ES2599977T3 - Procedimiento para la producción de convertidores de neutrones - Google Patents
Procedimiento para la producción de convertidores de neutrones Download PDFInfo
- Publication number
- ES2599977T3 ES2599977T3 ES15731384.2T ES15731384T ES2599977T3 ES 2599977 T3 ES2599977 T3 ES 2599977T3 ES 15731384 T ES15731384 T ES 15731384T ES 2599977 T3 ES2599977 T3 ES 2599977T3
- Authority
- ES
- Spain
- Prior art keywords
- sanding
- neutron
- aluminum
- production
- neutrons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 229910052580 B4C Inorganic materials 0.000 claims abstract description 12
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 6
- 238000004544 sputter deposition Methods 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 238000005469 granulation Methods 0.000 claims description 5
- 230000003179 granulation Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000005493 condensed matter Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- SWQJXJOGLNCZEY-BJUDXGSMSA-N helium-3 atom Chemical compound [3He] SWQJXJOGLNCZEY-BJUDXGSMSA-N 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/028—Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Measurement Of Radiation (AREA)
- Physical Vapour Deposition (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Procedimiento para la producción de convertidores de neutrones, en el que un sustrato metálico transparente a los neutrones de aluminio o de una aleación de aluminio se pule mediante lijado fino en una primera etapa y, en una segunda etapa, se recubre con carburo de boro mediante pulverización catódica.
Description
DESCRIPCIÓN
Procedimiento para la producción de convertidores de neutrones
La presente invención se refiere a un procedimiento para la producción de convertidores de neutrones. 5
ANTECEDENTES DE LA INVENCIÓN
En la actualidad, los neutrones se emplean en la investigación básica y en la caracterización de materia biológica y condensada. Por sus propiedades intrínsecas, esta sonda versátil hace posibles estudios de resolución temporal y 10 espacial en monocristales, capas magnéticas y membranas de polímero, especialmente de células biológicas, mediante difracción, reflectometría, dispersión en ángulos pequeños, espectroscopía y tomografía. Cuando la energía cinética de los neutrones se reduce a energía térmica mediante moderadores y selectores, la longitud de onda de DeBroglie de los neutrones equivale con suficiente exactitud a las distancias atómicas en los cuerpos sólidos. De este modo, la estructura de un cuerpo sólido puede investigarse con gran precisión por medio de 15 procesos de dispersión. En los intervalos de baja energía, los neutrones permiten obtener conclusiones sobre los estados de energía interna del cuerpo sólido. Para esta aplicación se necesita una detección de los neutrones con resolución espacial.
Los sistemas detectores empleados normalmente usan el gas 3He a alta presión para la detección de los neutrones. 20 Estos presentan una gran eficiencia de detección (hasta el 95 %) para una baja aceptación de tasa de cuentas. Los tubos de recuento de 3He y los denominados detectores gaseosos de 3He de cámara proporcional multialámbrica (MWPC) tienen, en el mejor de los casos, una resolución espacial en el intervalo milimétrico y solo se emplean para la producción de detectores de neutrones homogéneos y de gran superficie con gran coste. Sin embargo, esta tecnología es el estado de la técnica, ya que hasta ahora no ha habido ninguna potente fuerza motora en busca de 25 alternativas.
Debido a la limitada disponibilidad de 3He y a las crecientes necesidades de detectores de neutrones, en los últimos tiempos ha aumentado continuadamente la investigación y el desarrollo de materiales detectores alternativos. Una alternativa conocida a los detectores gaseosos de 3He son los detectores sólidos de 10B. El isótopo 10B tiene una 30 sección transversal de absorción de neutrones relativamente elevada y, con ello, una eficacia de absorción del 70 % en comparación con la del isótopo 3He en un amplio intervalo de energía de 10-2 a 10-4 eV; esto corresponde a una banda de longitudes de onda de 0,286 nm a 0,286 pm.
Además, el empleo de detectores sólidos de 10B promete una mejora de la resolución espacial de la detección de 35 neutrones en comparación con el detector gaseoso convencional de 3He. Los detectores sólidos de 10B pueden constar de una base (sustrato) o una película con 10B.
Para la realización, pueden establecerse los siguientes requisitos para el convertidor (esto es, un sistema de capas y sustrato): 40
- la mejor adherencia posible de la película a chapas delgadas (sustrato) de un material transparente a los neutrones como aluminio o una aleación de aluminio,
- una alta transmisión del sustrato para neutrones térmicos y fríos,
- una buena estabilidad del sistema con respecto a la carga de radiación y en caso de esfuerzos tanto mecánicos 45 como térmicos.
Además, los recubrimientos deben presentar una alta homogeneidad en cuanto al grosor de las capas, composición química y relación de isótopos y las menos impurezas posibles. Otro objetivo de la invención es una alta eficiencia cuántica de las capas convertidoras para la detección de neutrones en caso de una radiación incidente con ángulos 50 pequeños con respecto a la superficie. En general, los recubrimientos con 10B para detectores sólidos deben poderse producir económicamente.
El documento US 6.771.730 desvela un convertidor de neutrones semiconductor con una capa de carburo de boro que contiene el isótopo 10B. El carburo de boro se generó por deposición química de vapor asistida por plasma, 55 abreviada PECVD, sobre una capa semiconductora de silicio.
El documento WO 2013/002697 A1 describe un procedimiento para la producción de un componente convertidor de neutrones que comprende una capa de carburo de boro. En el procedimiento se aplica el carburo de boro sobre un sustrato transparente a los neutrones igualmente mediante deposición química de vapor asistida por plasma.
Sin embargo, los recubrimientos conocidos no satisfacen en todos los puntos los requisitos de calidad o económicos mencionados anteriormente, especialmente cuando deben recubrirse chapas grandes.
5
Por ejemplo, en C. Höglund y col., J. Appl. Phys. 111, 104908 (2012) se consigue una mejor adherencia a través de un tratamiento térmico y una mayor tasa de recubrimiento. Para la mejor adherencia se asumen una mayor variación del grosor de las capas y mayores costes de producción.
RESUMEN DE LA INVENCIÓN 10
El objetivo de la presente invención es poner a disposición un procedimiento para la producción de convertidores de neutrones que satisfaga los requisitos descritos anteriormente para el convertidor (película + sustrato): en particular, presentar un recubrimiento continuo y homogéneo de un material con 10B en el intervalo de algunos micrómetros y tener muy buena adherencia y una estabilidad térmica y mecánica excelente en condiciones de irradiación 15 prolongada.
Este objetivo se consigue mediante un procedimiento de acuerdo con la reivindicación 1.
De acuerdo con la invención, un sustrato metálico se pule intensamente en una primera etapa y, en una segunda 20 etapa, se recubre con carburo de boro o una película de boro mediante pulverización catódica.
Preferentemente, el lijado fino tiene lugar con el uso de papeles de lija, pero también puede llevarse a cabo con una pasta pulidora: una emulsión de polvo metálico, líquido de lijado y granos de papel de lija. En el lijado se erosionan las capas de material superiores mediante granos abrasivos aglutinados (de SiC, Al2O3, diamante o CBN). La 25 granulación del papel de lija empleado o de la pasta de lijado se encuentra preferentemente en el intervalo de 800 a 2.500, en lo que cuando la granulación es más fina se habla de pulido. Al igual que el lijado, el proceso de pulido metalográfico se basa en el efecto erosivo y de arranque de virutas de los medios de pulido, pero la abrasión es algo menor que en el lijado, ya que se trabaja con granulaciones muy finas.
30
Preferentemente, el sustrato metálico se lija finamente primero y después se pule en etapas sucesivas con el uso de papeles de lija y/o pastas de lijado con una granulación cada vez más fina.
Preferentemente, para el lijado fino se usan papeles o pastas de SiC o Al2O3.
35
Cuando se usa un papel de lija, preferentemente el lijado fino tiene lugar también con el uso de un líquido de lijado, como lijado húmedo. Preferentemente, el líquido de lijado se elige de entre el grupo que consta de acetona, un alcohol como metanol, etanol, propanol o butanol y agua. Preferentemente, como líquido de lijado se usa etanol o agua. Cuando se usa una pasta pulidora, el líquido de lijado también se elige de entre el grupo que consta de acetona, un alcohol como metanol, etanol, propanol o butanol y agua. 40
El sustrato metálico es transparente a los neutrones y preferentemente se elige de entre el grupo que consta de aluminio o una aleación de aluminio, como una aleación de titanio y aluminio.
Después del lijado fino, preferentemente el sustrato metálico se lava. A continuación, el sustrato metálico pulido y en 45 su caso lavado puede recubrirse con una capa adhesiva como una capa de titanio. Preferentemente, la capa adhesiva se genera por pulverización catódica. Sin embargo, el pretratamiento consigue una adherencia entre la capa convertidora y el sustrato metálico que en la mayoría de los casos hace innecesaria la capa adhesiva.
Finalmente, el sustrato metálico se recubre mediante pulverización catódica con carburo de boro o una película de 50 boro. Como carburo de boro se usa preferentemente B4C enriquecido con 10B. El recubrimiento puede llevarse a cabo con o sin un adhesivo como titanio. El grosor de la capa de recubrimiento está preferentemente en el intervalo de 100 nm a 10 µm, con mayor preferencia de 250 nm a 5 µm y con la mayor preferencia de 500 nm a 3 µm.
La pulverización catódica tanto del adhesivo como de la capa convertidora se lleva a cabo preferentemente con 55 fuentes fijas de pulverización catódica por magnetrón, donde los sustratos se mueven con respecto a los cátodos para generar un recubrimiento homogéneo sobre una gran superficie. Preferentemente, el flujo de partículas está orientado horizontalmente, para minimizar la contaminación sobre el sustrato y la diana de la pulverización catódica. Las tasas de recubrimiento están preferentemente en el intervalo de 0,1 a 1,0 nm/s. Preferentemente, el recubrimiento tiene lugar con una presión de argón que puede ser tan baja como de 1 µbar. Más detalles sobre recubrimientos y procedimientos, en particular de la pulverización catódica por magnetrón se encuentran en la publicación de Milton Ohring, Materials Science of Thin Films, Academic Press, Londres, 1992, a la cual se hace aquí referencia en su totalidad.
5
Mediante la aplicación del procedimiento de acuerdo con la invención, pueden producirse convertidores de neutrones con una superficie de recubrimiento uniforme de hasta varios metros cuadrados, por ejemplo, en el intervalo de 1 a 100 m2. Las capas producidas experimentalmente sobre sustratos metálicos con una superficie de recubrimiento de 0,5 a 1,0 m2 se caracterizaron por medio de un detector de prueba desarrollado especialmente. Se pudo demostrar una alta eficiencia cuántica. 10
Los recubrimientos obtenidos presentan una alta homogeneidad en cuanto al grosor de las capas, composición química y relación de isótopos, así como pocas impurezas como oxígeno y nitrógeno. De manera sorprendente, los recubrimientos producidos de acuerdo con la invención presentan buena adherencia sobre chapas delgadas de aluminio o de una aleación de aluminio, incluso en recubrimientos de gran superficie o gruesos, de hasta 5 µm. 15
Claims (9)
- REIVINDICACIONES1. Procedimiento para la producción de convertidores de neutrones, en el que un sustrato metálico transparente a los neutrones de aluminio o de una aleación de aluminio se pule mediante lijado fino en una primera etapa y, en una segunda etapa, se recubre con carburo de boro mediante pulverización catódica. 5
- 2. Procedimiento de acuerdo con la reivindicación 1, caracterizado porque el lijado fino tiene lugar con el uso de papeles de lija.
- 3. Procedimiento de acuerdo con la reivindicación 2, caracterizado porque se usan papeles de lija con 10 una granulación en el intervalo de 1.000 a 2.500.
- 4. Procedimiento de acuerdo con una de las reivindicaciones 2 o 3, caracterizado porque el lijado fino tiene lugar adicionalmente con el uso de un líquido de lijado.15
- 5. Procedimiento de acuerdo con la reivindicación 4, caracterizado porque el líquido de lijado se elige de entre el grupo que consta de acetona, un alcohol y agua.
- 6. Procedimiento de acuerdo con la reivindicación 5, caracterizado porque como alcohol se usa etanol.20
- 7. Procedimiento de acuerdo con una de las reivindicaciones precedentes, caracterizado porque el sustrato metálico transparente a los neutrones se compone de aluminio o de una aleación de titanio y aluminio.
- 8. Procedimiento de acuerdo con una de las reivindicaciones precedentes, caracterizado porque como carburo de boro para el recubrimiento se usa B4C enriquecido con 10B. 25
- 9. Procedimiento de acuerdo con la reivindicación 7, caracterizado porque el carburo de boro comprende el 95 % de 10B.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14176907 | 2014-07-14 | ||
EP14176907.5A EP2975154A1 (de) | 2014-07-14 | 2014-07-14 | Verfahren zur Herstellung von Neutronen Konvertern |
PCT/EP2015/064751 WO2016008713A1 (de) | 2014-07-14 | 2015-06-29 | Verfahren zur herstellung von neutronenkonvertern |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2599977T3 true ES2599977T3 (es) | 2017-02-06 |
Family
ID=51167799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES15731384.2T Active ES2599977T3 (es) | 2014-07-14 | 2015-06-29 | Procedimiento para la producción de convertidores de neutrones |
Country Status (11)
Country | Link |
---|---|
US (1) | US20170260619A1 (es) |
EP (2) | EP2975154A1 (es) |
JP (1) | JP6339597B2 (es) |
CN (1) | CN107250421A (es) |
AU (1) | AU2015291339B2 (es) |
CA (1) | CA2949470C (es) |
DK (1) | DK2997174T3 (es) |
ES (1) | ES2599977T3 (es) |
HU (1) | HUE031311T2 (es) |
RU (1) | RU2695697C2 (es) |
WO (1) | WO2016008713A1 (es) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110467865B (zh) * | 2018-05-09 | 2021-12-28 | 同方威视技术股份有限公司 | 一种涂硼方法 |
CN109852927A (zh) * | 2019-03-11 | 2019-06-07 | 同济大学 | 一种用于涂硼中子探测器富硼涂层的薄膜结构 |
CN111479377A (zh) * | 2020-04-22 | 2020-07-31 | 吉林大学 | 一种d-d中子管靶膜保护层 |
CN112462412B (zh) * | 2020-10-28 | 2023-01-03 | 郑州工程技术学院 | 一种GaN中子探测器用的10B4C中子转换层制备方法 |
WO2022124155A1 (ja) * | 2020-12-11 | 2022-06-16 | 国立大学法人広島大学 | 中性子検出素子 |
CN112859142B (zh) * | 2021-01-25 | 2023-01-24 | 核工业西南物理研究院 | 一种管壁中子灵敏层制备方法及正比计数管 |
CN114481030B (zh) * | 2022-01-26 | 2024-06-21 | 苏州闻道电子科技有限公司 | 一种固体中子转换层及其制备方法和应用 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4599827A (en) * | 1985-06-24 | 1986-07-15 | The United States Of America As Represented By The Secretary Of The Army | Metallographic preparation of particulate filled aluminum metal matrix composite material |
US4959113C1 (en) * | 1989-07-31 | 2001-03-13 | Rodel Inc | Method and composition for polishing metal surfaces |
JPH05274663A (ja) * | 1991-10-08 | 1993-10-22 | Tosoh Corp | 磁気ディスクの製造方法 |
RU2141005C1 (ru) * | 1997-03-28 | 1999-11-10 | Баранов Александр Михайлович | Способ уменьшения шероховатости поверхности и устройство для его осуществления |
US6771730B1 (en) | 1998-11-25 | 2004-08-03 | Board Of Regents Of University Of Nebraska | Boron-carbide solid state neutron detector and method of using the same |
RU2160938C1 (ru) * | 1999-03-15 | 2000-12-20 | Государственный научный центр РФ Институт теоретической и экспериментальной физики | Генератор ультрахолодных нейтронов |
US20050208218A1 (en) * | 1999-08-21 | 2005-09-22 | Ibadex Llc. | Method for depositing boron-rich coatings |
JP2001240850A (ja) * | 2000-02-29 | 2001-09-04 | Sanyo Chem Ind Ltd | 研磨用砥粒分散剤および研磨用スラリー |
US6517249B1 (en) * | 2000-06-06 | 2003-02-11 | The Timken Company | Bearing with amorphous boron carbide coating |
RU2194087C2 (ru) * | 2000-07-05 | 2002-12-10 | Дочернее государственное предприятие "Институт ядерной физики" Национального ядерного центра Республики Казахстан | Способ получения бериллиевой и бериллийсодержащей фольги и устройство для его осуществления |
JP3986243B2 (ja) * | 2000-09-28 | 2007-10-03 | 独立行政法人科学技術振興機構 | イオンビームを用いた硬質薄膜作製法 |
JP4848545B2 (ja) * | 2005-09-30 | 2011-12-28 | Dowaサーモテック株式会社 | 硬質皮膜被覆部材およびその製造方法 |
RU2377610C1 (ru) * | 2007-11-30 | 2009-12-27 | Шлюмберже Текнолоджи Б.В. | Способ гамма-каротажа скважины (варианты) |
US20110045753A1 (en) * | 2008-05-16 | 2011-02-24 | Toray Industries, Inc. | Polishing pad |
RU2409703C1 (ru) * | 2009-08-03 | 2011-01-20 | Государственное образовательное учреждение Высшего профессионального образования "Томский государственный университет" | Способ нанесения покрытий в вакууме на изделия из электропроводных материалов и диэлектриков |
CN102749641B (zh) * | 2011-04-18 | 2015-11-25 | 同方威视技术股份有限公司 | 涂硼中子探测器及其制造方法 |
SE535805C2 (sv) * | 2011-06-30 | 2012-12-27 | Jens Birch | Ett förfarande för framställning av en neutrondetektorkomponent innefattande ett borkarbidskikt för användning i en neutrondetektor |
CN102890027B (zh) * | 2012-09-29 | 2014-12-03 | 攀钢集团攀枝花钢铁研究院有限公司 | 一种含Ti的无间隙原子钢冷轧薄板金相组织显示方法 |
CN103336296A (zh) * | 2013-05-31 | 2013-10-02 | 上海大学 | 一种中子探测器 |
-
2014
- 2014-07-14 EP EP14176907.5A patent/EP2975154A1/de not_active Withdrawn
-
2015
- 2015-06-29 EP EP15731384.2A patent/EP2997174B1/de active Active
- 2015-06-29 JP JP2015563140A patent/JP6339597B2/ja active Active
- 2015-06-29 US US14/900,253 patent/US20170260619A1/en not_active Abandoned
- 2015-06-29 AU AU2015291339A patent/AU2015291339B2/en active Active
- 2015-06-29 WO PCT/EP2015/064751 patent/WO2016008713A1/de active Application Filing
- 2015-06-29 CN CN201580031423.2A patent/CN107250421A/zh active Pending
- 2015-06-29 CA CA2949470A patent/CA2949470C/en active Active
- 2015-06-29 HU HUE15731384A patent/HUE031311T2/en unknown
- 2015-06-29 DK DK15731384.2T patent/DK2997174T3/en active
- 2015-06-29 ES ES15731384.2T patent/ES2599977T3/es active Active
- 2015-06-29 RU RU2016148869A patent/RU2695697C2/ru active
Also Published As
Publication number | Publication date |
---|---|
WO2016008713A1 (de) | 2016-01-21 |
CN107250421A (zh) | 2017-10-13 |
HUE031311T2 (en) | 2017-07-28 |
JP2016535240A (ja) | 2016-11-10 |
JP6339597B2 (ja) | 2018-06-06 |
AU2015291339B2 (en) | 2018-08-16 |
EP2997174B1 (de) | 2016-09-21 |
RU2016148869A (ru) | 2018-08-14 |
US20170260619A1 (en) | 2017-09-14 |
EP2975154A1 (de) | 2016-01-20 |
CA2949470A1 (en) | 2016-01-21 |
EP2997174A1 (de) | 2016-03-23 |
RU2016148869A3 (es) | 2019-02-07 |
DK2997174T3 (en) | 2016-11-28 |
RU2695697C2 (ru) | 2019-07-25 |
AU2015291339A1 (en) | 2016-11-17 |
CA2949470C (en) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2599977T3 (es) | Procedimiento para la producción de convertidores de neutrones | |
Vajda et al. | Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. | |
Tu et al. | Enhancement of surface Raman spectroscopy performance by silver nanoparticles on resin nanorods arrays from anodic aluminum oxide template | |
Kera et al. | Spectroscopic evidence of strong π-π interorbital interaction in a lead-phthalocyanine bilayer film attributed to the dimer nanostructure | |
Rossouw et al. | Modification of polyethylene terephthalate track etched membranes by planar magnetron sputtered Ti/TiO2 thin films | |
EP2726640B1 (en) | A method for producing a neutron detector component comprising a boron carbide layer for use in a neutron detecting device | |
Berkó et al. | Structure and properties of potassium on Pd (100) surface | |
Sugiyama et al. | Surface and interface structures of S‐passivated GaAs (111) studied by soft x‐ray standing waves | |
Yabuuchi et al. | Surface structure of the Si (111)-5× 1-Au studied by low-energy ion scattering spectroscopy | |
CN102041481B (zh) | 一种耐用物件的制备方法 | |
Matsukovich et al. | Raman scattering enhancement using Au/SiGe and Au/Ge nanostructures | |
Gao et al. | Unique hexagonal non-close-packed arrays of alumina obtained by plasma etching/deposition with catalytic performance | |
Segura-Giraldo et al. | On the influence of a TiN interlayer on DLC coatings produced by pulsed vacuum arc discharge: Compositional and morphological study | |
JP2001033593A (ja) | 中性子カーボンミラーおよびその製造方法 | |
Gao et al. | Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering | |
Gorodetsky et al. | On the Change in the Reflectance of Мо (111) Mirrors after Exposure to D 2–N 2 Plasma | |
Hu et al. | Co/mg/x multilayer mirrors for the euv range | |
Feng et al. | Synthesis and control of micro to noanscale porous structures of diamond like carbon films | |
Fernández Camacho et al. | Microstructural characterization and thermal stability of He charged amorphous silicon films prepared by magnetron sputtering in helium | |
Krejci et al. | Characterization of Timepix detector coated with 10B4C film for high resolution neutron imaging | |
Desorption et al. | FIM-APS FIS FTIR GDMS GDOS Glow Discharge Optical Spectroscopy | |
Nishino et al. | Magnetic Compton Profile Measurement of Thin Films | |
Lee et al. | Spectroscopic evidence against tetra-σ adsorption configurations of C2H2 on Ge (1 0 0) | |
Ohkubo et al. | Radiolytic preparation of thin Au film directly on resin substrate using high-energy electron beam | |
Batková et al. | T3: Plasma Science & Technique |