CN107248430A - 溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜 - Google Patents

溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜 Download PDF

Info

Publication number
CN107248430A
CN107248430A CN201710573068.2A CN201710573068A CN107248430A CN 107248430 A CN107248430 A CN 107248430A CN 201710573068 A CN201710573068 A CN 201710573068A CN 107248430 A CN107248430 A CN 107248430A
Authority
CN
China
Prior art keywords
solution
thin films
sol
superconducting thin
direction extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710573068.2A
Other languages
English (en)
Other versions
CN107248430B (zh
Inventor
祁阳
王天林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710573068.2A priority Critical patent/CN107248430B/zh
Publication of CN107248430A publication Critical patent/CN107248430A/zh
Application granted granted Critical
Publication of CN107248430B publication Critical patent/CN107248430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明涉及溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,以金属硝酸盐为原料,乙二胺四乙酸为络合剂,羟乙基纤维素为表面活性剂,以SrTiO3(100)或MgO(100)为基底,利用溶胶凝胶法制备高纯度、低表面粗糙度的(00l)方向外延的Bi2212超导薄膜。本发明方法制备的Bi2212超导薄膜具有较高相纯度、较小表面粗糙度,无孔洞,结构致密,原料化学计量比可精确控制,膜厚度和成分均匀,而且制备工艺简单,重复性好,生产设备少,效率高,成本低,可实现大规模的工业化生产。

Description

溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜
技术领域
本发明涉及Bi2212超导薄膜技术领域,具体涉及溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜。
背景技术
超导技术是当代凝聚态物理中最重要的研究领域之一,是当代材料科学一个十分活跃的重要前沿,同时也是21世纪具有战略意义、广泛应用和巨大发展潜力的高新技术。
Bi2212超导体具有短相干长度,强各向异性的特点,展现出较强的二维特性。这些特点使得Bi2212超导薄膜在低表面微波阻抗、各向异性特征和本征约瑟夫森结特性等方面具有独特的性质,因而在超导激光开发、本征约瑟夫森和超导微波器件等超导电子学和超导光电子学方面具有广阔的应用前景。
溶胶凝胶法是成本低廉、快速高效、适合大规模工业生产的一种简单的制备工艺。现有少量关于铋系超导材料溶液法制备的公开专利。例如,中国专利CN105047810A公开了一种在基带上涂覆铋系超导溶液,制备Bi2212、Bi(Pb)2223高温超导材料的方法;中国专利CN105845270A公开了一种在衬底上旋涂铋系超导粉悬浊液制备铋系超导厚膜的方法。在已公开的文献中,大多数Bi2212超导薄膜采用分子束外延、脉冲激光沉积等真空物理沉积的方法,这些方法需要较复杂、昂贵的真空设备,生产成本高,生产效率低,难以实现大规模的工业化生产。相对而言,溶胶凝胶法是一种可满足工业化生产需要,低成本,高效率的生产工艺,虽然其在制备Bi2212超导薄膜方面的报道较少,但其拥有广阔的发展前景。因此,利用溶胶凝胶法制备(00l)外延取向的Bi2212超导薄膜就更具有重要意义。
常规的溶胶凝胶法本身具有一些固有的缺陷,如溶胶对基底的附着力较差等问题。
发明内容
为解决上述技术问题,本发明提供溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,以金属硝酸盐为原料,乙二胺四乙酸为络合剂,羟乙基纤维素为表面活性剂,以SrTiO3(100)或MgO(100)为基底,利用溶胶凝胶法制备高纯度、低表面粗糙度的(00l)方向外延的Bi2212超导薄膜。先以五水硝酸铋、硝酸锶、四水硝酸钙、三水硝酸铜、乙二胺四乙酸制备前驱溶液,在前驱溶液中加入表面活性剂羟乙基纤维素制得前驱溶胶,有效提高前驱溶胶对基底的浸润性,提高了成膜质量,降低了薄膜的表面粗糙度。再利用旋涂法制得前驱薄膜,最后将前驱薄膜通过两次升温得到(00l)方向外延的Bi2212薄膜。
具体技术方案如下:
溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,以金属硝酸盐为原料,以乙二胺四乙酸为络合剂,以羟乙基纤维素为表面活性剂,以SrTiO3(100)或MgO(100)为基底,采用溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,包括以下步骤:
(1)制备前驱溶液:按一定比例称取五水硝酸铋、硝酸锶、四水硝酸钙、三水硝酸铜、乙二胺四乙酸,将五水硝酸铋溶于27~31%的硝酸中,配成第一溶液;将硝酸锶、四水硝酸钙、三水硝酸铜溶于去离子水中,配成第二溶液;将乙二胺四乙酸溶于25~28%的氨水中,配成第三溶液;将第一溶液与第二溶液均匀混合后,缓慢滴加第三溶液,并用氨水调剂pH值在6~7之间,获得前驱溶液;
(2)制备前驱溶胶:向上述前驱溶液中加入羟乙基纤维素溶液,于室温搅拌5~8小时,得到第一溶胶,再将第一溶胶在80~100℃搅拌加热20~40分钟,得到前驱溶胶;
(3)旋涂法制备前驱薄膜:将前驱溶胶旋涂于SrTiO3(100)或MgO(100)基底上,然后置于平板加热器110~130℃干燥20~30分钟,得到第一层前驱膜,重复这一过程1~5次,旋涂层数为1~5层,且每一层的旋涂工艺皆相同,得到前驱薄膜;
(4)制备(00l)方向外延的Bi2212薄膜:将上述前驱薄膜以2℃/分升温至610~620℃,保温60分钟,再以3.5℃/分升温至819~827℃,保温10~70分钟,随炉冷却至室温,得到(00l)方向外延的Bi2212超导薄膜。
所述乙二胺四乙酸、五水硝酸铋、硝酸锶、四水硝酸钙、三水硝酸铜均为分析纯,摩尔比为7:2:2:1:2。
所述第一溶液硝酸铋浓度为0.33~0.37mol/L,所述第二溶液硝酸锶、四水硝酸钙、三水硝酸铜金属离子总浓度为0.25~0.29mol/L,所述第三溶液乙二胺四乙酸浓度为2.10~2.38mol/L。
所述羟乙基纤维素溶液质量分数为2.5~3.5%,所述前驱溶液与羟乙基纤维素溶液体积比为6:1。
所述旋涂法的旋涂速度为4000~8000转/分,旋涂时间为40秒。
本方法的优点是:
1、本发明采用的原料为金属硝酸盐,来源广泛,成本低廉;
2、本发明制备过程中以乙二胺四乙酸为络合剂,对本发明中的四种金属离子均有较好的络合能力,可以保证金属离子分散的均匀性,在后续(00l)方向外延的Bi2212薄膜的制备时可以防止杂相的生成;
3、本发明制备过程中通过在溶胶体系中增加高分子表面活性剂,有效地提高前驱溶胶对基底的浸润性,提高了成膜质量,降低了薄膜的表面粗糙度,进而提高溶胶凝胶法制备(00l)外延取向的Bi2212超导薄膜稳定性与重复性;
4、本发明制备过程中以SrTiO3(100)或MgO(100)为基底,SrTiO3与本发明中的Bi2212晶格比配较好,是制备多种钙钛矿结构薄膜的优质基底;而MgO在微波波段的介电常数和介电损耗都很小,且较易得到大尺寸的单晶基底,是制备高温超导微波器件的优选基底;
5、本发明制备的Bi2212超导薄膜具有较高相纯度,较小的表面粗糙度,无孔洞,结构致密、均匀;本发明制备工艺简单,生产设备少,效率高,生产成本低,可实现大规模的工业化生产,满足商业化应用要求;
6、本发明溶胶凝胶法使得制膜工艺简单化,原料化学计量比可精确控制,并具有膜厚均匀,成分均匀,重复性好等优点。
附图说明
图1为生长在SrTiO3基底上的Bi2212超导薄膜的XRD图谱;
图2为生长在SrTiO3基底上的Bi2212超导薄膜的AFM图像;
图3为生长在MgO基底上的Bi2212超导薄膜的XRD图谱;
图4为生长在MgO基底上的Bi2212超导薄膜的AFM图像;
图5为生长在SrTiO3基底上的Bi2212超导薄膜的RT曲线。
具体实施方式
下面结合具体实施例对本发明进行详细说明,但本发明的保护范围不受实施例所限。
实施例1
称取7.7612g五水硝酸铋,溶于22ml浓度为29%的浓硝酸,称取3.3860g硝酸锶,1.8892g四水硝酸钙,3.8656g三水硝酸铜,溶于30ml去离子水后,与之前硝酸铋硝酸溶液混合。称取16.3692g乙二胺四乙酸,溶于25ml浓度25%氨水后,缓慢滴加入上述金属离子混合溶液,并用氨水调节pH值为6,得到前驱溶液。取30ml前驱溶液,加入5ml质量分数为3%的羟乙基纤维素溶液,搅拌5小时后,于90℃搅拌加热30分钟,得到前驱溶胶。将前驱溶胶滴在洁净的SrTiO3(100)单晶基底上,旋涂速度为4000转/分,旋涂时间为40秒后,置于120℃的平板加热器干燥20分钟。重复上述过程3次,得到前驱薄膜。将得到的前驱薄膜置于管式炉中,以2℃/分的升温速率升至615℃,保温60分钟,再以3.5℃/分的升温速率升至824℃,保温35分钟,得到(00l)外延取向的Bi2212薄膜。
实施例2
称取7.7612g五水硝酸铋,溶于22ml浓度为29%的浓硝酸,称取3.3860g硝酸锶,1.8892g四水硝酸钙,3.8656g三水硝酸铜,溶于30ml去离子水后,与之前硝酸铋硝酸溶液混合。称取16.3692g乙二胺四乙酸,溶于25ml浓度28%氨水后,缓慢滴加入上述金属离子混合溶液,并用氨水调节pH值为7,得到前驱溶液。取30ml前驱溶液,加入5ml质量分数为3%的羟乙基纤维素溶液,搅拌5小时后,于90℃搅拌加热30分钟,得到前驱溶胶。将前驱溶胶滴在洁净的MgO(100)单晶基底上,旋涂速度为6000转/分,旋涂时间为40秒后,置于120℃的平板加热器干燥20分钟。重复上述过程5次,得到前驱薄膜。将得到的前驱薄膜置于管式炉中,以2℃/分的升温速率升至615℃,保温60分钟,再以3.5℃/分的升温速率升至821℃,保温60分钟,得到(00l)外延取向的Bi2212薄膜
图1为生长在SrTiO3基底上的Bi2212超导薄膜的XRD图谱,图谱中只存在强而尖锐Bi2212相(00l)面的衍射峰,无其他晶面和杂相衍射峰,表明Bi2212超导薄膜具有很高纯度,且其生长取向为沿c轴外延生长。
图2为生长在SrTiO3基底上的Bi2212超导薄膜的AFM图像,图像显示Bi2212超导薄膜结构连续,具有平坦光滑的表面,其均方根表面粗糙度为7.74nm。
图3为生长在MgO基底上的Bi2212超导薄膜的XRD图谱,图谱中只存在强而尖锐Bi2212相(00l)面的衍射峰,无其他晶面和杂相衍射峰,表明Bi2212超导薄膜具有很高纯度,且其生长取向为沿c轴外延生长。
图4为生长在MgO基底上的Bi2212超导薄膜的AFM图像,图像显示Bi2212超导薄膜结构连续,具有平坦光滑的表面,其均方根表面粗糙度为8.19nm。
图5为生长在SrTiO3基底上的Bi2212超导薄膜的RT曲线,Bi2212超导薄膜的电阻在110K-300K区间展现出良好的线性依赖关系,表明此时薄膜的正常态电阻温度关系呈金属态特性。随温度的进一步降低,薄膜电阻急剧下降,直至变为零电阻,表现为正常态向超导态的转变。相变过程展现出较高的临界转变温度和较窄的转变宽度。薄膜的起始转变温度为96.2K,零电阻转变温度为87.1K,转变宽度8.2K。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,其特征在于,以金属硝酸盐为原料,以乙二胺四乙酸为络合剂,以羟乙基纤维素为表面活性剂,以SrTiO3(100)或MgO(100)为基底,采用溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,包括以下步骤:
(1)制备前驱溶液:按一定比例称取五水硝酸铋、硝酸锶、四水硝酸钙、三水硝酸铜、乙二胺四乙酸,将五水硝酸铋溶于27~31%的硝酸中,配成第一溶液;将硝酸锶、四水硝酸钙、三水硝酸铜溶于去离子水中,配成第二溶液;将乙二胺四乙酸溶于25~28%的氨水中,配成第三溶液;将第一溶液与第二溶液均匀混合后,缓慢滴加第三溶液,并用氨水调剂pH值在6~7之间,获得前驱溶液;
(2)制备前驱溶胶:向上述前驱溶液中加入羟乙基纤维素溶液,于室温搅拌5~8小时,得到第一溶胶,再将第一溶胶在80~100℃搅拌加热20~40分钟,得到前驱溶胶;
(3)旋涂法制备前驱薄膜:将前驱溶胶旋涂于SrTiO3(100)或MgO(100)基底上,然后置于平板加热器110~130℃干燥20~30分钟,得到第一层前驱膜,重复这一过程1~5次,旋涂层数为1~5层,且每一层的旋涂工艺皆相同,得到前驱薄膜;
(4)制备(00l)方向外延的Bi2212薄膜:将上述前驱薄膜以2℃/分升温至610~620℃,保温60分钟,再以3.5℃/分升温至819~827℃,保温10~70分钟,随炉冷却至室温,得到(00l)方向外延的Bi2212超导薄膜。
2.如权利要求1所述的溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,其特征在于:所述乙二胺四乙酸、五水硝酸铋、硝酸锶、四水硝酸钙、三水硝酸铜均为分析纯,摩尔比为7:2:2:1:2。
3.如权利要求1所述的溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,其特征在于:所述第一溶液硝酸铋浓度为0.33~0.37mol/L,所述第二溶液硝酸锶、四水硝酸钙、三水硝酸铜金属离子总浓度为0.25~0.29mol/L,所述第三溶液乙二胺四乙酸浓度为2.10~2.38mol/L。
4.如权利要求1所述的溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,其特征在于:所述羟乙基纤维素溶液质量分数为2.5~3.5%,所述前驱溶液与羟乙基纤维素溶液体积比为6:1。
5.如权利要求1所述的溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜,其特征在于:所述旋涂法的旋涂速度为4000~8000转/分,旋涂时间为40秒。
CN201710573068.2A 2017-07-14 2017-07-14 溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜 Active CN107248430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710573068.2A CN107248430B (zh) 2017-07-14 2017-07-14 溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710573068.2A CN107248430B (zh) 2017-07-14 2017-07-14 溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜

Publications (2)

Publication Number Publication Date
CN107248430A true CN107248430A (zh) 2017-10-13
CN107248430B CN107248430B (zh) 2019-02-19

Family

ID=60014498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710573068.2A Active CN107248430B (zh) 2017-07-14 2017-07-14 溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜

Country Status (1)

Country Link
CN (1) CN107248430B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648878A (zh) * 2018-05-17 2018-10-12 西安理工大学 一种铋锶钙铜氧高温超导薄膜微细图形的制备方法
CN112863762A (zh) * 2021-01-20 2021-05-28 东北大学 一种制备大尺寸高温超导薄膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357658A (zh) * 2011-04-29 2012-02-22 福州大学 一种用于制备太阳光热转换吸收薄膜的水溶胶
CN102850894A (zh) * 2012-07-03 2013-01-02 杭州和合玻璃工业有限公司 一种减反射镀膜用复合溶胶及减反射镀膜光伏玻璃
CN103691647A (zh) * 2013-12-03 2014-04-02 常州大学 一种具有尖晶石结构的太阳能选择吸收薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357658A (zh) * 2011-04-29 2012-02-22 福州大学 一种用于制备太阳光热转换吸收薄膜的水溶胶
CN102850894A (zh) * 2012-07-03 2013-01-02 杭州和合玻璃工业有限公司 一种减反射镀膜用复合溶胶及减反射镀膜光伏玻璃
CN103691647A (zh) * 2013-12-03 2014-04-02 常州大学 一种具有尖晶石结构的太阳能选择吸收薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王天林 祁阳: "溶胶凝胶法制备Bi系超导厚膜的晶体生长机制研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
黄高峰 祁阳: "Pechini溶胶-凝胶法制备Bi-2212超导薄膜的织构特性研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648878A (zh) * 2018-05-17 2018-10-12 西安理工大学 一种铋锶钙铜氧高温超导薄膜微细图形的制备方法
CN108648878B (zh) * 2018-05-17 2020-01-14 西安理工大学 一种铋锶钙铜氧高温超导薄膜微细图形的制备方法
CN112863762A (zh) * 2021-01-20 2021-05-28 东北大学 一种制备大尺寸高温超导薄膜的方法

Also Published As

Publication number Publication date
CN107248430B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN102744417B (zh) 一种高长径比纳米银线的制备方法
CN102249307B (zh) 铌酸铋镁介质薄膜的制备方法
CN102925976B (zh) 使用NGO单晶基板制备a轴REBCO高温超导厚膜的方法
CN102556941A (zh) 一种四氧化三钴纳米线阵列、其制备方法以及作为锂离子电池负极的用途
CN104193316B (zh) 一种钇铁石榴石薄膜及其制备方法
CN100565953C (zh) 一种高分子辅助沉积高温超导涂层导体超导层的方法
CN102142300B (zh) 一种第二相纳米粒子掺杂ybco薄膜的制备方法
CN107248430B (zh) 溶胶凝胶法制备(00l)方向外延的Bi2212超导薄膜
CN104831359A (zh) 亚微米级低损耗单晶钇铁石榴石薄膜的液相外延制备方法
CN108546919A (zh) 一种利用脉冲激光沉积制备独立分散铁酸钴纳米柱的方法
CN101333655A (zh) 高温超导涂层导体La2Zr2O7缓冲层薄膜制备工艺
CN102731083A (zh) 一种制备钇钡铜氧高温超导膜的方法
CN104599783B (zh) 一种Bi2223氧化物薄膜的制备方法
CN101178954A (zh) 一种导电型阻隔层LaNiO3的制备方法
Wang et al. Microstructure and superconducting properties of (BaTiO 3, Y 2 O 3)-doped YBCO films under different firing temperatures
CN107619274A (zh) 一种利用快速热处理制备钇钡铜氧高温超导薄膜的方法
CN114716687B (zh) 一种具有室温铁磁性的二维金属有机框架半导体材料及其制备方法
Wang et al. High performance fluorine-free MOD YBa2Cu3O7-z film preparation by partial melting process
CN101462759A (zh) 一种稀土氧化物纳米磁制冷材料的制备方法
Lu et al. Texture and formation of (Bi, Pb)-2223 phase after partial-melting and solidification in high magnetic fields
CN107459055B (zh) 一种纳米粒子诱导外延生长制备ybco薄膜的方法
CN106637161B (zh) 一种调控镧钙锰氧薄膜磁性能的方法
CN105609212A (zh) 一种复合超导材料的制备方法
CN105551680A (zh) 一种复合超导材料
CN107978394A (zh) 超导带及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant