境促进剂为尿素或氨水。
优选的,所述步骤(1)的表面活性剂为十六烷基三甲基溴化铵、十八烷基三甲基溴化铵或十八氨基三甲基氯化铵。
优选的,所述步骤(1)中乙醇和水的体积比为1:2。
优选的,所述的王水处理的碳纳米管膜是将浮动催化化学气相沉积法合成的碳纳米管膜以足量王水浸泡12h~36h后清洗烘干得到。
本发明的另一方面,还包括通过上述方法制备的过渡金属氧化物碳纳米管复合材料。
本发明的另一方面,还包括所述的过渡金属氧化物碳纳米管复合材料在电极材料上的应用。
优选的,将所述复合材料与炭黑、聚偏氟乙烯(PVDF)按照8:1:1质量比混合用于制备全电池的负极材料,同时,将混合后的复合材料与炭黑、聚偏氟乙烯(PVDF)按用N-甲基吡咯烷酮(NMP)溶解并研磨混匀,涂布在铜箔上,真空烘干后,戳成直径为1.2cm的圆片,可作为半电池的正极,并以锂片作为负极用于组装2032扣式半电池。
与现有技术相比,本发明的有益效果是:
(1)由该方法制备的过渡金属氧化物碳纳米管复合材料是应用性较好的锂离子电池负极材料,其合成工艺简单可行,产物均一。
(2)由该方法将过渡金属氧化物和碳纳米管进行复合,不仅使得过渡金属氧化物的导电性得到改善,而且碳纳米管所形成的连续的三维网络结构可有效缓冲过渡金属氧化物在充放电过程中发生的体积变化,改善了材料的循环性能和稳定性能。葡萄糖碳化带来的碳可以包覆复合物使之循环性能进一步提升。采用锂离子电池测试系统进行电池性能测试,过渡金属氧化物碳纳米管复合材料具有良好的循环稳定性和倍率性能。
附图说明
图1是实施例1所得到碳包覆的氧化铁碳纳米管复合材料的低倍SEM图像;
图2是实施例1所得到的碳包覆的氧化铁碳纳米管复合材料的低倍TEM图像;
图3是实施例1所得到的碳包覆的氧化铁碳纳米管复合材料在100mA/g充放电倍率下的循环性能图像。
图4是实施例2所得到的氧化钴碳纳米管复合材料的低倍SEM图像;
图5是实施例3所得到的氧化铁碳纳米管膜复合材料的低倍SEM图像;
图6是王水处理的碳纳米管膜的低倍SEM图像和能谱图;
图7是实施例4所得到的复合材料在100mA/g充放电电流下的循环性能图像。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
(1)称取0.04g羟基化碳纳米管、1.2mmol硝酸铁、10mmol尿素和0.11mmol十六烷基三甲基溴化铵、2mmol葡萄糖,加入75mL乙醇-水溶液(乙醇和水的体积比为1:2)混合后超声分散40min;
(2)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为190℃,反应时间为12h;
(3)将步骤(2)反应所得体系经过静置、离心洗涤至中性,在60℃空气条件下干燥12h,最终得到碳包覆的氧化铁碳纳米管复合材料。
图1是实施例1所得到的碳包覆的氧化铁碳纳米管复合材料的低倍SEM图像,图中可以看出所得纳米管总管径接近50nm,远大于碳纳米管的管径(一般为2~20nm),说明有材料包覆形成同轴电缆结构。
图2是实施例1所得到的氧化铁碳纳米管复合材料的低倍TEM图像,图中可以看到图中深色的过渡金属氧化物以纳米颗粒的结构包覆在碳纳米管表面,且外部有一层较浅色的碳层包覆。
将所得材料与炭黑、PVDF按照8:1:1质量比混合,用NMP溶解并研磨混匀,涂布在铜箔上,真空烘干后,利用工具戳成直径为1.2cm的圆片,作为半电池正极,并以锂片作为负极组装2032扣式半电池进行测试,得到如图3所示的在100mA/g充放电倍率下的循环性能图像。氧化铁碳纳米管复合材料在100mAh·g-1电流密度下首次充放电容量分别达到769.53mAh·g-1、1345.38mAh·g-1。第二次充放电容量分别为762.519mAh·g-1、943.753mAh·g-1,进行充放电八十周后充放电容量可达到802.99mAh·g-1、817.913mAh·g-1
实施例2
(1)称取0.04g羟基化碳纳米管、1.2mmol硝酸钴、10mmol尿素和0.11mmol十六烷基三甲基溴化铵,加入75mL乙醇-水溶液(乙醇和水的体积比为1:2)混合后超声分散40min;
(2)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为190℃,反应时间为24h;
(3)将步骤(2)反应所得体系经过静置、离心洗涤至中性,在60℃空气条件下干燥12h,最终得到氧化钴碳纳米管复合材料;
图4是实施例2所得到的氧化钴碳纳米管复合材料的低倍SEM图像,图中可以看出碳纳米管表面均匀包覆有一层氧化钴,总管径在30nm~100nm之间。
实施例3
(1)利用浮动催化化学气相沉积法合成的碳纳米管膜,详见公开号为CN103031624A的中国专利,以足量王水浸泡12h~36h后清洗烘干,得到王水处理的碳纳米管膜;
(2)称取0.04g王水处理的碳纳米管膜、1.2mmol硝酸铁、10mmol尿素和0.11mmol十六烷基三甲基溴化铵,加入75mL乙醇水溶液(乙醇和水的体积比为1:2)混合后超声分散40min;
(3)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为190℃,反应时间为12h;
(4)将步骤(2)反应所得体系经过静置、洗涤至中性,在60℃空气条件下干燥12h,最终得到氧化铁碳纳米管膜复合材料;
图5是实施例3所得到的一种过渡金属氧化物碳纳米管复合材料的低倍SEM图像,图中可以看出碳纳米管表面有氧化物包覆在碳纳米管上,形成同轴电缆结构,总管径在50nm左右,且另复合有金属氧化物纳米颗,纳米颗粒直径约40nm;
本实施例用所用的王水处理的碳纳米管膜的低倍SEM图像和能谱图如图6所示,图中可以看出酸化处理后碳管之间仍具有良好的网络结构,并且碳纳米管中含有约1%的氧原子。
实施例4
(1)称取0.04g羟基化碳纳米管、1.2mmol硝酸镍、10mmol尿素和0.11mmol十六烷基三甲基溴化铵,加入75mL乙醇水溶液(乙醇和水的体积比为1:2)混合后超声分散40min;
(2)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为190℃,反应时间为12h;
(3)将步骤(2)反应所得体系经过静置、洗涤至中性,经300℃热处理2h,最终得到氧化镍碳纳米管复合材料。
利用同实施例1相同的测试方法测量实施例4得到的复合材料的循环性能,得到如图7所示的复合材料在100mA/g充放电电流下的循环性能。氧化镍碳纳米管复合材料在100mAh·g-1电流密度下首次充放电容量分别达到799.585mAh·g-1、1311.203mAh·g-1。第二次充放电容量分别为774.284mAh·g-1、849.174mAh·g-1,进行充放电八十周后充放电容量可达到490.06mAh·g-1、518.503mAh·g-1
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,包括以下步骤:(1)分别将碳纳米管、过渡金属硝酸盐、葡萄糖、碱性环境促进剂和表面活性剂分散于乙醇和水的混合溶液中,超声分散20~60min,其中羟基化碳纳米管的质量份与葡萄糖的摩尔份、碱性环境促进剂的摩尔份和表面活性剂的摩尔份的为40:(1~1.4):(0~2):(5~20):(0.1~0.15);
(2)将步骤(1)配制的体系转移到水热釜中进行水热合成反应,其中反应温度为160℃~190℃,反应时间为12h~24h;
(3)将步骤(2)反应所得体系经过静置、洗涤至中性,在60~100℃空气条件下干燥12h~24h,最终得到过渡金属氧化物碳纳米管复合材料。
2.如权利要求1所述的一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,所述步骤(1)的金属硝酸盐为硝酸铁、硝酸钴或硝酸镍。
3.如权利要求1所述的一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,所述步骤(1)中的碳纳米管为羟基化碳纳米管或王水处理的碳纳米管膜,所述羟基化碳纳米管为无定型粉状,碳纳米管的管径为2~20nm,所述王水处理的碳纳米管膜为膜状形态。
4.如权利要求1所述的一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,所述步骤(1)的碱性环境促进剂为尿素或氨水。
5.如权利要求1所述的一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,所述步骤(1)的表面活性剂为十六烷基三甲基溴化铵、十八烷基三甲基溴化铵或十八氨基三甲基氯化铵。
6.如权利要求1所述的一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,所述步骤(1)中乙醇和水的体积比为1:2。
7.如权利要求1所述的一种过渡金属氧化物碳纳米管复合材料的制备方法,其特征在于,所述的王水处理的碳纳米管膜是将浮动催化化学气相沉积法合成的碳纳米管膜以足量王水浸泡12h~36h后清洗烘干得到。
8.一种通过权利要求1所述的方法制备的过渡金属氧化物碳纳米管复合材料。
9.权利要求8所述的过渡金属氧化物碳纳米管复合材料在电极材料上的应用。
10.根据权利要求9所述的应用,其特征在于:将所述复合材料与炭黑、聚偏氟乙烯(PVDF)按照8:1:1质量比混合用于制备全电池的负极材料。
CN201710457881.3A 2017-06-16 2017-06-16 一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用 Pending CN107256954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710457881.3A CN107256954A (zh) 2017-06-16 2017-06-16 一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710457881.3A CN107256954A (zh) 2017-06-16 2017-06-16 一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN107256954A true CN107256954A (zh) 2017-10-17

Family

ID=60024648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710457881.3A Pending CN107256954A (zh) 2017-06-16 2017-06-16 一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107256954A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964136A (zh) * 2017-11-28 2018-04-27 安徽伟合电子科技有限公司 一种防水耐老化仪器仪表用电缆
CN108183213A (zh) * 2017-12-27 2018-06-19 肇庆市华师大光电产业研究院 一种三氧化二铁/碳/碳纳米管锂离子电池负极材料的制备方法
CN108470896A (zh) * 2018-03-22 2018-08-31 深圳大学 一种锂离子电池负极材料及其制备方法
CN108682868A (zh) * 2018-03-21 2018-10-19 上海理工大学 一种碳纳米管负载过渡金属氧化物材料的制备方法及应用
CN110336005A (zh) * 2019-06-30 2019-10-15 东莞理工学院 一种钛基氧化物锂离子电池负极材料及其性能测试方法
CN112611792A (zh) * 2020-12-01 2021-04-06 常州大学 一种多壁碳纳米管/过渡金属氧化物非酶咖啡酸电化学传感器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031624A (zh) * 2012-12-03 2013-04-10 天津大学 制备连续碳纳米管复合纤维的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031624A (zh) * 2012-12-03 2013-04-10 天津大学 制备连续碳纳米管复合纤维的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANLI CHENG,ET AL.: ""CNT@Fe3O4@C Coaxial Nanocables: One-Pot, Additive-Free Synthesis and Remarkable Lithium Storage Behavior"", 《CHEMISTRY-A EUROPEAN JOURNAL》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964136A (zh) * 2017-11-28 2018-04-27 安徽伟合电子科技有限公司 一种防水耐老化仪器仪表用电缆
CN108183213A (zh) * 2017-12-27 2018-06-19 肇庆市华师大光电产业研究院 一种三氧化二铁/碳/碳纳米管锂离子电池负极材料的制备方法
CN108682868A (zh) * 2018-03-21 2018-10-19 上海理工大学 一种碳纳米管负载过渡金属氧化物材料的制备方法及应用
CN108682868B (zh) * 2018-03-21 2021-03-02 上海理工大学 一种碳纳米管负载过渡金属氧化物材料的制备方法及应用
CN108470896A (zh) * 2018-03-22 2018-08-31 深圳大学 一种锂离子电池负极材料及其制备方法
CN108470896B (zh) * 2018-03-22 2020-06-16 深圳大学 一种锂离子电池负极材料及其制备方法
CN110336005A (zh) * 2019-06-30 2019-10-15 东莞理工学院 一种钛基氧化物锂离子电池负极材料及其性能测试方法
CN112611792A (zh) * 2020-12-01 2021-04-06 常州大学 一种多壁碳纳米管/过渡金属氧化物非酶咖啡酸电化学传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN107256954A (zh) 一种过渡金属氧化物碳纳米管复合材料及其制备方法和应用
Lan et al. Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors
CN104973596B (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
CN103193263B (zh) SnO2C空心纳米球的制备方法及其在锂离子电池中的应用
CN104993174B (zh) 一种锂离子电池负极材料的制备方法
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Su et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 coated with boron-doped carbon
CN107221654A (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN103346302A (zh) 一种锂电池硅碳纳米管复合负极材料及其制备方法与应用
CN106654212B (zh) 一种Co3O4/N-RGO/HSAs复合材料的制备方法及应用
CN104319371A (zh) 一种锂离子电池SnS2/CNTs/PPy复合负极材料的制备方法
CN104755429A (zh) 氧化铁纳米粒子的制备方法
CN104269536A (zh) 石墨烯负载的球状碳包覆氧化铁的复合材料及制备方法
CN107331839A (zh) 一种碳纳米管负载纳米二氧化钛的制备方法
CN105140464B (zh) 碳包氧化镍纳米片负载在石墨烯上的纳米复合材料及其制备方法
CN107785549A (zh) 一种碳复合负极材料的制备方法及碳复合负极材料
CN106410153A (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN101355150B (zh) 锂离子电池用石墨碳纳米管复合电极材料的制备方法
Huo et al. Self‐supporting and binder‐free anode film composed of beaded stream‐like Li4Ti5O12 nanoparticles for high‐performance lithium‐ion batteries
Chen et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries
CN107140608A (zh) 一种超声波辅助水热制备钠离子电池负极用超分散硒化锑纳米线的方法
Shi et al. Utilization of electroless plating to prepare Cu-coated cotton cloth electrode for flexible Li-ion batteries
CN107170985A (zh) 一种锂离子电池用活化三维石墨烯/泡沫镍的制备方法
CN114695894A (zh) 一种高容量硬碳快充负极材料及其制备方法和应用
CN106848282B (zh) 一种非水电解质二次电池用负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171017

RJ01 Rejection of invention patent application after publication