CN107248537A - 一种最优光电效能的半导体纳米线阵列制备方法 - Google Patents

一种最优光电效能的半导体纳米线阵列制备方法 Download PDF

Info

Publication number
CN107248537A
CN107248537A CN201710387962.0A CN201710387962A CN107248537A CN 107248537 A CN107248537 A CN 107248537A CN 201710387962 A CN201710387962 A CN 201710387962A CN 107248537 A CN107248537 A CN 107248537A
Authority
CN
China
Prior art keywords
nano
wire
optimal
linear array
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710387962.0A
Other languages
English (en)
Inventor
夏辉
童中英
李天信
陈平平
卢振宇
张健
姚晓梅
张旭涛
唐舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201710387962.0A priority Critical patent/CN107248537A/zh
Publication of CN107248537A publication Critical patent/CN107248537A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

本发明公开了一种最优光电效能的半导体纳米线阵列制备方法,该方法首先通过热蒸发沉积金膜并退火形成无规均匀分布的催化剂颗粒,然后根据拟制备的III‑V族纳米线材料体系,选择最优V/III束流比,在不同的衬底温度下生长一系列的纳米线阵列试样,再使用导电原子力显微镜,对试样进行单纳米线垂直光电性能的统计评估,最后根据单纳米线的平均光电性能确定最佳制备条件。本方法适用于催化分子束外延生长砷化镓等III‑V族纳米线阵列,通过金属催化,使用直接、快速、简易的方法评估和确定纳米线阵列的最优生长条件,进而制备出一种最佳光电效能的半导体纳米线阵列,因此,本方法对高效太阳能电池和超灵敏光电探测器的制造有重要意义。

Description

一种最优光电效能的半导体纳米线阵列制备方法
技术领域
本发明涉及低维结构半导体材料的制备方法,具体是指一种最优光电效能的半导体纳米线阵列制备方法。
背景技术
半导体垂直纳米线阵列在电子学和光学层面上都有利于高效光电转换。首先,纳米线是天然的一维光波天线,加上阵列结构引发的导-共振模式,形成集体“光学陷阱”效应,使垂直纳米线阵列相对于体材料和其他半导体低维结构更易于实现充分光吸收;同时一维结构也更有利于光生载流子的高效收集。这些优势使得半导体垂直纳米线阵列在高效太阳能电池和超灵敏光电探测器中具有越来越大的应用潜力。
目前,半导体垂直纳米线阵列的制备方法可分为自上而下和自下而上两大类。自上而下法是指将块体材料通过金属辅助化学刻蚀或干法反应离子刻蚀等加工手段制备出所需的纳米线结构。该方法可操控性强,可以得到尺寸精确、间距合理以及晶体质量完美的纳米线阵列。但该方法工艺复杂、消耗材料多、制备成本相对高昂,且由于干法刻蚀的反应气氛在垂直往下刻蚀的同时对侧壁也有较大的刻蚀速率,化学刻蚀对纳米线侧壁也会造成一定的损伤,这些刻蚀损伤有可能在纳米线侧面形成深能级复合中心,使光生载流子俘获几率增加,导致纳米线电化学器件的光电响应能力变差。
自下而上法则以原子、分子自组织堆积的方式,通过在气相或液相中外延得到一维纳米尺度结晶体,目前最广泛使用的是催化外延技术。相比于刻蚀法,该方法制备方式简单、需要消耗的材料少;同时,催化外延法形成的随机纳米线阵列尺寸与间距有一定的分布,相对周期性单一尺寸纳米线阵列有着更宽的响应光谱,所以该方法为制备低成本、高效率的光电性能器件提供了可能。
从纳米线器件光电性能角度出发,电子和光学的优劣是评定其性能好坏的主要因素。一方面,纳米线生长中较易形成的位错等晶格缺陷不仅本身会俘获电子使载流子数目减少,其应力场也会与杂质相互作用,使杂质优先沿位错沉积,从而在纳米线中形成大量的深能级复合中心,使载流子数目进一步减少,因此,纳米线阵列电学层面上光生载流子高效收集的优越性依赖于非常好的晶体质量条件;另一方面,由“导-共振”模式等形成的集体“光学陷阱”效应又和纳米线直径、间距和高度息息相关,所以纳米线阵列光学层面上的优化依赖于合理的阵列结构。然而到目前为止却仍缺少一种在电学和光学这两个层面上都达到最优化的半导体纳米线阵列制备方法,虽然利用催化分子束外延技术生长纳米线阵列的优势巨大,但使其晶体质量最优化并不容易,理想的阵列结构也不易控制。
另外,目前对纳米线材料性能的评估手段主要包括用高分辨电镜分析纳米线的晶格结构以及光谱学方法分析光学质量和光吸收特性等,这些方法一方面制样复杂、测量条件苛刻;另一方面,它们都是对纳米线电子学和光学层面的单独测量,当前还缺乏一种对垂直纳米线的光电性能进行高效、直接测量和评估的方法。
本发明首先根据拟制备的III-V族纳米线材料体系,选择最优V/III束流比,通过调控纳米线的衬底温度,利用金属催化分子束外延方法生长一系列的纳米线阵列试样,然后使用导电原子力显微镜评估纳米线阵列试样的光电性能,找到最佳的衬底温度生长条件,进而制备出最优光电效能的半导体纳米线阵列。
发明内容
本发明是针对现有制备技术的不足,提供一种适用于III-V族半导体纳米线阵列的制备方法。本方法利用金属颗粒催化外延方法,结合垂直单纳米线光电流评估手段,即可确定最佳生长温度条件,制备出最优光电效能的半导体纳米线阵列。
本发明的依据是纳米线的晶格质量和几何形态对衬底温度高度敏感。在低温条件下生长的纳米线易出现高密度的缺陷,随着衬底温度的增加,改进的晶格弛豫使得缺陷密度显著降低,从而使纳米线的晶格质量显著提高。与此同时,纳米线阵列的光吸收能力取决于其几何形态,包括纳米线的直径、高度和间距,而用催化外延法制备的纳米线阵列,其几何形态也随着衬底温度的改变逐渐变化,这给调节纳米线阵列的光耦合特性提供了可能。因此,通过调控衬底温度,可以实现纳米线阵列晶体质量及光学陷阱结构的最优化,进而制备出最优光电效能的半导体纳米线阵列。
本方法首先在不同衬底温度下生长一系列的垂直纳米线阵列试样。包括,先选择(111)B晶向的砷化镓衬底,对衬底进行除气和脱氧处理,然后在分子束外延系统中生长200~500纳米厚的砷化镓缓冲层,再通过真空加热金的源炉至1000摄氏度,在缓冲层上热蒸发沉积10纳米厚金膜,并在550摄氏度的衬底温度下退火5分钟,使金膜收缩形成无规均匀分布的催化剂颗粒,最后用分子束外延方法,根据拟制备的III-V族纳米线材料体系,将V/III束流比控制在20:1,在较宽的衬底窗口温度中选择一系列的温度生长垂直纳米线阵列试样。对于砷化镓纳米线,衬底的窗口温度430~550摄氏度;对于其他含铟的III-V族纳米线,随着铟组分的增加,窗口温度降低0~80摄氏度。
其次使用导电原子力显微镜,在相同的定量光激发条件下,测量垂直纳米线阵列中单根纳米线的光电流-偏压曲线,对于每个纳米线试样,随机选择不少于20根纳米线进行测量。试样准备采用机械旋涂法,将聚甲基丙烯酸甲酯均匀地旋涂在纳米线外表面,随后将其烘焙固化,通过抛光减薄固化后的样品至纳米线阵列1微米高。选择激发光源的波长,使光子能量大于纳米线材料的能隙,激发功率在0.5~10毫瓦,以获得较高信噪比的光电流信号,同时不对导电原子力显微镜的工作产生影响。
再次测量其他生长条件下制备的纳米线阵列中单根纳米线的光电流,通过比较各试样单根纳米线光电流平均值大小的方式,评估不同生长条件下纳米线阵列的光电性能,找出最佳生长温度条件。统计相同的反向偏压下不同试样单根纳米线光电流的平均值,获得单根纳米线最大平均光电流所对应的生长温度即为最优光电效能的半导体纳米线阵列生长温度条件。根据纳米线的能隙,选择的反向偏压条件在1~10伏之间,随着能隙的增加,偏压也随之增加。
最后使用分子束外延方法,在确定的最佳生长温度条件下制备纳米线阵列。
本发明的优势体现在通过金属催化,仅需调控生长纳米线的衬底温度,即可制备出一种最优光电效能的半导体纳米线阵列,制备方法简单,可调控性强,且该方法使用导电原子力显微镜对纳米线阵列进行光电性能评估,易操作、成本较低廉且周期短。
附图说明
图1为本发明最优光电效能半导体纳米线阵列的制备流程图。
图2为本发明对单根纳米线的光电流-偏压曲线测量示意图。
图3为本发明实施例1中所有试样在10伏反向偏压下20根纳米线饱和光电流的平均值绘制成的光电流直方图。
具体实施方式
下面特举实施例,结合附图对本发明的具体实施方式作详细说明。
实施例1
本实施例采用本发明提供的制备方法制备砷化镓纳米线阵列,具体步骤如下:
本发明最优光电效能半导体纳米线阵列的制备流程如图1所示。
首先选择(111)B晶向的砷化镓衬底,对衬底进行除气和脱氧处理,然后在分子束外延系统中生长200纳米厚的砷化镓缓冲层,再通过真空加热金的源炉至1000摄氏度,在缓冲层上热蒸发沉积10纳米厚金膜,并在550摄氏度的衬底温度下退火5分钟,使金膜收缩形成无规均匀分布的催化剂颗粒,最后用分子束外延方法,将V/III束流比控制在20:1,衬底窗口温度430~550摄氏度,分别在430、460、490、510、530、540和550摄氏度下,生长一系列的纳米线阵列试样。本发明垂直纳米线阵列制备及其光电性能评估流程如图1所示。
其次使用导电原子力显微镜,在相同的定量光激发条件下,测量垂直纳米线阵列中单根纳米线的光电流-偏压曲线,对于每个纳米线试样,随机选择20根纳米线进行测量。试样准备采用机械旋涂法,将聚甲基丙烯酸甲酯均匀地旋涂在纳米线外表面,随后将其烘焙固化,通过抛光减薄固化后的样品至纳米线阵列1微米高,使纳米线的顶端裸露出来。应用导电探针扫描样品的截面并通过纳米线和聚甲基丙烯酸甲酯的电导差寻找单个纳米线,选择激发光源波长808纳米、功率0.7毫瓦,同时将偏置电压施加到公共底部电极(缓冲层),并且使顶部纳米电极(导电探针)保持虚拟接地。图2为本发明对单根纳米线的光电流-偏压曲线测量示意图。
再次测量其他生长条件下制备的纳米线阵列中单根纳米线的光电流,通过比较各试样单根纳米线光电流平均值大小的方式,评估不同生长条件下纳米线阵列的光电性能,找出最佳生长温度条件。统计10伏反向偏压下所有试样20根纳米线饱和光电流的平均值,获得单根纳米线最大平均光电流所对应的生长温度即为最优光电效能的半导体纳米线阵列生长温度条件。
图3为实施例1中所有试样在10伏反向偏压下20根纳米线饱和光电流的平均值绘制成的光电流直方图。从图中可以看出,在相同激发和测量条件下,530摄氏度下生长的纳米线阵列光电流最大,因此530摄氏度即为砷化镓纳米线最佳衬底温度生长条件。
最后使用分子束外延方法,在530摄氏度的衬底温度下制备最优光电效能的砷化镓纳米线阵列。
实施例2
本实施例采用本发明提供的制备方法制备铟砷化镓纳米线阵列,其中铟组分含量为百分之三十,镓组分含量为百分之七十,纳米线阵列制备及其光电性能评估流程与实施例1相同,但具体参数不同。
其中分子束外延生长纳米线阵列采用的衬底窗口温度是406~526摄氏度,分别在406、436、466、486、506、516和526摄氏度下生长纳米线阵列。
使用导电原子力显微镜测量垂直纳米线阵列中单根纳米线的光电流-偏压曲线时,使用激发光源波长980纳米,功率2毫瓦。
评估不同生长条件下纳米线阵列的光电性能时,采用的反向偏压条件为7伏。
实施例3
本实施例采用本发明提供的制备方法制备砷化铟纳米线阵列,纳米线阵列制备及其光电性能评估流程与实施例1相同,但具体参数不同。
其中分子束外延生长纳米线阵列采用的衬底窗口温度是350~470摄氏度,分别在350、380、410、430、450、460和470摄氏度下生长纳米线阵列。
使用导电原子力显微镜测量垂直纳米线阵列中单根纳米线的光电流-偏压曲线时,使用激发光源波长2.8微米,功率10毫瓦。
评估不同生长条件下纳米线阵列的光电性能时,采用的反向偏压条件为1伏。
以上所述的实施例仅为了说明本发明的技术思想及特点,其目的在于使本领域的普通技术人员能够了解本发明的内容并据以实施,本发明的范围不仅局限于上述具体实施例,即凡依本发明所揭示的精神所作的同等变化或修饰,仍涵盖在本发明的保护范围。

Claims (7)

1.一种最优光电效能的半导体纳米线阵列制备方法,适用于催化分子束外延生长砷化镓等III-V族纳米线阵列,该方法的特征在于步骤如下:
1)选择(111)B晶向的砷化镓衬底并使用分子束外延方法在其上生长一定厚度的砷化镓缓冲层;
2)通过热蒸发在缓冲层上沉积金膜并退火形成无规均匀分布的催化剂颗粒;
用分子束外延方法,根据拟制备的III-V族纳米线材料体系,选择最优V/III束流比,在较宽的衬底窗口温度中选择一系列的温度生长垂直纳米线阵列试样;
3)使用导电原子力显微镜,在定量光激发条件下,测量步骤3生长的垂直纳米线阵列中单根纳米线的光电流;
4)重复步骤3),对其他生长条件下制备的纳米线试样进行单根纳米线光电流测量,通过比较各试样单根纳米线光电流平均值大小的方式,评估不同生长条件下纳米线阵列的光电性能,找出最佳生长温度条件;
5)使用分子束外延方法,选择步骤4)确定的最佳生长温度条件制备纳米线阵列。
2.如权利要求书1中所述的一种最优光电效能的半导体纳米线阵列制备方法,其特征在于:在步骤1)中生长所述的砷化镓缓冲层之前,对衬底进行除气和脱氧处理,缓冲层的厚度为200~500纳米。
3.如权利要求书1中所述的一种最优光电效能的半导体纳米线阵列制备方法,其特征在于:步骤2)中所述的在缓冲层上热蒸发沉积金膜并退火形成催化剂颗粒,具体方法如下:真空加热金的源炉至1000摄氏度,在缓冲层上热蒸发沉积10纳米厚金膜,而后在550摄氏度的衬底温度下退火5分钟,使金膜收缩形成无规均匀分布的催化剂颗粒。
4.如权利要求书1中所述的一种最优光电效能的半导体纳米线阵列制备方法,其特征在于:步骤2)中所述的根据拟制备的III-V族纳米线材料体系,选择最优V/III束流比为:将V/III束流比控制在20:1。
5.如权利要求书1中所述的一种最优光电效能的半导体纳米线阵列制备方法,其特征在于:步骤2)中所述的在较宽的衬底窗口温度中选择一系列的温度生长垂直纳米线阵列试样方法为:对于砷化镓纳米线,衬底的窗口温度430~550摄氏度;对于其他含铟的III-V族纳米线,随着铟组分的增加,窗口温度降低0~80摄氏度。
6.如权利要求书1中所述的一种最优光电效能的半导体纳米线阵列制备方法,其特征在于:步骤3)中所述的使用导电原子力显微镜,在定量光激发条件下,测量垂直纳米线阵列中单根纳米线的光电流方法为:在相同的光激发条件下,使用导电原子力显微镜测量单根纳米线的光电流-偏压曲线;对于每个纳米线试样,随机选择不少于20根纳米线进行测量;试样准备采用机械旋涂法,将聚甲基丙烯酸甲酯均匀地旋涂在纳米线外表面,随后将其烘焙固化,通过抛光减薄固化后的样品至纳米线阵列1微米高;选择激发光源的波长,使光子能量大于纳米线材料的能隙,激发功率在0.5~10毫瓦,以获得较高信噪比的光电流信号,同时不对导电原子力显微镜的工作产生影响。
7.如权利要求书1中所述的一种最优光电效能的半导体纳米线阵列制备方法,其特征在于:步骤4)中所述的评估不同生长条件下纳米线阵列光电性能,找出最佳生长温度条件方法为;统计相同的反向偏压下不同试样单根纳米线光电流的平均值,获得单根纳米线最大平均光电流所对应的生长温度即为最优光电效能的半导体纳米线阵列生长温度条件;根据纳米线的能隙,选择的反向偏压条件在1~10伏之间,随着能隙的增加,偏压也随之增加。
CN201710387962.0A 2017-05-27 2017-05-27 一种最优光电效能的半导体纳米线阵列制备方法 Pending CN107248537A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710387962.0A CN107248537A (zh) 2017-05-27 2017-05-27 一种最优光电效能的半导体纳米线阵列制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710387962.0A CN107248537A (zh) 2017-05-27 2017-05-27 一种最优光电效能的半导体纳米线阵列制备方法

Publications (1)

Publication Number Publication Date
CN107248537A true CN107248537A (zh) 2017-10-13

Family

ID=60017658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710387962.0A Pending CN107248537A (zh) 2017-05-27 2017-05-27 一种最优光电效能的半导体纳米线阵列制备方法

Country Status (1)

Country Link
CN (1) CN107248537A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534279A (zh) * 2018-11-26 2019-03-29 长春理工大学 一种纳米线阵列器件的制备方法
CN109801835A (zh) * 2018-12-14 2019-05-24 华南理工大学 一种低温下生长GaAs纳米线的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040187A (zh) * 2010-11-12 2011-05-04 浙江大学 一种核壳结构ZnO纳米线阵列的生长方法
CN102621465A (zh) * 2012-03-19 2012-08-01 中国科学院上海技术物理研究所 半导体纳米线少数载流子寿命的检测方法
CN103579415A (zh) * 2013-10-22 2014-02-12 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN104145340A (zh) * 2012-01-10 2014-11-12 挪威科技大学 具有石墨烯顶部电极和底部电极的纳米线装置以及制造该装置的方法
CN104685637A (zh) * 2012-06-21 2015-06-03 挪威科技大学(Ntnu) 太阳能电池
CN104760929A (zh) * 2015-03-10 2015-07-08 中国科学院上海技术物理研究所 一种用作光学微腔的GaSb纳米盘的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040187A (zh) * 2010-11-12 2011-05-04 浙江大学 一种核壳结构ZnO纳米线阵列的生长方法
CN104145340A (zh) * 2012-01-10 2014-11-12 挪威科技大学 具有石墨烯顶部电极和底部电极的纳米线装置以及制造该装置的方法
CN102621465A (zh) * 2012-03-19 2012-08-01 中国科学院上海技术物理研究所 半导体纳米线少数载流子寿命的检测方法
CN104685637A (zh) * 2012-06-21 2015-06-03 挪威科技大学(Ntnu) 太阳能电池
CN103579415A (zh) * 2013-10-22 2014-02-12 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN104760929A (zh) * 2015-03-10 2015-07-08 中国科学院上海技术物理研究所 一种用作光学微腔的GaSb纳米盘的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534279A (zh) * 2018-11-26 2019-03-29 长春理工大学 一种纳米线阵列器件的制备方法
CN109534279B (zh) * 2018-11-26 2020-11-03 长春理工大学 一种纳米线阵列器件的制备方法
CN109801835A (zh) * 2018-12-14 2019-05-24 华南理工大学 一种低温下生长GaAs纳米线的方法

Similar Documents

Publication Publication Date Title
Goswami et al. GaN nanotowers grown on Si (111) and functionalized with Au nanoparticles and ZnO nanorods for highly responsive UV photodetectors
Ray et al. One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review
Ozdemir et al. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires
CN110289320A (zh) 蓝光响应增强的高效黑硅光伏器件
CN102126724A (zh) 光滑表面硅纳米线阵列的制备方法
US9048097B2 (en) Semiconductive micro- and nano-wire array manufacturing
CN106910786A (zh) 一种量子点增强的纳米线以及紫外光电探测器
Inguanta et al. An electrochemical route towards the fabrication of nanostructured semiconductor solar cells
Vashishtha et al. GaN-djoser pyramidal self powered UV photodetector for optical signal detection in rugged environments
Tamboli et al. Wafer-scale growth of silicon microwire arrays for photovoltaics and solar fuel generation
CN101271933A (zh) 量子点-阱红外探测器的结构及其制备方法
Hakkarainen et al. Te incorporation and activation as n-type dopant in self-catalyzed GaAs nanowires
Saiki et al. Spatially resolved photoluminescence spectroscopy of lateral p‐n junctions prepared by Si‐doped GaAs using a photon scanning tunneling microscope
CN110459628A (zh) 一种多量子阱蓝光探测器及制备方法与应用
CN107248537A (zh) 一种最优光电效能的半导体纳米线阵列制备方法
Keramatnejad et al. Optimizing UV detection properties of n-ZnO nanowire/p-Si heterojunction photodetectors by using a porous substrate
Han et al. Crystal orientation controlled photovoltaic properties of multilayer GaAs nanowire arrays
Zhang et al. InGaN-based nanowires development for energy harvesting and conversion applications
Geydt et al. Influence of surface passivation on electric properties of individual GaAs nanowires studied by current–voltage AFM measurements
Jee et al. Ni-catalyzed growth of silicon wire arrays for a Schottky diode
Gao et al. Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors
Wang et al. Piezophototronic Effect on Solar Cells
CN103500766A (zh) 宽频带长波响应的GaAs/AlxGa1-xAs量子阱红外探测器及其制备方法与应用
Dawidowski et al. AP-MOVPE technology and characterization of InGaAsN pin subcell for InGaAsN/GaAs tandem solar cell
Li et al. Bi 2 Te 3/Si thermophotovoltaic cells converting low-temperature radiation into electricity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171013

WD01 Invention patent application deemed withdrawn after publication