CN107250421A - 中子转换器的制造方法 - Google Patents

中子转换器的制造方法 Download PDF

Info

Publication number
CN107250421A
CN107250421A CN201580031423.2A CN201580031423A CN107250421A CN 107250421 A CN107250421 A CN 107250421A CN 201580031423 A CN201580031423 A CN 201580031423A CN 107250421 A CN107250421 A CN 107250421A
Authority
CN
China
Prior art keywords
boron carbide
neutron
metallic plate
coating
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580031423.2A
Other languages
English (en)
Inventor
麦克·斯托默
克里斯汀·霍斯特曼
格雷戈尔·诺瓦克
赖因哈德·卡普曼
约翰·黑德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Original Assignee
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH filed Critical Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Publication of CN107250421A publication Critical patent/CN107250421A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

本发明涉及一种在中子透明金属基材上由碳化硼或硼膜制备中子转换器的方法。所述中子透明金属基材在第一步骤中通过研磨进行抛光,并且在后续步骤中通过溅射涂覆碳化硼或硼膜。促进粘着层可以选择性地施加在金属基材和硼或碳化硼层的下方之间。所获得的涂层具有高度均匀的层厚、化学组成和同位素比率以及低含量的诸如氧或氮的杂质。

Description

中子转换器的制造方法
技术领域
本发明涉及一种中子转换器的制造方法。
背景技术
当今中子被应用于有关生物和凝聚态物质性能检测的基础研究。这种多方面的探索可以通过内部性能,利用衍射、反射、小角散射、光谱以及断层成像等手段,尤其是生物细胞中针对单晶体、磁性层、聚合物膜进行时间和空间分辨的研究。如果中子的动能由减速器和选择器而被减低为热能,中子的德布罗意波长就会以足够的精度与固体中的原子间距相对应。因此,可以通过散射过程对固体的结构进行非常精确的检测。在低能量区,通过中子可以获得有关固体内部能量状态的结论。中子的空间分辨检测对于本申请是必需的。
常用的检测器系统是在高压下利用3He气来检测中子。这些系统具有高检测效率(高达95%)和低计数率接受度。3He计数管和所谓的多丝正比室(MWPC)3He气体探测器顶多在mm的范围具有空间分辨率,而且只是在涉及大量资源的应用中才会被用来形成均匀且大面积的中子探测器。这种技术代表了业内的技术水平,然而,迄今为止还没有很大的动力以寻求其他替代方案。
由于3He的来源有限而中子探测器的需求增长,近年来,有关替代的探测器材料的研究和开发在持续发展。对3He气体探测器的一种已知替代方案为10B固体探测器。同位素10B具有相对大的中子吸收截面以及,相关的,与同位素3He的吸收效率相比,在10-2至104eV较宽能量范围的70%吸收效率。这相当于从0.286nm至0.286pm的波段。
与通常的3He气体探测器相比较,使用10B固体探测器另外还能够改善中子探测的空间分辨率。所述10B固体探测器可以包括基底(基材)或含10B的膜层。
为了实施,对于转换器(即层-基体系)会有下述要求:
-诸如铝或铝合金的中子透明材料的膜层相对于薄板(基材)的尽可能高的粘附性;
-用于热中子和冷中子的基材的高传输率;
-与辐射负荷相关以及在机械和热应力下的良好系统稳定性。
所述涂层还应具有高均匀性的层厚、化学组成和同位素比率,以及尽量少的杂质。用于以相对于表面的小角度辐射时进行中子探测时转换器层的较高量子效率也是本发明的目的之一。一般来讲,在固体探测器上含10B涂层的制造成本应当是实际可接受的。
US 6771730公开了一种具有含同位素10B的碳化硼层的半导体中子转换器。所述碳化硼是在硅半导体层上通过等离子体增强化学气相沉积(PECVD)所产生的。
WO 2013/002697 A1描述了一种包含碳化硼层的中子转换器组件的制造方法。在所述方法中,碳化硼层被应用到中子通透基材上,同样地采用了PECVD。
然而,已知的涂层不能满足上述所有在质量或经济上的需求,尤其是如果需要在较大板材上进行涂覆。
例如,C.et al.J.Appl.Phys.111,104908(2012)提到,通过温度处理和高速涂覆来获得增强的粘着力。为了获得增强的粘着力,必须考虑较大的涂层厚度参数以及更高的生产成本。
发明内容
本发明的目的在于提供一种中子转换器的制造方法,其中所述中子转换器可以满足上述对转换器(膜层+基材)的要求:特别是,能在几微米的程度具有连续、均匀的含10B材料的涂层,以及能够在长时间辐射过程中保持非常良好的附着力和优异的热学和机械稳定性。
另外,本发明的目的还包括提供一种具有上述改善性能的中子转换器。包括基底(基材)和含10B膜层的10B固体中子转换器在探测器样机测试中成功实现了上述的目的。
这些目的是通过权利要求1所述的制造方法和权利要求12所述的中子转换器来实现的。
根据本发明,金属基材在第一步骤中进行抛光,并且在后续步骤中通过溅射进行碳化硼或硼膜的涂覆。
精细研磨最好使用研磨纸进行,但也可以使用抛光膏,即含有金属粉末、研磨液和研磨颗粒的乳剂。在研磨过程中,利用粘结研磨颗粒(SiC、Al2O3、金刚石或CBN)除去上层材料层。所使用的研磨纸或研磨膏的颗粒或等级最好是在800至2500的范围,其中术语“抛光”是用于较为精细颗粒或等级的情形。金相抛光过程,与研磨类似,是基于抛光介质的切削去除作用,但是其磨耗与研磨相比要低一些,由于使用了非常细的颗粒。
所述金属基材,优选地,是先使用粒度逐渐精细的研磨纸和/或研磨膏逐步进行精细研磨,然后进行抛光。
SiC或Al2O3研磨纸或研磨膏优选适用于精细研磨。
在使用研磨纸精细研磨时,优选使用研磨液进行湿磨。所述研磨液优选地选自下述群组,丙酮,诸如甲醇、乙醇、丙醇或丁醇的醇和水。乙醇或水优选作为研磨液使用。即使在使用研磨膏时,所述磨削液也优选地选自下述群组,丙酮,诸如甲醇、乙醇、丙醇或丁醇的醇和水。
所述金属基材是中子透明的并且是优选地选自以下群组,铝或铝合金,例如钛铝合金。
经过精细研磨后,所述金属基材优选地被冲洗。随后,经过抛光和可能的冲洗之后所述金属基材可以涂覆诸如钛层的促进粘着层。所述促进粘着层优选地是通过溅射工艺制备。然而,通过预处理能够在转换器层和金属基材之间形成粘附,从而使得在大多数情况下就不需要促进粘着层。
最后,所述金属基材通过溅射工艺涂覆碳化硼或硼膜。所述碳化硼优选为富含10B的B4C。所述涂覆可以在具有或没有诸如钛的促进粘附物的情况下进行。所述涂覆的层厚优选的为100nm至10μm,更优选的为250nm至5μm,尤其更优选的为500nm至3μm。
促进粘着层和转换器层的溅射工艺优选采用固体磁控溅射源进行,其中基材相对于阴极移动以产生大面积的均匀的涂层。颗粒流动优选为水平方向,以尽量减少基材和溅射目标上的污染。涂覆速率优选为0.1至1.0nm/s。涂覆优选在低至1μbar的氩气压力下进行。有关涂覆及其方法,特别是有关磁控溅射的进一步细节,可以参阅Milton Ohring,Materials Science of Thin Films,Academic Press,London 1992,所述内容在此通过参考全部纳入本文。
通过使用本发明所提供的方法,能够制备中子转换器,具有可达好些平方米,例如1至100m2的均匀涂层面积。试验生产得到的金属基材上0.5至1.0m2面积的涂层已经通过一种特别开发的测试探测器进行了表征。
所获得的涂层的具有高均匀性的厚度、化学组成和同位素比率以及低含量的诸如氧或氮的杂质。令人惊奇的是,根据本发明制备的涂层对于铝或铝合金的薄板具有良好的附着性,即使是在大面积或高达5μm涂层厚度的场合。

Claims (12)

1.一种通过溅射为金属板涂覆碳化硼的方法,其中所述金属板在第一步骤通过精细研磨进行抛光并且在第二步骤通过溅射进行涂覆。
2.根据权利要求1所述的方法,其特征在于所述精细研磨是使用研磨纸进行的。
3.根据权利要求2所述的方法,其特征在于所述研磨纸的粒度范围为1000至2500。
4.根据权利要求2或3所述的方法,其特征在于所述精细研磨进一步使用研磨液。
5.根据权利要求4所述的方法,其特征在于所述研磨液选自于由丙酮、醇和水组成的群组。
6.根据权利要求5所述的方法,其特征在于所述醇是乙醇。
7.根据前述权利要求中任一项所述的方法,其特征在于所述金属板包含铝或铝合金。
8.根据前述权利要求中任一项所述的方法,其特征在于所述金属板包含铝或钛-铝合金。
9.根据前述权利要求中任一项所述的方法,其特征在于富含10B的B4C作为碳化硼用于涂覆。
10.根据权利要求8所述的方法,其特征在于所述碳化硼具有95%10B。
11.一种涂覆有碳化硼的板体,其为根据权利要求1至9中任一项所述的方法制备。
12.根据权利要求1至10中任一项所述的方法制备的金属板的用途,其中所述金属板涂覆有碳化硼,并用作中子转换器。
CN201580031423.2A 2014-07-14 2015-06-29 中子转换器的制造方法 Pending CN107250421A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14176907.5A EP2975154A1 (de) 2014-07-14 2014-07-14 Verfahren zur Herstellung von Neutronen Konvertern
EP14176907.5 2014-07-14
PCT/EP2015/064751 WO2016008713A1 (de) 2014-07-14 2015-06-29 Verfahren zur herstellung von neutronenkonvertern

Publications (1)

Publication Number Publication Date
CN107250421A true CN107250421A (zh) 2017-10-13

Family

ID=51167799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580031423.2A Pending CN107250421A (zh) 2014-07-14 2015-06-29 中子转换器的制造方法

Country Status (11)

Country Link
US (1) US20170260619A1 (zh)
EP (2) EP2975154A1 (zh)
JP (1) JP6339597B2 (zh)
CN (1) CN107250421A (zh)
AU (1) AU2015291339B2 (zh)
CA (1) CA2949470C (zh)
DK (1) DK2997174T3 (zh)
ES (1) ES2599977T3 (zh)
HU (1) HUE031311T2 (zh)
RU (1) RU2695697C2 (zh)
WO (1) WO2016008713A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852927A (zh) * 2019-03-11 2019-06-07 同济大学 一种用于涂硼中子探测器富硼涂层的薄膜结构
CN110467865A (zh) * 2018-05-09 2019-11-19 同方威视技术股份有限公司 一种涂硼方法
CN111479377A (zh) * 2020-04-22 2020-07-31 吉林大学 一种d-d中子管靶膜保护层
CN112462412A (zh) * 2020-10-28 2021-03-09 东华理工大学 一种GaN中子探测器用的10B4C中子转换层制备方法
CN112859142A (zh) * 2021-01-25 2021-05-28 核工业西南物理研究院 一种管壁中子灵敏层制备方法及正比计数管
CN114481030A (zh) * 2022-01-26 2022-05-13 苏州闻道电子科技有限公司 一种固体中子转换层及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240045087A1 (en) * 2020-12-11 2024-02-08 Hiroshima University Neutron detection element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749641A (zh) * 2011-04-18 2012-10-24 同方威视技术股份有限公司 涂硼中子探测器及其制造方法
WO2013002697A1 (en) * 2011-06-30 2013-01-03 European Spallation Source Ess Ab A method for producing a neutron detector component comprising a boron carbide layer for use in a neutron detecting device
CN103336296A (zh) * 2013-05-31 2013-10-02 上海大学 一种中子探测器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599827A (en) * 1985-06-24 1986-07-15 The United States Of America As Represented By The Secretary Of The Army Metallographic preparation of particulate filled aluminum metal matrix composite material
US4959113C1 (en) * 1989-07-31 2001-03-13 Rodel Inc Method and composition for polishing metal surfaces
JPH05274663A (ja) * 1991-10-08 1993-10-22 Tosoh Corp 磁気ディスクの製造方法
RU2141005C1 (ru) * 1997-03-28 1999-11-10 Баранов Александр Михайлович Способ уменьшения шероховатости поверхности и устройство для его осуществления
US6771730B1 (en) 1998-11-25 2004-08-03 Board Of Regents Of University Of Nebraska Boron-carbide solid state neutron detector and method of using the same
RU2160938C1 (ru) * 1999-03-15 2000-12-20 Государственный научный центр РФ Институт теоретической и экспериментальной физики Генератор ультрахолодных нейтронов
US20050208218A1 (en) * 1999-08-21 2005-09-22 Ibadex Llc. Method for depositing boron-rich coatings
JP2001240850A (ja) * 2000-02-29 2001-09-04 Sanyo Chem Ind Ltd 研磨用砥粒分散剤および研磨用スラリー
US6517249B1 (en) * 2000-06-06 2003-02-11 The Timken Company Bearing with amorphous boron carbide coating
RU2194087C2 (ru) * 2000-07-05 2002-12-10 Дочернее государственное предприятие "Институт ядерной физики" Национального ядерного центра Республики Казахстан Способ получения бериллиевой и бериллийсодержащей фольги и устройство для его осуществления
JP3986243B2 (ja) * 2000-09-28 2007-10-03 独立行政法人科学技術振興機構 イオンビームを用いた硬質薄膜作製法
JP4848545B2 (ja) * 2005-09-30 2011-12-28 Dowaサーモテック株式会社 硬質皮膜被覆部材およびその製造方法
RU2377610C1 (ru) * 2007-11-30 2009-12-27 Шлюмберже Текнолоджи Б.В. Способ гамма-каротажа скважины (варианты)
KR20110010727A (ko) * 2008-05-16 2011-02-07 도레이 카부시키가이샤 연마 패드
RU2409703C1 (ru) * 2009-08-03 2011-01-20 Государственное образовательное учреждение Высшего профессионального образования "Томский государственный университет" Способ нанесения покрытий в вакууме на изделия из электропроводных материалов и диэлектриков
CN102890027B (zh) * 2012-09-29 2014-12-03 攀钢集团攀枝花钢铁研究院有限公司 一种含Ti的无间隙原子钢冷轧薄板金相组织显示方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749641A (zh) * 2011-04-18 2012-10-24 同方威视技术股份有限公司 涂硼中子探测器及其制造方法
WO2013002697A1 (en) * 2011-06-30 2013-01-03 European Spallation Source Ess Ab A method for producing a neutron detector component comprising a boron carbide layer for use in a neutron detecting device
CN103336296A (zh) * 2013-05-31 2013-10-02 上海大学 一种中子探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.I. CHIANG等: ""The modification of mechanical properties and adhesion of boron carbide sputtered films by ion implantation"", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH B》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467865A (zh) * 2018-05-09 2019-11-19 同方威视技术股份有限公司 一种涂硼方法
CN109852927A (zh) * 2019-03-11 2019-06-07 同济大学 一种用于涂硼中子探测器富硼涂层的薄膜结构
CN111479377A (zh) * 2020-04-22 2020-07-31 吉林大学 一种d-d中子管靶膜保护层
CN112462412A (zh) * 2020-10-28 2021-03-09 东华理工大学 一种GaN中子探测器用的10B4C中子转换层制备方法
CN112462412B (zh) * 2020-10-28 2023-01-03 郑州工程技术学院 一种GaN中子探测器用的10B4C中子转换层制备方法
CN112859142A (zh) * 2021-01-25 2021-05-28 核工业西南物理研究院 一种管壁中子灵敏层制备方法及正比计数管
CN114481030A (zh) * 2022-01-26 2022-05-13 苏州闻道电子科技有限公司 一种固体中子转换层及其制备方法和应用

Also Published As

Publication number Publication date
AU2015291339A1 (en) 2016-11-17
RU2016148869A (ru) 2018-08-14
EP2997174B1 (de) 2016-09-21
RU2695697C2 (ru) 2019-07-25
EP2975154A1 (de) 2016-01-20
DK2997174T3 (en) 2016-11-28
RU2016148869A3 (zh) 2019-02-07
WO2016008713A1 (de) 2016-01-21
CA2949470A1 (en) 2016-01-21
AU2015291339B2 (en) 2018-08-16
JP2016535240A (ja) 2016-11-10
EP2997174A1 (de) 2016-03-23
ES2599977T3 (es) 2017-02-06
CA2949470C (en) 2018-05-01
JP6339597B2 (ja) 2018-06-06
HUE031311T2 (en) 2017-07-28
US20170260619A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
CN107250421A (zh) 中子转换器的制造方法
Fominski et al. Pulsed laser deposition of composite Mo–Se–Ni–C coatings using standard and shadow mask configuration
Balerna et al. A structural investigation on small gold clusters by EXAFS
Schmidt et al. Low-temperature growth of boron carbide coatings by direct current magnetron sputtering and high-power impulse magnetron sputtering
Galvan et al. Influence of deposition parameters on the structure and mechanical properties of nanocomposite coatings
CN105543803B (zh) 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
Marot et al. Characterization of magnetron sputtered rhodium films for reflective coatings
Zhang et al. Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3
Wang et al. Dependence of the infrared emissivity on SiC content and microstructure of microarc oxidation ceramic coatings formed in Na2SiO3 electrolyte
Kim et al. Influence of free carbon on the characteristics of ZrC and deposition of near-stoichiometric ZrC in TRISO coated particle fuel
Kasada et al. Sol–gel composite coatings as anti-corrosion barrier for structural materials of lead–bismuth eutectic cooled fast reactor
Girault et al. Copper coverage effect on tungsten crystallites texture development in W/Cu nanocomposite thin films
Askari et al. Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma
Ahmed et al. Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions
Jiang et al. Oxidation and corrosion resistance of WC coated tungsten fabricated by SPS carburization
Abubakar et al. Adhesion performance of TiN coating with amorphous NiTi alloy interlayer onto 316L stainless biosteel deposited by sputtering process
Amor et al. A ZnO/PET assembly study: Optimization and investigation of the interface region
Dou et al. Preliminary study on nano-and micro-composite sol–gel based alumina coatings on structural components of lead–bismuth eutectic cooled fast breeder reactors
JP5182852B2 (ja) 炭化珪素の研磨剤、及びそれを用いた炭化珪素の研磨方法
Shi et al. Effects of N2 content and thickness on CrNx coatings on Mg alloy by the planar DC reactive magnetron sputtering
Dasgupta et al. Structural characteristics of titanium coating on copper substrates
Li et al. Comparative study on the effects of α/γ phase ratio on the micro-structures and properties in Al2O3 coatings under silicon ion irradiation
Bellucci et al. Synthesis of Titanium Nitride Film by RF Sputtering
Filonov et al. Peculiarities of nanostructured silicon carbide films and coatings obtained by novel technique
Rowley et al. Sputtered carbon as a corrosion barrier for x-ray detector windows

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171013

WD01 Invention patent application deemed withdrawn after publication