CN107205976A - 用于治疗溶酶体病症的组合物和方法 - Google Patents

用于治疗溶酶体病症的组合物和方法 Download PDF

Info

Publication number
CN107205976A
CN107205976A CN201580073947.8A CN201580073947A CN107205976A CN 107205976 A CN107205976 A CN 107205976A CN 201580073947 A CN201580073947 A CN 201580073947A CN 107205976 A CN107205976 A CN 107205976A
Authority
CN
China
Prior art keywords
disease
tfeb
ppar
medicament
diseases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580073947.8A
Other languages
English (en)
Inventor
K·帕汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rush University Medical Center
Original Assignee
Rush University Medical Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rush University Medical Center filed Critical Rush University Medical Center
Publication of CN107205976A publication Critical patent/CN107205976A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/612Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid
    • A61K31/616Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid by carboxylic acids, e.g. acetylsalicylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/07Retinol compounds, e.g. vitamin A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Psychology (AREA)
  • Obesity (AREA)
  • Hospice & Palliative Care (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明的一个方面提供了一种用于治疗溶酶体贮积症的方法。该方法可以包括向需要这种治疗的受试者施用一种组合物,该组合物包括治疗有效量的介导转录因子EB上调的药剂。在一个实施方式中,该组合物包括贝特类药物,如吉非罗齐或非诺贝特。在另一个实施方式中,该组合物还包括全反式维甲酸或维生素A。

Description

用于治疗溶酶体病症的组合物和方法
相关申请
本专利申请要求于2014年11月19日提交的美国临时专利申请号62/081,696的申请日的权益,该申请的内容特此通过引用的方式并入本文。
技术领域
本发明一般而言涉及用于治疗溶酶体贮积症(lysosomal storage disorders)的组合物和方法。
背景
溶酶体是含有大量在酸性环境中具有高度活性的水解酶的膜结合型细胞器(1-3)。传统上被认定为废物管理细胞器,已表明溶酶体参与主要的细胞进程,包括降解发展、程序性细胞死亡和营养反应(2,4-8)。溶酶体对不同刺激物的不同作用和反应表明协同调控溶酶体基因的表达(9,10)。近期研究提供了适度的关于溶酶体基因调控的信息(11,12),但是对溶酶体基因的模式发现分析揭示了协同溶酶体表达和调控(CLEAR)成分的存在,该成分是转录因子EB(TFEB)(bHLH(基本螺旋-环-螺旋)因子的小眼畸形–转录因子E(MiT/TFE)亚家族的成员)潜在的结合位点。该研究报告了TFEB和溶酶体生物生成之间的潜在联系(9,10,12)。
Tfeb的调控看起来是复杂的并且依赖于细胞类型和刺激物。在分化的破骨细胞中,RANKL-依赖型信号传导途径诱导了TFEB激活诱导的溶酶体生物生成(13)。饥饿或应激条件也可以激活TFEB,其否则保持为被mTORC1灭活的状态(14,15)。一项研究也表明饥饿诱导的TFEB活性可在脂类代谢中起关键作用以及激活的TFEB也可自调控其自己的基因表达(16)。
溶酶体贮积病(LSD)是一组大约50种罕见的由溶酶体功能缺陷导致的遗传性代谢病症。LSD的症状随具体病症和其他变量(如发病年龄)而变化,并且可为轻度至重度的。它们可包括发育迟缓、运动障碍、癫痫、痴呆、聋和/或盲。患有LSD的一些人具有增大的肝(肝肿大)和增大的脾(脾肿大)、肺部和心脏问题,以及生长异常的骨骼。
优选实施方式概述
本发明的一个方面提供了用于治疗LSD的方法。该方法可以包括向需要这种治疗的受试者施用一种组合物,该组合物包括治疗有效量的介导转录因子EB(TFEB)上调的药剂。
在一个实施方式中,该药剂为他汀类药物。例如,他汀类药物可以是阿托伐他汀、氟伐他汀、洛伐他汀、匹伐他汀、普伐他汀、罗素伐他汀或辛伐他汀。该药剂还可以是例如降脂药物,如贝特类药物。在一些实施方式中,贝特类药物是吉非罗齐或非诺贝特。在其他实施方式中,该药剂是镇痛剂、退热剂、阿司匹林、肉桂代谢物、肉桂酸、苯丁酸钠或苯甲酸钠。在另一些实施方式中,该组合物可以包括至少两种上述药剂的组合。
该组合物还可以包括全反式维甲酸或维生素A。例如,该组合物可以包括他汀类药物或贝特类药物和全反式维甲酸或维生素A。该制剂与全反式维甲酸或维生素A的这种组合与单独施用全反式维甲酸、维生素A或贝特类药物相比可以为受试者提供更大的疗效。该组合可以是协同组合。TFEB也可以通过增加转录因子EB mRNA水平、增加转录因子EB蛋白水平或激活PPARa-RXRa异源二聚体而上调。
LSD可以是神经退行性病症,例如,神经元蜡样脂褐质沉积症(neuronal ceroidlipofuscinosis)、阿尔茨海默氏病(Alzheimer's disease)、亨廷顿氏舞蹈病(Huntington's disease)、肌萎缩性脊髓侧索硬化症(Amyotrophic lateral sclerosis,ALS)、帕金森氏病(Parkinson's disease),包括帕金森氏附加病(Parkinson's plusdiseases),如多系统萎缩症(multiple system atrophy,MSA)、进行性核上性麻痹(progressive supranuclear palsy,PSP)、皮质基底节变性(corticobasaldegeneration,CBD)或路易体痴呆(dementia with Lewy bodies,DLB)。在另一个实施方式中,LSD是自噬途径障碍,并且其中所述药剂增加溶酶体的生物生成。
在其他实施方式中,LSD是Tay-Sachs病、法布里病(Fabry disease)、尼曼-匹克病(Niemann-Pick disease)、戈谢病(Gaucher disease)、亨特氏综合征(Hunter Syndrome)、α-甘露糖贮积病(Alpha-mannosidosis)、天冬氨酰葡糖胺尿症(Aspartylglucosaminuria)、胆固醇酯贮积病(Cholesteryl ester storage disease)、慢性己糖胺酶A缺乏症(Chronic Hexosaminidase A Deficiency)、胱氨酸贮积症(Cystinosis)、Danon病(Danon disease)、Farber病(Farber disease)、岩藻糖苷贮积症(Fucosidosis)、半乳糖唾液酸贮积症(Galactosialidosis),或巴腾氏病(Battendisease),包括后期婴儿型巴腾氏病(late infantile Batten disease)和青少年型巴腾氏病(Juvenile Batten disease)。
本发明的另一方面提供了治疗LSD的方法,包括向需要这种治疗的受试者施用一种组合物,该组合物包括治疗有效量的介导Tfeb基因上调的药剂。又一方面提供治疗LSD的方法,包括向需要这种治疗的受试者施用一种组合物,该组合物包括治疗有效量的一种药剂,其中该药剂恢复TFEB活性。
附图简要说明
图1显示吉非罗齐和维甲酸上调大脑细胞中的TFEB mRNA和蛋白水平。(A,B)将小鼠原代星形胶质细胞在无血清的DMEM/F-12培养基中用不同浓度的吉非罗齐和全反式维甲酸(ATRA)处理12小时,之后通过qRT-PCR监测Tfeb的mRNA水平(A)以及通过免疫印迹监测TFEB蛋白水平(B)。(C)对TFEB的免疫印迹的光密度分析(相对于β-肌动蛋白)。(D,E)将小鼠原代星形胶质细胞在类似的培养条件下用吉非罗齐(10μM)和ATRA(0.2μM)的组合处理4、6、12和24小时,之后通过qRT-PCR监测TFEB的mRNA水平(D)以及通过免疫印迹监测蛋白水平(E)。(F)对TFEB的免疫印迹的光密度分析。所有结果表示为或为至少三个独立的实验集的平均值±SEM。(G,I)将小鼠原代星形胶质细胞(G)和小鼠原代神经元(I)在无血清条件下用吉非罗齐和维甲酸的组合处理24小时,并分别对TFEB(红)-GFAP(绿)和TFEB(红)-Map2(绿)进行双标记。使用DAPI对核进行染色。比例尺=20μm(对于G),对于高倍图像,比例尺=5μm(对于G);比例尺=50μm(对于I),对于高倍图像,比例尺=10μm(对于I)。(H,J)按照相对于对照的倍数计算,对小鼠原代星形胶质细胞(H)和小鼠原代神经元(J)的全细胞和核中的TFEB免疫反应性(TFEB IR)量化。采用ImageJ对来自三个独立实验集的每种条件至少25个单独图像进行量化。与未经处理的对照相比。
图2显示PPARα和RXRα参与贝特类药物介导的TFEB mRNA和蛋白的上调:(A,B)将自PPARα-/-和PPARβ-/-以及野生型小鼠分离的小鼠原代星形胶质细胞在无血清DMEM/F12中用吉非罗齐(10μM)和维甲酸(0.2μM)的组合处理24小时,之后通过实时PCR监测Tfeb的mRNA表达(A)以及通过免疫印迹监测TFEB的蛋白水平(B)。(C)PPARα-/-和PPARβ-/-以及野生型星形胶质细胞中的TFEB水平的光密度分析(相对于β-肌动蛋白)。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns–相对于PPARα-/-对照为非显著性的。(D)将自WT小鼠分离的小鼠原代星形胶质细胞用GW9662预处理30分钟,之后在类似的培养条件下用吉非罗齐和维甲酸处理,之后通过免疫印迹监测TFEB蛋白表达的水平。(E)对TFEB的免疫印迹的光密度分析(相对于β-肌动蛋白)。与对照相比;ns-相对于对照为非显著性的。(F)将自PPARα-/-和PPARβ-/-和WT小鼠分离的小鼠原代星形胶质细胞在无血清DMEM/F12中用10μM吉非罗齐和0.2μM维甲酸处理24小时,并对TFEB(红)和GFAP(绿)进行双标记。使用DAPI对核进行染色。UN-无处理。比例尺=20μM。(G)按照相对于对照的倍数计算,对小鼠原代星形胶质细胞的TFEB免疫反应性(TFEB IR)进行量化。采用ImageJ对来自三个独立的实验集的每种条件至少25个单独图像进行量化。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns–相对于PPARα-/-对照为非显著性的。(H,I,J)对小鼠原代星形胶质细胞不进行转染、用序列打乱的siRNA(1.0μg)或RXRαsiRNA(1.0μg)转染36小时,之后在无血清DMEM/F12培养基中用RA(0.2μM)和吉非罗齐(10μM)联合处理24小时,之后通过RT-PCR监测RXRα以检查基因沉默的水平(H)以及通过定量实时PCR监测TFEB(J)和通过免疫印迹监测TFEB(J)。(K)对TFEB的免疫印迹的光密度分析(相对于β肌动蛋白)。p*<0.05,与未转染的对照相比;p**<0.05,与序列打乱的siRNA转染的对照相比;ns–相对于RXR-αsiRNA转染的对照为非显著性的。所有结果表示为或为至少三个独立的实验集的平均值±SEM。
图3显示PPARα在处理条件下转录调控TFEB表达:(A)TFEB-荧光素酶启动子构建物的野生型和突变型PPRE位点的图谱。(B)将BV2细胞用pTFEB(WT)-Luc转染24小时,之后用不同浓度的吉非罗齐和维甲酸单独以及联合处理,并进行荧光素酶测定。p*<0.05,与未经处理的对照相比。(C)将BV2细胞用pTFEB(WT)-Luc转染24小时,之后用PPARα-、PPARβ-、PPARγ-拮抗剂预处理,之后用吉非罗齐和维甲酸处理,并进行荧光素酶测定。与未经处理的对照相比,p*<0.05。与处理相比,p#<0.05。(D)将自PPARα-/-(中间)和PPARβ-/-(右)和野生型(左)小鼠分离的小鼠原代星形胶质细胞用pTFEB(WT)-Luc转染24小时,之后用吉非罗齐和维甲酸处理,并进行荧光素酶测定。p*<0.05,与未经处理的WT对照相比。p#–与未经处理的PPARα-/-对照相比为非显著性的。与未经处理的PPARβ-/-对照相比。(E,F)将BV2细胞(E)和小鼠原代星形胶质细胞(F)用pTFEB(WT)-Luc和pTFEB(Mu)-Luc转染24小时,之后用吉非罗齐和维甲酸处理,并进行荧光素酶测定。p*<0.05,与未经处理的pTFEB(WT)-Luc转染对照相比。ns-相对于未经处理的pTFEB(Mu)-Luc转染对照为非显著性的。所有结果为至少6个独立实验集的平均值±SEM。
图4显示PPARα-RXRα-PGC1α复合物对TFEB的转录激活。(A)具有用于ChIP的核心序列和扩增子长度的TFEB启动子上的PPRE的图谱。(B,C)将小鼠星形胶质细胞用吉非罗齐(10μM)和RA(0.2μM)的组合处理30、60、120和240分钟,并通过ChIP监测在Tfeb启动子的PPRE结合位点上PPARα(最左)、RXRα(中间偏左)、PGC1α(中间偏右)和RNA聚合酶(最右)的募集,之后通过RT-PCR(B)和qRT-PCR(C)监测。使用正常IgG作为对照。p*<0.05,与未经处理的对照相比。所有结果表示为或为至少三个独立的实验集的平均值±SEM。(D)通过激活过氧化物酶体增殖物诱导溶酶体的生物生成的示意图。
图5显示PPARα依赖性上调TFEB诱导溶酶体的生物生成:(A,B)将自PPARα-/-和PPARβ-/-和野生型小鼠分离的小鼠原代星形胶质细胞在无血清DMEM/F12中用吉非罗齐(10μM)和维甲酸(0.2μM)的组合处理24小时,之后通过实时PCR监测溶酶体基因(Lamp2(左)、Limp2(中间)、Npc1(右))的mRNA表达(A)以及通过免疫印迹监测LAMP2的蛋白水平(B)。(C)PPARα-/-和PPARβ-/-和野生型星形胶质细胞中的LAMP2水平的光密度分析(相对于β-肌动蛋白)。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns-相对于PPARα-/-对照为非显著性的。所有结果表示为或为至少三个独立的实验集的平均值±SEM。(D)将自PPARα-/-和PPARβ-/-和WT小鼠分离的小鼠原代星形胶质细胞在无血清DMEM/F12中用10μM吉非罗齐和0.2μM维甲酸处理24小时,并对LAMP2(红)和GFAP(绿)进行双标记。使用DAPI对核进行染色。(E)按照相对于对照的倍数计算,量化小鼠原代星形胶质细胞的LAMP2免疫反应性(Lamp2IR)。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns–相对于PPARα-/-对照为非显著性的。(F)将自WT小鼠分离的小鼠原代神经元在无血清DMEM/F12中用10μM吉非罗齐和0.2μM维甲酸处理24小时,并对LAMP2(红)和Map2(绿)进行双标记。使用DAPI对核进行染色。(G)按照相对于对照的倍数计算,量化小鼠原代神经元的LAMP2免疫反应性(Lamp2IR)。p*<0.05,与未经处理的对照相比。(H)将自PPARα-/-和PPARβ-/-和WT小鼠分离的小鼠原代星形胶质细胞在无血清DMEM/F12中用10μM吉非罗齐和0.2μM维甲酸处理24小时,并对LysoTracker Red(红)和GFAP(绿)进行双标记。(I)按照相对于对照的倍数计算,量化小鼠原代星形胶质细胞的LAMP2免疫反应性(Lamp2IR)。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns-相对于PPARα-/-对照为非显著性的。UN–无处理。比例尺=20μm(对于D、E&F),对于高倍图像,比例尺=10μm(对于E)。采用ImageJ对来自三个不同的实验集的每种条件至少25个单独图像对所有的图像定量数据进行分析。
图6显示口服施用吉非罗齐在体内在WT和PPARβ-/-小鼠的皮质中但不在PPARα-/-小鼠的皮质中上调TFEB:(A,D,G)对WT、PPARα-/-和PPARβ-/-小鼠(每组中n=6)经由管饲法用7.5mg/kg体重/天的吉非罗齐和0.1mg/kg体重的全反式维甲酸(溶于0.1%甲基纤维素)或溶媒(0.1%甲基纤维素)处理。处理60天后,将小鼠杀死,并对皮质切片进行TFEB(红)和NeuN(绿)双标记。使用DAPI使核可视化。(C,F,I)较高放大倍数图像显示TFEB和NeuN在处理组(WT、PPARα-/-和PPARβ-/-)小鼠的皮质神经元中的定位。(B,E,H)量化每组(WT、PPARα-/-和PPARβ-/-)的未经处理和经过处理的样本的TFEB免疫反应性(TFEB IR),用面积百分比表示。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns–相对于PPARα-/-对照为非显著性的。采用ImageJ对每组至少12张切片(每只动物2张切片)进行量化。比例尺=50μM和10μm(对于放大倍数较高的图像)。
图7显示口服施用吉非罗齐在体内在WT和PPARβ-/-小鼠的皮质中但不在PPARα-/-小鼠的皮质中上调LAMP2:(A,D,G)将WT、PPARα-/-和PPARβ-/-小鼠(每组中n=6)经由管饲法用7.5mg/kg体重/天的吉非罗齐和0.1mg/kg体重的全反式维甲酸(溶于0.1%甲基纤维素)或溶媒(0.1%甲基纤维素)处理。处理60天后,将小鼠杀死,并对皮质切片进行LAMP2(红)和NeuN(绿)双标记。使用DAPI使核可视化。(C,F,I)较高放大倍数图像显示LAMP2和NeuN在处理组(WT、PPARα-/-和PPARβ-/-)小鼠的皮质神经元中的定位。(B,E,I)量化每组(WT、PPARα-/-和PPARβ-/-)的未经处理和经过处理的样本的LAMP2免疫反应性(LAMP2IR),用面积百分比表示。pa<0.05,与WT对照相比;pb<0.05,与PPARβ-/-对照相比;ns–相对于PPARα-/-对照为非显著性的。采用ImageJ对每组至少12张切片(每只动物2张切片)进行量化。比例尺=50μM和10μm(对于放大倍数较高的图像)。
图8显示TFEB的上调在正常和LINCL患者的成纤维细胞中诱导溶酶体的生物生成:将来自健康个体(WT#1-3)和LINCL患者(NCL#1-5)以及LINCL载体(NCL/C)的成纤维细胞在减少血清(2%)的DMEM培养基中用吉非罗齐(10μM)和维甲酸(0.2μM)处理24小时,之后用LysoTracker Red(红)染色。使用明视野显微镜来检测细胞形态学。比例尺=20μM。对应的箱形图表示在每种细胞类型中与对照相比处理组的LysoTracker阳性信号的倍数变化。p*<0.05,与未经处理的对照相比。ROI–白色虚线,表示细胞的面积。倍数变化计算为与对照相比处理中每种细胞每单位面积的LysoT+ve信号。采用ImageJ对每种细胞类型每种条件至少25个图像进行量化。
图9(A)–9(D)示出降胆固醇药物(辛伐他汀和普伐他汀)、阿司匹林(镇痛剂和退热剂)、肉桂酸(肉桂代谢物)和用于尿素循环障碍的药物(苯丁酸钠和苯甲酸钠)上调小鼠星形胶质细胞中TFEB mRNA的表达。
图10示出阿司匹林在小鼠原代星形胶质细胞中增加溶酶体的生物生成。将细胞在无血清条件下用不同浓度的阿司匹林处理24h,之后进行Lyso-tracker染色。结果代表三个独立的实验。
图11(A)-(D)显示阿司匹林在小鼠原代星形胶质细胞中上调LAMP2的表达。11(A)将细胞在无血清条件下用5μM阿司匹林处理不同的时间段,之后通过实时PCR监测LAMP2的mRNA表达。结果是三个不同实验的平均值+SD。ap<0.05,与对照相比;bp<0.001,与对照相比。11(B)将细胞在无血清条件下用不同浓度的阿司匹林处理24h,之后进行LAMP2的蛋白质印迹。11(C)将细胞在无血清条件下用5μM阿司匹林处理不同的时间段,之后进行LAMP2的蛋白质印迹。11(D)在阿司匹林处理24h后,对细胞进行LAMP2和GFAP双标记。结果代表三个独立的实验。
图12(A)-(C)显示阿司匹林在小鼠原代星形胶质细胞中增加TPP1。12(A)将细胞在无血清条件下用不同浓度的阿司匹林处理24h,之后进行TPP1的蛋白质印迹。12(B)将细胞在无血清条件下用5μM阿司匹林处理不同的时间段,之后进行TPP1的蛋白质印迹。运行肌动蛋白作为管家分子。12(C)将细胞在无血清条件下用不同浓度的阿司匹林处理24h,之后使用含有5μg总蛋白和作为底物的Ala-Ala-Phe 7-酰氨基-4-甲基香豆素的细胞提取物进行TPP1活性测定。结果代表三个独立的实验。
图13(A)-(C)示出阿司匹林在小鼠原代星形胶质细胞中上调TFEB。13(A)将细胞在无血清条件下用不同浓度的阿司匹林处理12h,之后进行TFEB的蛋白质印迹。运行肌动蛋白作为管家分子。13(B)将细胞在无血清条件下用5μM阿司匹林处理12h,之后用GFAP和TFEB进行双标记。这些结果是两个独立实验的平均值。13(C)将细胞用p(WT)Tfeb-Luc质粒转染,并在转染24h后,将细胞用不同剂量的阿司匹林刺激。4h后,在总细胞提取物中测量萤火虫荧光素酶活性。结果是三个独立实验的平均值+SD。ap<0.001,与对照相比。
图14(A)-(B)示出阿司匹林在小鼠原代星形胶质细胞中激活PPARα。14(A)将细胞用5μM阿司匹林处理不同的时间段(用分钟表示),之后分离核提取物并使用Tfeb启动子的PPARα-结合位点作为探针进行电泳迁移率变动测定来监测PPARα的DNA结合活性。14(B)将从野生型、PPARα(-/-)和PPARβ(-/-)小鼠分离的星形胶质细胞用PPAR荧光素酶报告因子(PPRE-x3-TK-luc)质粒转染,并在转染24h后,将细胞用不同剂量的阿司匹林刺激。4h后,在总细胞提取物中测量萤火虫荧光素酶活性。结果是三个独立实验的平均值+SD。ap<0.001,与对照相比。
图15(A)-(C)示出阿司匹林经由PPARα增加星形胶质细胞中TFEB的水平。将从WT15(A)、PPARα(-/-)15(B)和PPARβ(-/-)15(C)小鼠分离的星形胶质细胞在无血清条件下用5μM阿司匹林处理12h,之后对TFEB和GFAP进行双标记。结果代表三个独立的实验。
图16(A)-(B)示出阿司匹林经由PPARα增加星形胶质细胞中LAMP2的水平。将从WT、PPARα(-/-)和PPARβ(-/-)小鼠分离的星形胶质细胞在无血清条件下用不同浓度的阿司匹林处理24h,之后进行LAMP2的蛋白质印迹分析16(A)。运行肌动蛋白作为管家分子。对条带进行扫描和并将其表示为相对于对照16(B)。结果是三个独立实验的平均值+SD。ap<0.05,与对照相比;bp<0.001,与对照相比。ns,非显著性的。
图17(A)-(C)示出阿司匹林经由PPARα增加星形胶质细胞中溶酶体的生物生成。将从WT 17(A)、PPARα(-/-)17(B)和PPARβ(-/-)17(C)小鼠分离的星形胶质细胞在无血清条件下用5μM阿司匹林处理24h,之后进行Lyso-tracker染色。结果代表三个独立的实验。
优选实施方式详述
定义
除非另有定义,本文所用的所有技术和科学技术具有本发明所属领域普通技术人员通常所理解的相同的含义。在相互矛盾的情况下,将以本文件包括定义为准。优选的方法和材料在下文描述,然而在本发明的实践或测试中可以使用与本文描述的那些相似或等同的方法和材料。
在描述本发明的内容中(尤其是在后面的权利要求书中)使用术语“一种”、“一个”和“该”以及类似的提及被解释为涵盖单数和复数,除非本文另有说明或内容明显相互矛盾。除非本文另有说明,本文描述的值的范围仅旨在用作单独提及每个落在该范围内的单独值的速记方法,并且每个单独值如同其单独在本文中描述那样被引入到说明书中。本文描述的所有方法均能以合适的顺序进行,除非本文另有说明或内容明显相互矛盾。本文提供的任何和全部实施例或示例性语言(举例来说,“如”,“例如”)的使用仅旨在更好地举例说明本发明,并不对本发明的范围构成限制,除非另有说明。说明书中的任何语言均不应被解释为任何对本发明的实践是必要的非要求要素。
如本文所用,术语受试者是指人类或兽类受试者。如本文所用的术语“治疗作用”是指引起、改善或以其他方式导致与受试者的病症(例如LSD)相关的病理症状、疾病进展或生理状况的改善或对屈服于该病症具有抗性的作用。关于药物所用的术语“治疗有效量”意指赋予受试者治疗作用的药物的量。
术语“协同”、“协同作用”或“协同的”意指多于预期的组合的相加作用。当活性成分(1)以组合的单位剂量制剂共同配制或同时施用或递送;(2)作为单独的制剂交替或并行递送;或(3)采用一些其他方案时,可以获得协同效应。
治疗溶酶体贮积症的组合物和方法
出于促进理解本发明原理的目的,现参考实施方式,其中一些实施方式在附图中举例说明,并使用特定语言对其进行描述。然而将理解并不因此旨在限制本发明的范围。预期涵盖描述的实施方式中的任何替代方案和进一步的修改方案以及本发明原理的任何进一步应用,如本发明所属领域的任何技术人员正常想到的那些。
本发明的一个方面涉及治疗溶酶体贮积症(LSD)的方法。LSD可以是例如Tay-Sachs病、法布里病、尼曼-匹克病、戈谢病、亨特氏综合征、α-甘露糖贮积病、天冬氨酰葡糖胺尿症、胆固醇酯贮积病、慢性己糖胺酶A缺乏症、胱氨酸贮积症、Danon病、Farber病、岩藻糖苷贮积症、半乳糖唾液酸贮积症或巴腾氏病,包括后期婴儿型巴腾氏病和青少年型巴腾氏病。LSD还可以是涉及自噬-溶酶体途径的神经退行性疾病,例如,神经元蜡样脂褐质沉积症、阿尔茨海默氏病、亨廷顿氏舞蹈病、肌萎缩性脊髓侧索硬化症(ALS)、帕金森氏病,包括帕金森氏附加病,如多系统萎缩症(MSA)、进行性核上性麻痹(PSP)、皮质基底节变性(CBD)或路易体痴呆(DLB)。神经退行性病症可以通过缺陷型自噬表征。此类病症包括阿尔茨海默氏病、帕金森氏病和亨廷顿氏舞蹈病。
一个实施方式包括向患有LSD的受试者施用上调或增强Tfeb基因的表达的药剂。上调可以包括增加Tfeb的mRNA水平。本发明的方法还包括向患有LSD的受试者施用上调TFEB或恢复TFEB活性的药剂。上调可以包括增加TFEB mRNA水平、增加TFEB蛋白水平或增加TFEB活性。激活PPARα/RXRα异源二聚体导致TFEB的上调。发明人还令人惊讶地表明TFEB通过PPARα的活性或提高而不是通过PPARβ或PPARγ的活性或提高而被上调。
该药剂可以是降脂药物,如贝特类药物。贝特类药物可以是吉非罗齐、非诺贝特或氯贝特。该药剂可以是全反式维甲酸或维生素A。令人惊讶且意外的是,向受试者联合施用贝特类药物和全反式维甲酸或维生素A可以比单独施用贝特类药物或全反式维甲酸或维生素A更多地上调TFEB。贝特类药物和全反式维甲酸或维生素A当一起施用于受试者时可以协作地增强TFEB的上调从而协同上调TFEB。在全反式维甲酸或维生素A的存在下可以需要较低剂量的贝特类药物以实现与向受试者只有施用较高剂量的贝特类药物时才出现的相同程度的TFEB上调。贝特类药物和全反式维甲酸或维生素A的组合可以是协同组合。
在其他实施方式中,降脂药物是他汀类药物。举例来说,他汀类药物可以是阿托伐他汀、氟伐他汀、洛伐他汀、匹伐他汀、普伐他汀、罗素伐他汀、辛伐他汀或这些药物中的至少两种的组合。他汀类药物可以单独使用或与贝特类药物和或全反式维甲酸或维生素A联合使用。在另一些实施方式中,药剂可以是镇痛剂或退热剂,例如阿司匹林;苯基丁酸酯;苯甲酸钠;或肉桂代谢物例如肉桂酸。再次地,此类药剂可以与全反式维甲酸或维生素A联合使用并可以一起施用于受试者以协作地增强TFEB的上调,从而协同上调TFEB。
降脂药物可以是降低在受试者血液中循环的甘油三酯水平的药物。此外,降脂药物可以是降低高脂血症(hyperlipidemia)风险的药物。贝特类药物可以经由PPARα但不经由PPARβ和PPARγ介导TFEB的上调。在TFEB的上调期间,PPARα与RXR-α形成异源二聚体,并且RXRα/PPAR-a异源二聚体经由RXR结合位点被募集至Tfeb基因的启动子。
TFEB的上调可以由全反式维甲酸介导。全反式维甲酸还可以被称为ATRA、维甲酸、维A酸(tretinoin)和维生素A酸。全反式维甲酸可以经由维甲酸类X受体-α(RXR-α)介导TFEB的上调。在TFEB的上调期间,RXR-α与过氧化物酶体增殖物激活的受体-a(PPAR-α)形成异源二聚体,并且该RXR-α/PPAR-α异源二聚体经由RXR结合位点被募集至Tfeb基因的启动子。
介导TFEB上调的组合物可以包括药剂(例如降脂药物)和全反式维甲酸或维生素A的组合。此种组合与单独施用该药剂或全反式维甲酸或维生素A相比可以协作地介导或增强TFEB的上调。与单独施用该降脂药物或全反式维甲酸或维生素A相比,该组合可以协作地增强TFEB的上调约2倍、约3倍、约4倍、约5倍、或约10倍。特别是,与单独施用该降脂药物或全反式维甲酸或维生素A相比,该组合可以协作地增强TFEB的上调约3倍。
本发明的另一方面提供药物组合物,该药物组合物包括上文公开的药剂中的至少一种。该药物组合物还可以包括全反式维甲酸或维生素A。例如,该药物组合物可以包括吉非罗齐或吉非罗齐和全反式维甲酸或维生素A的组合或阿司匹林和全反式维甲酸或维生素A的组合。
药物组合物可以为例如片剂、丸剂、锭剂、硬和软凝胶胶囊、颗粒剂、微丸,水性、脂质、油性或其他溶液、乳剂如水包油型乳剂、脂质体,水性或油性悬浮液、糖浆剂、酏剂(alixiers)、固体乳剂、固体分散体或可分散性粉末的形式。在用于口服施用的药物组合物中,药剂可以与通常已知和使用的佐剂和赋形剂(例如,阿拉伯树胶、滑石、淀粉、糖(举例来说,如甘露糖、甲基纤维素、乳糖)、明胶、表面活性剂、硬脂酸镁、水或非水溶剂、石蜡衍生物、交联剂、分散剂、乳化剂、润滑剂、防腐剂、调味剂(例如香精油)、溶解增强剂(例如苯甲酸苄酯或苯甲醇)或生物利用度增强剂(例如GELUCIRE))混合。在该药物组合物中,药剂还可以分散在微粒(例如纳米颗粒)组合物中。
对于肠胃外施用,在存在或不存在增溶剂、表面活性剂、分散剂或乳化剂的情况下,可将药剂或药剂的药物组合物溶解或悬浮于生理学上可接受的稀释剂(举例而言,如水、缓冲液、油)中。对于油而言,可以使用例如且不限制橄榄油、花生油、棉籽油、大豆油、蓖麻油和芝麻油。更普遍地,对于肠胃外施用,药剂或药剂的药物组合物可为水性、脂质、油性或其他类型的溶液或悬浮液的形式,或者甚至可以脂质体或纳米悬浮液的形式施用。
施用方式
上文公开的药剂或包括这些药剂的药物组合物可通过任何允许向受试者递送治疗有效量的药剂的方法施用。施用方式可包括但不限于口服、局部、经皮和肠胃外途径,以及直接注射到组织中和通过导管递送。肠胃外途径可包括但不限于皮下、真皮内、关节内、静脉内、腹膜内和肌内途径。在一个实施方式中,施用途径是通过局部或经皮施用,如通过洗剂、乳膏剂、贴剂、注射、植入装置、移植物或其他控释载体。施用途径包括将组合物直接递送至体循环(例如通过注射)的任何途径,包括任何肠胃外途径。
本发明方法的一个实施方式包括以足以防止LSD发展或减轻LSD程度的一定剂量、浓度和时间施用至少一种药剂(例如吉非罗齐或吉非罗齐和ATRA的组合)。某些实施方式包括以约0.1微克至约100毫克/千克受试者体重、约0.1微克至约10毫克/千克受试者体重、约0.1微克至约1毫克/千克受试者体重的剂量全身性施用。在实践本方法的过程中,药剂或含有该药剂的治疗组合物可以每天一剂或每天多剂施用。这种治疗方法可能需要施用较长的一段时间。每次施用的药剂的量或施用的重量将由医师决定并且将取决于诸如患者的体重、患者的年龄和一般健康状况以及患者对该化合物的耐受性等因素。
将在以下实施例中进一步描述本发明的实施方式,以下实施例不限制权利要求中描述的本发明的范围。
实施例
实施例1–材料和方法
试剂:DMEM/F-12 50/50 1x、Hank’s平衡盐溶液(HBSS)和0.05%胰蛋白酶购自Mediatech(Washington,DC)。胎牛血清(FBS)得自Atlas Biologicals(Fort Collins,CO)。抗菌抗真菌剂、吉非罗齐和全反式维甲酸(ATRA)得自Sigma-Aldrich(St.Louis,MO)。
小鼠原代星形神经胶质的分离:根据Giulian和Baker的方法(26)从所述的混合神经胶质培养物(24,25)分离星形神经胶质。简言之,在第9天,将混合神经胶质培养物用杜氏改良Eagle培养基/F-12洗涤三次,并在旋转振荡器中在37℃下以240rpm振摇2h以除去小神经胶质。2天后,重复振摇24h以除去少突神经胶质并确保完全除去所有的非星形神经胶质细胞。将贴壁细胞接种至新板上用于进一步的研究。
小鼠原代神经元的分离:如以前(27)描述并改良的方法的制备胚胎(E18-E16)小鼠神经元。取出全脑,并将细胞通过在1200rpm下离心三次持续10min进行洗涤,沉淀物分裂,并将细胞在10%融合时铺在用多聚D赖氨酸(Sigma,St.Louis,MO)预处理>2hr的8孔室玻片中。4min后,抽吸非贴壁细胞悬浮液,并向每孔加入500ml补充有2%B27的完全Neurobasal培养基(Invitrogen)。在进行实验之前将细胞孵育4天。采用β-微管蛋白和GFAP或CD11b的双标记免疫荧光显示神经元的纯度大于98%(数据未示出)。在进行甲醇固定和免疫染色之前,将细胞在减去抗氧化剂补充有2%B27的Neurobasal培养基(Invitrogen)中用吉非罗齐刺激24hr。
半定量反转录酶偶联聚合酶链反应(RT-PCR):采用RNA-Easy Qiagen(Valencia,CA)试剂盒按照生产商的方案从小鼠原代星形胶质细胞和人原代星形胶质细胞分离总RNA。在20μl反应混合物中使用oligo(dT)12–18作为引物和莫洛尼鼠白血病病毒反转录酶(MMLV-RT,Invitrogen)如早期(28)所述的进行半定量RTPCR。采用Promega Master Mix(Madison,WI)和下列用于鼠基因的引物(Invitrogen)将得到的cDNA适当地扩增:
小鼠Tfeb:有义,5’-AAC AAA GGC ACC ATC CTC AA-3′(SEQ ID NO.:1);反义,5′-CAG CTC GGC CAT ATT CAC AC-3′(SEQ ID NO.:2);小鼠Lamp2:有义:5′-GGT GCT GGT CTTTCA GGC TTG ATT-3′(SEQ ID NO.:3);反义,5′-ACC ACC CAA TCT AAG AGC AGG ACT-3(SEQ ID NO.:4)′;小鼠Limp2:有义:5′-TGT TGA AAC GGG AGA CAT CA-3′(SEQ ID NO.:5);反义,5′-TGG TGA CAA CCA AAG TCG TG-3′(SEQ ID NO.:6);小鼠Npc1:有义:5′-GGGATG CCC GTG CCT GCA AT-3′(SEQ ID NO.:7);反义,5′-CTG GCA GCT ACA TGG CCC CG-3′(SEQ ID NO.:8);小鼠Gapdh:有义:5′-GCA CAG TCA AGG CCG AGA AT-3′(SEQ ID NO.:9);反义,5′-GCC TTC TCC ATG GTG GTG AA-3′(SEQ ID NO.:10)。
扩增产物在2%琼脂糖(Invitrogen)凝胶上进行电泳并通过溴化乙锭(Invitrogen)染色使其可视化。使用甘油醛-3-磷酸脱氢酶(Gapdh)mRNA作为上样对照以确定从每个样本合成等量的cDNA。
定量实时PCR:采用ABIPrism7700序列检测系统(Applied Biosystems,FosterCity,CA)使用SYBR Select Master Mix(Applied Biosystems)进行mRNA定量。将靶向基因的mRNA表达标准化为Gapdh mRNA的水平,并且通过ABI序列检测系统1.6软件处理数据。
细胞的免疫染色:如早期(29)所述进行免疫细胞化学。简言之,将含有小鼠原代星形胶质细胞、小鼠神经元的8孔室玻片培养至70-80%融合,并用冷甲醇(FisherScientific,Waltham,MA)固定过夜,之后用滤过PBS简单冲洗两次。将样本用在含吐温20(Sigma)和Triton X-100(Sigma)的PBS中的2%BSA(Fisher Scientific)阻断30min,并在含有下列抗小鼠一级抗体的PBS中在振摇条件下室温孵育2hr:TFEB(1:1000;Abcam),GFAP,(1:1000;DAKO),LAMP2(1:500,Abcam),NeuN(1:500,Millipore)和MAP2(1:200,Millipore)。在滤过PBS中经四次15min洗涤后,将玻片进一步用Cy2或Cy5-标记的二级抗体(全都为1:200;Jackson ImmunoResearch,West Grove,PA)在类似的振摇条件下孵育1hr。用滤过PBS经四次15分钟洗涤后,将细胞用4',6-二脒基-2-苯基吲哚(DAPI,1:10,000;Sigma)孵育4-5min。将样本以EtOH和二甲苯(Fisher)梯度运行,安装,并在Olympus BX41荧光显微镜下观察。
组织切片的免疫染色:处理60天后,将小鼠杀死并将它们的脑固定、包埋和处理。切片由不同的脑区制成,并在新鲜冷冻切片上进行免疫荧光染色,使用抗小鼠TFEB(1:500)、抗小鼠LAMP2(1:200)和抗小鼠NeuN(1:500)。安装样本并在Olympus BX41荧光显微镜下观察(30)。
LysoTracker染色:在减少血清(2%)DMEM培养基下对培养至70-80%融合的成纤维细胞进行不同的刺激,之后用75nM LysoTracker Red DND99(Invitrogen)孵育45分钟。然后将细胞用滤过PBS彻底清洗并安装在载玻片上,并在BX41荧光显微镜下观察。
免疫印迹:如早期(31,32)所述并改良的方法进行蛋白免疫印迹。简单而言,将细胞刮在1X RIPA缓冲液中,使用布拉德福试剂测量蛋白质,加入十二烷基硫酸钠(SDS)缓冲液并在4-12%Bis-Tris凝胶(Invitrogen)上进行电泳,使用Thermo-Pierce Fast Semi-Dry Blotter将蛋白质转移到硝酸纤维膜(Bio-Rad)。
然后将膜在加吐温20的TBS(TBST)中洗涤15min,并在含有BSA的TBST中阻断1小时。接下来,将膜在振摇条件下于4℃用下列1°抗体孵育过夜:TFEB(1:1000,Abcam),LAMP2(1:500,Abcam)和β-肌动蛋白(1:800;Abcam,Cambridge,MA)。第二天,将膜在TBST中洗涤1小时,在抗1°抗体宿主的2°抗体(全都为1:10,000;Jackson ImmunoResearch)中室温孵育1小时,再洗涤1小时,并在红外成像系统(Li-COR,Lincoln,NE)下观察。
小鼠Tfeb启动子驱动的报告因子构建物的构建:使用自小鼠原代星形胶质细胞分离的小鼠基因组DNA作为PCR期间的模板。通过PCR分离小鼠TFEB(-916/+61)基因的5′侧翼序列。从基因库序列设计引物。Tfeb:有义:5′-acgcgt CCA GGA GCC AGG GAC GGG GTA CATCTC-3′(SEQ ID NO.:11);反义:5′-agatct AAG GAG AAA CTG AGT CCG GGC AGA AGG-3’(SEQ ID NO.:12)。将有义引物用Mlu1限制酶位点标记,而将反义引物用Bgl II标记。采用Advantage-2 PCR试剂盒(Clontech)根据生产商说明进行PCR。得到的片段经凝胶纯化并连接到PGEM-TEasy载体(Promega)中。在用相应的限制酶消化并通过测序ACGT Inc.DNASequencing Services验证后将这些片段进一步亚克隆到PGL-3 Enhancer载体中。
Tfeb启动子的克隆和定点诱变:通过使用定点诱变试剂盒(Stratagene,USA)进行定点诱变。使用相反方向上的两个引物在单个PCR反应中扩增突变质粒。突变启动子位点的引物序列为:突变:有义:5’-GCA ACA GCA AGT GCG GAT TTG AGG GGG GGG GAC GGT GGG-3’(SEQ ID NO.:13);反义:5’-CCC ACC GTC CCC CCC CCT CAA ATC CGC ACT TGC TGTTGC-3’(SEQ ID NO.:14)。用乙醇沉淀PCR产物,然后通过T4激酶磷酸化。通过T4DNA连接酶使磷酸化的片段自我连接并用限制酶DpnI消化以消除未突变的模板。将突变的质粒在大肠杆菌(DH5-α菌株)感受态细胞中克隆和扩增。
Tfeb启动子驱动的报告因子活性的测定:将铺在12孔板中的50–60%融合的细胞用0.25μg的pTFEB(WT)-Luc、pTFEB(Mu)-Luc并使用Lipofectamine Plus(Invitrogen)共转染。在转染24小时后,将细胞在无血清条件下用不同的药剂刺激6小时。如早期(33,34)所述在TD-20/20光度计(Turner Designs)中使用荧光素酶测定系统试剂盒(Promega)分析细胞提取物中萤火虫荧光素酶活性。
染色质免疫沉淀测定:采用Nelson等人(35)描述的方法在做了某些改良的情况下进行ChIP测定。简单来说,将小鼠原代星形胶质细胞用10μM吉非罗齐和0.5μM RA一起刺激6小时,之后用甲醛(1.42%最终体积)固定,并用125mM甘氨酸猝灭。细胞在含有150mM NaCl、50mM Tris-HCl(pH7.5)、5mM EDTA、NP-40(0.5%vol/vol)、Triton X-100(1.0%vol/vol)的IP缓冲液中沉淀并细胞溶解。对于500ml,加入4.383g NaCl、25ml的100mM EDTA(pH8.0)、25ml的1M Tris-HCl(pH 7.5)、25ml的10%(vol/vol)NP-40和50ml的含有下列抑制剂的10%(vol/vol)Triton X-100:10μg/ml亮抑酶酞、0.5mM苯甲基磺酰氟(PMSF)、30mM对硝基苯基磷酸酯、10mM NaF、0.1mM Na3VO4、0.1mM Na2MoO4和10mMβ-甘油磷酸酯。
在用1.0ml IP缓冲液洗涤1次后,将沉淀再悬浮于1ml IP缓冲液(含有所有的抑制剂)中并超声处理,将修剪的染色质分成两部分(一部分将被用作输入(Input))。剩余部分在旋转下于4℃用5-7μg的抗-PPARα或抗-RXRαAbs或抗-PGC1α或RNA Pol或正常IgG(SantaCruz)孵育过夜,之后在旋转下于4℃用蛋白G-琼脂糖(Santa Cruz)孵育2小时。然后将珠用冷IP缓冲液洗涤5次,并将总计100μl的10%Chelex(10g/100ml H2O)直接加入至洗涤后的蛋白G珠并涡旋。10min煮沸后,允许Chelex/蛋白G珠悬浮液冷却至室温。然后加入蛋白酶K(100μg/ml)并将珠在55℃下孵育30min,同时振摇,之后再煮沸10min。将悬浮液离心并收集上清液。将Chelex/蛋白G珠部分用另外100μl水涡旋,再次离心,并合并第一和第二上清液。洗出液直接作为PCR中的模板。
使用下列引物来扩增小鼠Tfeb启动子中的侧翼为RXR结合元件的片段:Set1:有义:5'-GAA CAT TCC AGG TGG AGG CA-3'(SEQ ID NO.:15),反义:5'-CCC CCA ACA CATGCT TCT CT-3'(SEQ ID NO.:16);Set2:有义:5'-GAG TCT CTC GGA GGA GGT GA-3'(SEQID NO.:17),反义:5'-ACT CCA GGC ATG CTT TCT CC-3'(SEQ ID NO.:18)。通过使用不同的循环数以及不同量的模板来重复PCR以确保结果是在PCR的线性范围内。使用相同的引物和SYBR select mastermix进行qRT-PCR。将数据标准化为输入和非特异性IgG,并计算相对于对照的倍数增加。
光密度分析:采用ImageJ(NIH,Bethesda,MD)分析蛋白印记并相对于它们各自的β-肌动蛋白上样对照标准化各带。数据表示对于来自三个独立实验集的每种条件至少25个不同的图像相对于对照的平均倍数变化。
统计学:值表示为至少3个独立实验的平均值±SEM。经由学生T检验进行差异的统计学分析。这一统计学显著性标准为p<0.05。
实施例2–PPARα和RXRα的激活诱导小鼠原代脑细胞中的TFEB的表达
考查PPAR激活剂(如FDA-批准的药物吉非罗齐)以确定它们是否上调小鼠脑细胞中的TFEB的表达。因为已知PPARα和RXRα形成转录活性复合物(21,36,37),我们使用吉非罗齐和激活RXRα的ATRA二者来检查双重处理是否会有任何累加作用。在无血清培养基中用单剂量的吉非罗齐和ATRA以及二者的组合处理小鼠原代星形胶质细胞(MPA)。定量实时PCR数据显示在全部三个组中Tfeb的表达增加,并且该增加在联合处理中略高(但相对于个体治疗不具有统计学显著性)(图1A)。当使用吉非罗齐和ATRA二者的组合时,与25μM的吉非罗齐和0.5μM的ATRA相比,我们可以在这两种化合物的低很多的剂量(分别为10μM和0.2μM)下实现类似的Tfeb表达水平。采用联合处理的时间点分析显示在早至6小时时可诱导Tfeb表达直至24小时(图1D)。这两种剂量和时间的qRT-PCR数据通过蛋白质印迹得到验证,该蛋白质印迹显示类似的TFEB水平的增加模式(图1B、1C、1E&1F)。
而且,我们使用小鼠原代星形胶质细胞和原代神经元并将它们在无血清培养基中用吉非罗齐和ATRA的组合处理24小时,并进行免疫细胞化学。数据显示在星形胶质细胞和神经元中TFEB的水平都具有明显的增加以及TFEB在核中和周围的定位(图1G&1I)。采用ImageJ量化TFEB免疫反应性,并且我们观察到处理后TFEB总体水平具有大约4倍的增加以及TFEB在核中的TFEB定位具有大约5-6倍的增加(图1H&1J)。以前已表明饥饿和营养缺乏导致TFEB的激活,所以在本项研究中也将所有未经处理的细胞保持在无血清条件下持续整个处理持续时间,以使各组之间TFEB水平的基线变化保持相同。
实施例3–PPARα和RXRα参与药物介导的TFEB上调
通过使用来自PPARα(-/-)动物的小鼠原代星形胶质细胞并敲除WT小鼠原代星形胶质细胞中的RXRα来测试PPARα连同RXRα能够参与药物介导的TFEB上调的假设。将得自WT、PPARα(-/-)和PPARβ(-/-)动物的MPA在如上所述的类似条件下进行处理并检查TFEB的mRNA和蛋白表达。TFEB的实时PCR和蛋白质印迹都显示TFEB在WT和PPARβ(-/-)星形胶质细胞中可被上调但在PPARα(-/-)星形胶质细胞中不在相同水平(图2A、2B&2C)。该发现进一步被免疫细胞化学证实,在免疫细胞化学中我们观察到在WT和PPARβ(-/-)中TFEB水平几乎增加3-4倍,但在PPARα(-/-)中没有(图2F&2G)。
已报道PPARγ共激活因子-1a(PGC1Α)可参与转录激活Tfeb,所以我们通过使用PPARγ抑制剂来测试PPARγ是否参与这种特定药物介导的TFEB上调。在用药物处理之前用PPARγ特异性抑制剂预处理的TFEB的蛋白质印迹表明吉非罗齐和ATRA对于TFEB的上调可能不是采用PPARγ介导途径(图2D&2E)。已知PPARα和RXRα形成转录复合物,并且我们的数据显示在ATRA的存在下TFEB轻微增加。我们想要看到ATRA是否经由RXRα发挥它的作用。将WT MPA用RXRα特异性siRNA处理,之后用吉非罗齐和ATRA的组合处理,并进行mRNA和蛋白两种分析。数据显示成功地敲除了RXRα基因以及因此在不存在RXRα的情况下药物的作用被部分消除了,这根据RXRα沉默后Tfeb mRNA的水平是显然的(图2H&2I)。蛋白质印迹还显示类似的结果:处理后,与序列打乱的siRNA相比,TEFB水平在RXRα沉默细胞中不太显著(图2J&2K)。综合起来,这些数据表明PPARα和RXRα可涉及吉非罗齐和ATRA对TFEB的上调。
实施例4–PPARα/RXRα异源二聚体在处理条件下转录调控TFEB表达
PPARα和RXRα一起形成转录复合物,所以已确定这些受体似乎上调Tfeb,我们测试这些受体是否转录调控Tfeb表达。在分析Tfeb的启动子位点后,我们发现在Tfeb的转录起始位点(TSS)上游约480bp处存在过氧化物酶体增殖物反应元件(PPRE)。将含有PERO的Tfeb启动子(pTFEB(WT))克隆至pGL3 Enhancer载体中。我们还突变了PPRE的核心序列,并将突变的启动子构建物(pTFEB(Mu))也克隆至PGL3载体中。野生型荧光素酶构建物当转染至BV2细胞中时显示出明显的荧光素酶活性增加(图3B)。当含有pTFEB(WT)荧光素酶构建物的细胞用PPARα-拮抗剂(GW6471;250nM)、PPARβ-拮抗剂(GSK0660;250nM)、PPARγ-拮抗剂(GW9662;5nM)处理时,我们观察到荧光素酶活性与PPARα拮抗剂处理细胞中的未经处理的细胞相似,但不与PPARβ-或PPARγ-拮抗剂处理细胞中的相似(图3C)。
在自WT、PPARα(-/-)和PPARβ(-/-)动物分离的小鼠原代星形胶质细胞中,我们观察到在WT和PPARβ(-/-)细胞中具有增加的荧光素酶活性,但在PPARα(-/-)中不具有增加的荧光素酶活性(图3D)。而且,当具有突变PPRE位点的构建物(pTFEB(Mu)-Luc)转染至BV2和小鼠原代星形胶质细胞中时,我们发现在含有突变体构建物的细胞中荧光素酶活性显著降低(图3E&3F)。综合起来,这些数据表明在用吉非罗齐和维甲酸处理后PPARα的激活在Tfeb的诱导中起重要作用。
最后,我们决定研究在这种情况下PPARα对Tfeb启动子的实际DNA结合作用。已表明激活后,PPARα、RXRα和PGC1α形成复合物,该复合物启动许多基因的转录激活(38-42);我们在此研究是否是这种情况。通过用抗-PPARα、-RXRα和-PGC1α抗体免疫沉淀染色质片段对用吉非罗齐和维甲酸处理30分钟到240分钟的不同时间点的小鼠原代星形胶质细胞进行ChIP分析,并保持抗-RNA Pol和正常IgG作为对照。半定量PCR和定量RT-PCR都显示在通过特异性抗体沉降(pulldown)的情况下扩增子随时间的富集增加(图4B&4C)。免疫沉淀后采用正常IgG的PCR显示出在RT-PCR中几乎不可检测的带,采用总片段DNA的PCR显示出在RTPCR中的一致的信号,表明结果的一致性和专一性。在实时PCR中,将Ct值标准化至%输入,并进一步用IgG信号标准化以得到信噪比,从而验证结果的专一性。实验在相同的条件下重复三次,并调节PCR产物的周期和稀释度以确保数据在PCR的线性范围内。迄今为止所有这些发现都表明直接激活PPARα和RXRα受体实际上可转录调控Tfeb的表达。
实施例5–TFEB的上调导致溶酶体的生物生成增加:
TFEB是溶酶体基因表达和生物生成的主调控因子(9,12,16),所以我们预期随着TFEB上调,生物生成和溶酶体标记物增加。对在相同条件下处理的MPA进行一些溶酶体标记物如Lamp2、Limp2和Npc1的mRNA分析。正如预期的,数据显示在WT和PPARβ(-/-)细胞中在相同条件下这些基因的水平升高,但在PPARα(-/-)细胞中不升高(图5A)。在WT和K.O.细胞中对LAMP2的蛋白质印迹分析和免疫细胞化学也显示出类似的蛋白表达方式(图5B、5C&5D)。在小鼠原代神经元中也观察到LAMP2水平的增加(图5E)。而且,当细胞用LysoTracker Red染色时,我们观察到在药物处理后的WT和PPARβ(-/-)细胞的情况中每种细胞的溶酶体含量增加,但在PPARα(-/-)中不增加(图5F),这与我们之前对TFEB和其他溶酶体标记物的发现结果一致。这些数据表明吉非罗齐和ATRA能经由PPARα/RXRα途径诱导TFEB表达,这最终导致溶酶体的生物生成增加。
实施例6–PPARα和RXRα的激动剂在WT和PPARβ/-小鼠但不在PPARα-/-小鼠的CNS中体内诱导溶酶体的生物生成:
一旦证实PPARα参与贝特类药物介导的TFEB上调,我们进一步核实在体内环境下能否复制相同的结果。将来自相同背景的WT、PPARα(-/-)和PPARβ(-/-)小鼠用7.5mg/kg体重/天的吉非罗齐和溶于0.1%甲基纤维素的0.1mg/kg体重的ATRA口服治疗60天,0.1%甲基纤维素也被用作溶媒。在治疗结束时,将小鼠处死,并将大脑皮质切片,进行免疫荧光用于检测TFEB的存在。这一体内免疫组织化学数据验证了我们的细胞培养物发现,因为我们观察到与溶媒对照相比在PPARα(-/-)治疗的动物的皮质中TFEB水平没有任何明显的升高,但是在WT和PPARβ(-/-)动物中观察到相当大的反应(图6A、6D&6G)。
我们进一步量化了每组至少12张切片的TFEB阳性信号,值表示为总面积的百分比。定量分析证实了在WT和PPARβ(-/-)动物中TFEB阳性信号显著增加,但是在PPARα(-/-)动物中则无显著增加(图6B、6E&6H)。对来自同一动物的皮质的其他切片进行免疫组织化学用于检测LAMP2的存在。结果显示在WT和PPARβ(-/-)动物中LAMP2免疫反应性增加,但在PPARα(-/-)动物中没有增加(图7A、7D&7G)。该定量数据还表明在WT和PPARβ(-/-)动物中LAMP2阳性信号显著增加,而在PPARα(-/-)动物中则无显著增加(图7B、7E&7H)。
实施例7–在LINCL患者的成纤维细胞中吉非罗齐和ATRA诱导的溶酶体的生物生成
为了测试在患者细胞中能否复制类似的结果,我们获得了来自正常和LINCL受累患者皮肤成纤维细胞,并在减少血清培养基(2%血清)中用类似浓度的吉非罗齐和ATRA处理细胞。为了考量由于血清饥饿引起的任何变化,将未经处理的对照在类似的血清条件下保持处理时间长度(24小时)。在此之后,将成纤维细胞用LysoTracker Red染色,我们观察到全面地类似的细胞中溶酶体累积增加模式。正常成纤维细胞(WT#1至WT#3)和来自携带Cln2突变的LINCL患者的成纤维细胞(NCL#1至NCL#5)以及LINCL载体(NCL/C)成纤维细胞显示每种细胞的溶酶体增加是类似的(图8)。为了标准化图像中细胞的数量和大小,我们计算了每细胞每单位面积的LysoTracker+ve信号并进行相对于对照的倍数分析。对每组至少25场分析LysoTracker阳性信号,数据表明与疾病状态无关,在所有的成纤维细胞中均显著增加,尽管细胞中溶酶体的基线水平和增加水平随细胞不同而不同。这一数据表明治疗作用独立于LINCL患者的疾病状况。
实施例8–对实施例2-7的讨论
溶酶体是细胞中主要细胞器之一,其不仅充当细胞的废物处理机构,而且在其他生物过程如抗原呈递、某些激素的调控、骨再造、坏死性细胞死亡、细胞表面修复和发育以及其他信号传导途径中起重要作用(2,43-47)。为了执行这些不同的功能,需要严格调控溶酶体的生物生成和活性。根据近期发现,TFEB是溶酶体生物生成的主调控因子(9,12,15)。多年以来,不同团队已强调了溶酶体在不同疾病情况中的作用(48-53)。据报道在患有Graves眼病(Graves’ophthalmopathy)的患者的眼眶脂肪中溶酶体相关基因被严密调控,而溶酶体进程的下调改进了聚乙二醇化脂聚复合物(lipopolyplex)介导的基因转染(53,54)。溶酶体的生物生成增加可能不必然证明在所有疾病和细胞类型中均是有益的,但是在一些情况中,自噬-溶酶体途径的诱导可能有助于毒性废物的细胞清除(55,56)。
在过去几年里,TFEB已成为一些溶酶体相关疾病的潜在治疗靶点。Taiji Tsunemi等人报道通过经由PGC1α激活转录因子EB(TFEB)可导致htt转化(turnover)的增加和蛋白聚集体的消除(57,58)。有报道表明α-突触核蛋白毒性和受损的TFEB功能之间的联系以及将TFEB认定为PD的神经保护疗法的靶点(59)。已表明TFEB激活增强戈谢病中去稳定的葡糖脑苷脂酶(GC)变体的折叠、运输和活性。在另一LSD Tay-Sachs病的情况中,表明TFEB救济β-己糖胺酶突变体的活性。这些发现将TFEB描述为溶酶体蛋白质内稳态的特异性调控因子和救济LSD的酶稳态的治疗靶点(60,61)。
还报道TFEB过表达诱导溶酶体胞吐作用能救济LSD的病理性贮积并恢复正常的细胞形态学(62)。除LSD之外,已表明在小鼠中TFEB诱导脂质的分解代谢和清除,并能救济肥胖症和代谢综合征(15,16)。总体上,在近些年,TFEB因其不仅在溶酶体生物生成中的作用而且由于其作为疾病状况的治疗靶点的暗示而变成潜在重要的转录因子。已鉴定的靶向TFEB活性的治疗上可行的化合物并不是很多,尽管最近已表明2-羟基丙基-β-环糊精(HPβCD)是FDA批准的赋形剂,促进来自患有LINCL的患者的细胞中TFEB介导的蛋白脂质聚集体的清除(56)。而且,另一项研究揭示了染料木素(5,7-二羟基-3-(4-羟基苯基)-4H-1-苯并吡喃-4-酮)对TFEB水平和活性以及溶酶体生物生成的诱导,染料木素是一种用于粘多糖贮积症(MPS)的底物减少疗法(SRT)中的潜在药物(63)。
近期研究已将TFEB、溶酶体生物生成和自噬与脂质代谢连接起来(14-16,55,64,65)。TFEB和脂质代谢之间的潜在相互影响导致我们研究吉非罗齐和ATRA的作用,吉非罗齐和ATRA是脂质代谢中的两种重要因子PPARα和RXRα的潜在激活剂。吉非罗齐,作为“吉非贝齐(Lopid)”销售,是FDA批准的用于高脂血症的处方药(17,19),但是已表明其具有多种有益作用(22)。吉非罗齐穿过血脑屏障(BBB)的能力已有文献记载(20)。我们以前报道了吉非罗齐连同ATRA能诱导脑细胞中Cln2基因的水平(66)。我们进一步研究想要了解溶酶体生物生成的主调控因子TFEB能否被药物影响。我们的数据表明吉非罗齐单独地或者连同ATRA能有效诱导脑细胞中TFEB的表达。
进一步的研究表明PPARα在该过程中的可能作用。已表明PPARα在不同的调控和调节途径中起重要作用(67-71)。已知某些多不饱和脂肪酸和氧化衍生物以及贝特类药物家族的调脂药物(包括非诺贝特和吉非罗齐)激活PPARα。贝特类药物替代在细胞溶质中隔绝PPARα的HSP90抑制因子复合物,并有助于救济PPARα的转录活性(21)。因此,我们评估了受体的PPAR基团对这种现象的作用。我们的数据明确表明PPARα参与吉非罗齐对TFEB上调的过程中,但是PPARβ和PPARγ不参与。体外研究进一步被体内研究验证,在体内研究中,我们使用敲除PPARα和PPARβ的小鼠。我们的体内研究也支持细胞培养物数据。
对Tfeb基因的启动子区进行分析以描述TFEB上调的机理。在小鼠Tfeb启动子以及RXR结合位点中发现PERO位点。根据以前的研究,PPAR/RXR异源二聚体已显示出DNA结合活性(70)。综合起来,PPAR/RXR异源二聚体调控基因的转录,其产物参与脂质稳态、细胞生长和分化(69,72)。观察Tfeb上调途径需要PPAR和RXR二者的协作效应。而且,吉非罗齐和RA的作用在RXRα或PPARα任一不存在的情况下均被消除。使用Tfeb启动子上的PERO的WT和突变体荧光素酶构建物的荧光素酶测定结果都显示刺激后在WT构建物中Tfeb启动子依赖性活性增加。但是PPARα(-/-)细胞在用pTFEB(WT)-Luc构建物转染时以及WT细胞在用pTFEB(Mu)-Luc构建物转染时不显示荧光素酶活性的任何显著增加。最后,ChIP数据表明PPARα和RXRα连同PGC1α和RNA Pol一起在TFEB启动子的PERO位点上募集。对实验数据进行精密分析,并引入适当的对照以确保发现结果的专一性。
共同地,这些数据描绘了独特的机理,其中吉非罗齐(PPARα的激活剂)和ATRA(RXRα的激动剂)一起经由PPARα/RXRα异源二聚体上调脑细胞中的TFEB。虽然一项研究报道了无PPARγ的滋养层干(TS)细胞在分化的第4天具有较低的TFEB水平,但是在脑细胞中使用GW9662(一种强效和已知的PPARγ拮抗剂)的研究未揭示任何实质性的PPARγ参与(73)。这可能是由于细胞类型的变化,即分化TS细胞与成熟的原代脑星形胶质细胞/神经元或由于激活PPARα的潜能水平不同而导致的。在Settembre等人进行的一项综合性研究中,作者报道PPARα和PGC1α在饥饿诱导应激下是TFEB的靶点,以及在饥饿应激的情况中TFEB是自我调控的,但是Tsunemi等人的另一项研究在亨廷顿氏舞蹈病情况中将PGC1α放置在TFEB的上游。TFEB经由PPARα和PGC1α调控脂质代谢是相当有可能的,PPARα和PGC1α这两者在调控脂质代谢中均具有非常重要的作用。但是另一方面,当前数据表明直接刺激PPARα可诱导PPARα-RXRα-PGC1α复合物在TFEB启动子上的募集并因此影响溶酶体生物生成。
虽然应激反应直接调控TFEB功能,当前发现表明通过外部刺激激活PPARα以及RXRα也能调控TFEB,这反过来又可以控制PPARα或负责脂质代谢的其他基因的表达。然而,还需要更详细的研究来解释任何此种前馈调控机理的存在以及脂质代谢和溶酶体生物生成之间的明显双向相互影响。
总之,这一研究测试了降脂药物如吉非罗齐能经由PPARα介导的TFEB激活在脑细胞中上调溶酶体生物生成的新假说。考虑到在某些疾病情况中TFEB所起到的重要作用,对将TFEB认定为治疗靶点的兴趣日增。这一研究的结果凸显了PPARα的未被发现的性质,描述了对LSD的新治疗选择,并揭示更动态的TFEB调控以及激起了对理解脂质代谢途径和溶酶体生物生成之间的联系的兴趣。
实施例9–降胆固醇药物上调小鼠星形胶质细胞中TFEB mRNA的表达
图9示出了降胆固醇药物(辛伐他汀和普伐他汀)、阿司匹林(镇痛剂和退热剂)、肉桂酸(肉桂代谢物)和用于尿素循环障碍的药物(苯丁酸钠和苯甲酸钠)上调小鼠星形胶质细胞中TFEB mRNA的表达。将小鼠原代星形胶质细胞在无血清条件下用不同浓度(参见图9)的辛伐他汀和普伐他汀(A)、(B)、肉桂酸(C)以及苯丁酸钠和苯甲酸钠(D)孵育5小时,之后通过半定量RT-PCR监测TFEB的mRNA表达。使用甲酸钠(D)作为苯丁酸钠和苯甲酸钠的阴性对照。
实施例10–阿司匹林诱导小鼠原代星形胶质细胞中溶酶体的生物生成
我们考查世界上最广泛使用的药物之一阿司匹林能否上调小鼠脑细胞中溶酶体的生物生成。将星形胶质细胞在无血清培养基中用不同剂量的阿司匹林处理,之后进行lyso-tracker染色。根据增加的lyso-tracker染色明显可见,2和5μM剂量下的阿司匹林明显增加星形胶质细胞中溶酶体的生物生成(图10)。然而,在10μM的剂量下,阿司匹林在增加溶酶体生物生成方面不是特别有效的(图10)。
实施例11–阿司匹林增加小鼠原代星形胶质细胞中LAMP2的表达
LAMP2是重要的溶酶体膜蛋白,其在新溶酶体的形成中起关键作用。我们观察到在星形胶质细胞中阿司匹林引起LAMP2mRNA(图11A)和蛋白(图11C)表达的时间依赖性增加。再次地,剂量依赖性实验显示在2和5μM阿司匹林的剂量下LAMP2蛋白表达增加(图11B)。阿司匹林引起的LAMP2增加通过免疫染色得到进一步的证实(图11D)。
实施例12–阿司匹林上调小鼠原代星形胶质细胞中TPP1的表达和活性
三肽基肽酶1(TPP1)是后期婴儿型巴腾氏病的靶分子,因为在这种疾病中缺乏这一蛋白的活性。我们考查阿司匹林能否上调星形胶质细胞中的TPP1。再次地,剂量依赖性研究显示在较低的阿司匹林剂量(2和5μM)下TPP1蛋白增加(图12A)。响应于5μM阿司匹林的TPP1蛋白的增加早在2h时即是明显的,其在孵育12h时最大(图12B)。再次地,我们观察到在2和5μM的阿司匹林下TPP1活性增加,但在10μM的阿司匹林下不增加(图12C)。
实施例13–阿司匹林上调小鼠原代星形胶质细胞中TFEB的表达
根据近期发现,TFEB是溶酶体生物生成的主调控因子(9,12,25)。多年以来,不同团队已强调了溶酶体在不同疾病情况中的作用(48,49,52,53)。据报道在患有Graves眼病的患者的眼眶脂肪中溶酶体相关基因被严密调控,而溶酶体进程的下调改进了聚乙二醇化脂聚复合物介导的基因转染(53,54)。溶酶体生物生成的增加可能不一定证明在所有疾病和细胞类型中均是有益的,但是在一些情况中,自噬-溶酶体途径的诱导可能有助于毒性废物的细胞清除(55,56)。在过去几年里,TFEB已成为一些溶酶体相关疾病的潜在治疗靶点。根据Tsunemi等人(57),经由PGC1α激活转录因子EB(TFEB)可以导致htt转化的增加和蛋白聚集体的消除。有报道表明α-突触核蛋白毒性和受损的TFEB功能之间的联系以及将TFEB认定为PD的神经保护疗法的靶点(59)。还表明TFEB激活增强戈谢病中去稳定的葡糖脑苷脂酶(GC)变体的折叠、运输和活性。在Tay-Sachs病(另一种LSD)的情况中,表明TFEB救济β-己糖胺酶突变体的活性。这些发现将TFEB描述为溶酶体蛋白质内稳态的特异性调控因子和救济LSD的酶稳态的治疗靶点(60,61)。
因此,我们考查阿司匹林能否上调星形胶质细胞中的TFEB。剂量依赖性研究显示在2和5μM阿司匹林的剂量下,阿司匹林能够增加TFEB的蛋白水平(图13A)。阿司匹林引起的TFEB上调通过免疫荧光分析得到进一步的证实(图13B)。我们还将Tfeb启动子克隆至pGL3Enhancer载体中并考查被Tfeb启动子驱动的报告因子活性。有趣的是,在星形胶质细胞中阿司匹林诱导Tfeb启动子驱动的荧光素酶活性(图13C),表明阿司匹林增加Tfeb基因的转录。
实施例14–阿司匹林诱导小鼠原代星形胶质细胞中PPARα的激活。
最近,我们已发现PPARα在Tfeb的转录中起关键作用。因此,在此,我们考查了阿司匹林能否诱导星形胶质细胞中PPARα的激活。首先,我们采用电泳迁移率变动测定(EMSA)来监测PPARα的DNA结合活性,并发现阿司匹林引起PPARα激活的时间依赖性增加(图14A)。为了证实这些结果,我们从WT、PPARα(-/-)和PPARβ(-/-)小鼠分离星形胶质细胞,并监测PPAR的转录活性。有趣的是,阿司匹林在从WT和PPARβ(-/-)小鼠分离的星形胶质细胞中增加PPRE驱动的荧光素酶活性,但在从PPARα(-/-)小鼠分离的星形胶质细胞中不增加PPRE驱动的荧光素酶活性(图14B),表明阿司匹林能够诱导PPARα的激活,但不能诱导PPARβ的激活。
实施例15–阿司匹林经由PPARα上调小鼠原代星形胶质细胞中的TFEB
将从WT、PPARα(-/-)和PPARβ(-/-)小鼠分离的星形胶质细胞用5μM阿司匹林处理,之后进行TFEB的免疫荧光分析。图15显示阿司匹林在从WT和PPARβ(-/-)小鼠中分离的星形胶质细胞中诱导TFEB的表达,但在从PPARα(-/-)小鼠中分离的星形胶质细胞中不诱导TFEB的表达。这些结果表明阿司匹林需要PPARα但不需要PPARβ来增加星形胶质细胞中的TFEB。
实施例16–阿司匹林经由PPARα增加小鼠原代星形胶质细胞中溶酶体的生物生成
因为TFEB是溶酶体基因表达和生物生成的主调控因子(9,12,16),我们考查了阿司匹林对溶酶体生物生成的影响。将从WT、PPARα(-/-)和PPARβ(-/-)小鼠分离的星形胶质细胞用不同剂量的阿司匹林处理,之后监测LAMP2的水平。根据图16A-B明显可见,阿司匹林在从WT和PPARβ(-/-)小鼠分离的星形胶质细胞中但未在从PPARα(-/-)小鼠分离的星形胶质细胞中剂量依赖性增加LAMP2的水平。我们还考查了通过lyso-tracker染色溶酶体的状态。与LAMP2结果类似,阿司匹林在从WT和PPARβ(-/-)小鼠分离的星形胶质细胞中但未在从PPARα(-/-)小鼠分离的星形胶质细胞中增加溶酶体的生物生成(图17)。
实施例17–对实施例10-16的讨论
阿司匹林相对于其他可用疗法对于溶酶体贮积症具有一些优势。一方面,阿司匹林已在整个世界范围内被广泛用作镇痛剂数十年。另一方面,其可口服,口服是痛苦最少的途径。尽管已报道阿司匹林在高剂量下表现出一些毒性作用(胃溃疡、胃出血和耳鸣等)(74),但在我们的研究中,阿司匹林在低剂量(2和5μM)下推进溶酶体的生物生成,并且在低剂量下,阿司匹林可能是无毒的。然而,即使在较低的剂量下阿司匹林表现出任何毒性作用(例如胃溃疡),也有方法减少其副作用。例如,肠溶包衣的阿司匹林可用于口服用途,并且避免在胃里降解。在一项开放随机试验中,缓释制剂中的低剂量阿司匹林显示出作为抗血小板剂的功效(75),并且没有非常明显的副作用。一项研究(76)使用S-腺苷基-甲硫氨酸(SAM)(在体内自然形成的一种氨基酸)并发现500mg剂量的SAM与大剂量的阿司匹林(1300mg)一起给予使胃损伤的量减少90%。
总之,我们已证实了阿司匹林(一种广泛使用的镇痛剂)经由PPARα-介导的TFEB上调增加星形胶质细胞中溶酶体的生物生成。这些结果凸显了该药物可以作为主要或辅助疗法用于后期婴儿型巴腾氏病和其他LSD的治疗性干预。
参考文献
1.de Duve,C.(1959)Lysosomes,a new group of cytoplasmicparticles.Subcellular particles 60,128‐159
2.De Duve,C.和Wattiaux,R.(1966)Functions of lysosomes.Annu RevPhysiol 28,435‐492
3.Saftig,P.(2006)Physiology of the lysosome.
4.Perez‐Sala,D.,Boya,P.,Ramos,I.,Herrera,M.和Stamatakis,K.(2009)TheC‐terminal sequence of RhoB directs protein degradation through an endo‐lysosomal pathway.PLoS One 4,e8117
5.Fuster,J.J.,Gonzalez,J.M.,Edo,M.D.,Viana,R.,Boya,P.,Cervera,J.,Verges,M.,Rivera,J.和Andres,V.(2010)Tumor suppressor p27(Kip1)undergoesendolysosomal degradation through its interaction with sorting nexin6.FASEB J24,2998‐3009
6.Korolchuk,V.I.,Saiki,S.,Lichtenberg,M.,Siddiqi,F.H.,Roberts,E.A.,Imarisio,S.,Jahreiss,L.,Sarkar,S.,Futter,M.,Menzies,F.M.,O'Kane,C.J.,Deretic,V.和Rubinsztein,D.C.(2011)Lysosomal positioning coordinates cellular nutrientresponses.Nat Cell Biol 13,453‐460
7.Boya,P.和Kroemer,G.(2008)Lysosomal membrane permeabilization incell death.Oncogene 27,6434‐6451
8.Martina,J.A.,Diab,H.I.,Lishu,L.,Jeong,A.L.,Patange,S.,Raben,N.和Puertollano,R.(2014)The nutrient‐responsive transcription factor TFE3promotes autophagy,lysosomal biogenesisclearance of cellular debris.SciSignal 7,ra9
9.Palmieri,M.,Impey,S.,Kang,H.,di Ronza,A.,Pelz,C.,Sardiello,M.和Ballabio,A.(2011)Characterization of the CLEAR network reveals an integratedcontrol of cellular clearance pathways.Hum Mol Genet 20,3852‐3866
10.Sardiello,M.,Palmieri,M.,di Ronza,A.,Medina,D.L.,Valenza,M.,Gennarino,V.A.,Di Malta,C.,Donaudy,F.,Embrione,V.,Polishchuk,R.S.,Banfi,S.,Parenti,G.,Cattaneo,E.和Ballabio,A.(2009)A gene network regulating lysosomalbiogenesis and function.Science 325,473‐477
11.Marschner,K.,Kollmann,K.,Schweizer,M.,Braulke,T.和Pohl,S.(2011)Akey enzyme in the biogenesis of lysosomes is a protease that regulatescholesterol metabolism.Science 333,87‐90
12.Settembre,C.,Di Malta,C.,Polito,V.A.,Garcia Arencibia,M.,Vetrini,F.,Erdin,S.,Erdin,S.U.,Huynh,T.,Medina,D.,Colella,P.,Sardiello,M.,Rubinsztein,D.C.和Ballabio,A.(2011)TFEB links autophagy to lysosomalbiogenesis.Science 332,1429‐1433
13.Ferron,M.,Settembre,C.,Shimazu,J.,Lacombe,J.,Kato,S.,Rawlings,D.J.,Ballabio,A.和Karsenty,G.(2013)A RANKL‐PKCbeta‐TFEB signaling cascade isnecessary for lysosomal biogenesis in osteoclasts.Genes Dev 27,955‐969
14.Settembre,C.,Zoncu,R.,Medina,D.L.,Vetrini,F.,Erdin,S.,Huynh,T.,Ferron,M.,Karsenty,G.,Vellard,M.C.,Facchinetti,V.,Sabatini,D.M.和Ballabio,A.(2012)A lysosome‐to‐nucleus signalling mechanism senses and regulates thelysosome via mTOR and TFEB.EMBO J 31,1095-1108
15.Settembre,C.,Fraldi,A.,Medina,D.L.和Ballabio,A.(2013)Signals fromthe lysosome:a control centre for cellular clearance and energymetabolism.Nat Rev Mol Cell Biol 14,283‐296
16.Settembre,C.,De Cegli,R.,Mansueto,G.,Saha,P.K.,Vetrini,F.,Visvikis,O.,Huynh,T.,Carissimo,A.,Palmer,D.,Klisch,T.J.,Wollenberg,A.C.,DiBernardo,D.,Chan,L.,Irazoqui,J.E.和Ballabio,A.(2013)TFEB controls cellularlipid metabolism through a starvation‐induced autoregulatory loop.Nat CellBiol 15,647‐658
17.Robins,S.J.,Collins,D.,Wittes,J.T.,Papademetriou,V.,Deedwania,P.C.,Schaefer,E.J.,McNamara,J.R.,Kashyap,M.L.,Hershman,J.M.,Wexler,L.F.和Rubins,H.B.(2001)Relation of gemfibrozil treatment and lipid levels withmajor coronary events:VA‐HIT:a randomized controlled trial.JAMA 285,1585‐1591
18.Rubins,H.B.和Robins,S.J.(1992)Effect of reduction of plasmatriglycerides with gemfibrozil on high‐density‐lipoprotein‐cholesterolconcentrations.J Intern Med 231,421‐426
19.Rubins,H.B.,Robins,S.J.,Collins,D.,Fye,C.L.,Anderson,J.W.,Elam,M.B.,Faas,F.H.,Linares,E.,Schaefer,E.J.,Schectman,G.,Wilt,T.J.和Wittes,J.(1999)Gemfibrozil for the secondary prevention of coronary heart disease inmen with low levels of high‐density lipoprotein cholesterol.Veterans AffairsHigh‐Density Lipoprotein Cholesterol Intervention Trial Study Group.N Engl JMed 341,410‐418
20.Dasgupta,S.,Roy,A.,Jana,M.,Hartley,D.M.和Pahan,K.(2007)Gemfibrozilameliorates relapsing‐remitting experimental autoimmune encephalomyelitisindependent of peroxisome proliferator‐activated receptor‐alpha.Mol Pharmacol72,934‐946
21.Pahan,K.,Jana,M.,Liu,X.,Taylor,B.S.,Wood,C.和Fischer,S.M.(2002)Gemfibrozil,a lipidlowering drug,inhibits the induction of nitric‐oxidesynthase in human astrocytes.J Biol Chem 277,45984‐45991
22.Roy,A.和Pahan,K.(2009)Gemfibrozil,stretching arms beyond lipidlowering.Immunopharmacol Immunotoxicol 31,339‐351
23.Corbett,G.T.,Roy,A.和Pahan,K.(2012)Gemfibrozil,a lipid‐loweringdrug,upregulates IL‐1receptor antagonist in mouse cortical neurons:implications for neuronal self‐defense.J Immunol 189,1002‐1013
24.Brahmachari,S.和Pahan,K.(2007)Sodium benzoate,a food additive anda metabolite of cinnamon,modifies T cells at multiple steps and inhibitsadoptive transfer of experimental allergic encephalomyelitis.J Immunol 179,275‐283
25.Saha,R.N.和Pahan,K.(2007)Differential regulation of Mn‐superoxidedismutase in neurons and astroglia by HIV‐1gp120:Implications for HIV‐associated dementia.Free Radic Biol Med 42,1866‐1878
26.Giulian,D.和Baker,T.J.(1986)Characterization of ameboid microgliaisolated from developing mammalian brain.J Neurosci 6,2163‐2178
27.Jana,M.和Pahan,K.(2005)Redox regulation of cytokine‐mediatedinhibition of myelin gene expression in human primary oligodendrocytes.FreeRadic Biol Med 39,823-831
28.Khasnavis,S.,Jana,A.,Roy,A.,Wood,T.,Ghosh,S.,Watson,R.和Pahan,K.Suppression of nuclear factor‐kappa B activation and inflammation inmicroglia by a physically‐modified saline.J Biol Chem
29.Khasnavis,S.和Pahan,K.Sodium benzoate,a metabolite of cinnamon anda food additive,upregulates neuroprotective Parkinson disease protein DJ‐1inastrocytes and neurons.J Neuroimmune Pharmacol 7,424‐435
30.Dasgupta,S.,Jana,M.,Zhou,Y.,Fung,Y.K.,Ghosh,S.和Pahan,K.(2004)Antineuroinflammatory effect of NF‐kappaB essential modifier‐binding domainpeptides in the adoptive transfer model of experimental allergicencephalomyelitis.J Immunol 173,1344‐1354
31.Corbett,G.T.,Roy,A.和Pahan,K.Gemfibrozil,a Lipid‐Lowering Drug,Upregulates IL‐1Receptor Antagonist in Mouse Cortical Neurons:Implicationsfor Neuronal Self‐Defense.J Immunol 189,1002‐1013
32.Saha,R.N.,Liu,X.和Pahan,K.(2006)Up‐regulation of BDNF inastrocytes by TNF‐alpha:a case for the neuroprotective role of cytokine.JNeuroimmune Pharmacol 1,212‐222
33.Jana,M.,Jana,A.,Liu,X.,Ghosh,S.和Pahan,K.(2007)Involvement ofphosphatidylinositol 3‐kinase‐mediated up‐regulation of I kappa B alpha inanti‐inflammatory effect of gemfibrozil in microglia.J Immunol 179,4142‐4152
34.Jana,M.和Pahan,K.Gemfibrozil,a lipid lowering drug,inhibits theactivation of primary human microglia via peroxisome proliferator‐activatedreceptor beta.Neurochem Res 37,1718‐1729
35.Nelson,J.D.,Denisenko,O.和Bomsztyk,K.(2006)Protocol for the fastchromatin immunoprecipitation(ChIP)method.Nat Protoc 1,179‐185
36.Cullingford,T.E.,Bhakoo,K.,Peuchen,S.,Dolphin,C.T.,Patel,R.和Clark,J.B.(1998)Distribution of mRNAs encoding the peroxisome proliferator‐activated receptor alpha,beta,and gamma and the retinoid X receptor alpha,beta,and gamma in rat central nervous system.J Neurochem 70,1366‐1375
37.Nishizawa,H.,Manabe,N.,Morita,M.,Sugimoto,M.,Imanishi,S.和Miyamoto,H.(2003)Effects of in utero exposure to bisphenol A on expression ofRARalpha and RXRalpha mRNAs in murine embryos.J Reprod Dev 49,539‐545
38.Chinetti,G.,Griglio,S.,Antonucci,M.,Torra,I.P.,Delerive,P.,Majd,Z.,Fruchart,J.C.,Chapman,J.,Najib,J.和Staels,B.(1998)Activation ofproliferator‐activated receptors alpha and gamma induces apoptosis of humanmonocyte‐derived macrophages.J Biol Chem 273,25573‐25580
39.Brun,S.,Carmona,M.C.,Mampel,T.,Vinas,O.,Giralt,M.,Iglesias,R.和Villarroya,F.(1999)Activators of peroxisome proliferator‐activated receptor‐alpha induce the expression of the uncoupling protein‐3gene in skeletalmuscle:a potential mechanism for the lipid intakedependent activation ofuncoupling protein‐3gene expression at birth.Diabetes 48,1217-1222
40.Chinetti,G.,Lestavel,S.,Bocher,V.,Remaley,A.T.,Neve,B.,Torra,I.P.,Teissier,E.,Minnich,A.,Jaye,M.,Duverger,N.,Brewer,H.B.,Fruchart,J.C.,Clavey,V.和Staels,B.(2001)PPAR‐alpha and PPAR‐gamma activators induce cholesterolremoval from human macrophage foam cells through stimulation of theABCA1pathway.Nat Med 7,53‐58
41.Kelly,D.P.(2001)The pleiotropic nature of the vascular PPAR generegulatory pathway.Circ Res 89,935‐937
42.Boitier,E.,Gautier,J.C.和Roberts,R.(2003)Advances in understandingthe regulation of apoptosis and mitosis by peroxisome‐proliferator activatedreceptors in pre‐clinical models:relevance for human health and disease.CompHepatol 2,3
43.Pshezhetsky,A.V.和Ashmarina,M.(2001)Lysosomal multienzyme complex:biochemistry,genetics,and molecular pathophysiology.Prog Nucleic Acid Res MolBiol 69,81‐114
44.Karageorgos,L.E.,Isaac,E.L.,Brooks,D.A.,Ravenscroft,E.M.,Davey,R.,Hopwood,J.J.和Meikle,P.J.(1997)Lysosomal biogenesis in lysosomal storagedisorders.Exp Cell Res 234,85‐97
45.Weissmann,G.(1967)The role of lysosomes in inflammation anddisease.Annu Rev Med 18,97‐112
46.Eskelinen,E.L.,Tanaka,Y.和Saftig,P.(2003)At the acidic edge:emerging functions for lysosomal membrane proteins.Trends Cell Biol 13,137‐145
47.Brignull,L.M.,Czimmerer,Z.,Saidi,H.,Daniel,B.,Villela,I.,Bartlett,N.W.,Johnston,S.L.,Meira,L.B.,Nagy,L.和Nohturfft,A.(2013)Reprogramming oflysosomal gene expression by interleukin‐4and Stat6.BMC Genomics 14,853
48.Neufeld,E.F.(1991)Lysosomal storage diseases.Annu Rev Biochem60,257‐280
49.Gieselmann,V.(1995)Lysosomal storage diseases.Biochim Biophys Acta1270,103‐136
50.Khatiwada,B.和Pokharel,A.(2009)Lysosomal storage disease.JNMA JNepal Med Assoc 48,242‐245
51.Jolly,R.D.(1978)LYSOSOMAL STORAGE DISEASES.Neuropathology andApplied Neurobiology 4,419‐427
52.Appelqvist,H.,Waster,P.,Kagedal,K.和Ollinger,K.(2013)The lysosome:from waste bag to potential therapeutic target.J Mol Cell Biol 5,214‐226
53.Bai,J.,Liu,Y.,Sun,W.,Chen,J.,Miller,A.D.和Xu,Y.(2013)Down‐regulated lysosomal processing improved pegylated lipopolyplex‐mediated genetransfection.J Gene Med 15,182‐192
54.Chen,M.H.,Liao,S.L.,Tsou,P.L.,Shih,M.J.,Chang,T.C.和Chuang,L.M.(2008)Lysosomerelated genes are regulated in the orbital fat of patients withgraves'ophthalmopathy.Invest Ophthalmol Vis Sci 49,4760‐4764
55.Sarkar,S.,Carroll,B.,Buganim,Y.,Maetzel,D.,Ng,A.H.,Cassady,J.P.,Cohen,M.A.,Chakraborty,S.,Wang,H.,Spooner,E.,Ploegh,H.,Gsponer,J.,Korolchuk,V.I.和Jaenisch,R.(2013)Impaired autophagy in the lipid‐storage disorderNiemann‐Pick type C1disease.Cell Rep 5,1302‐1315
56.Song,W.,Wang,F.,Lotfi,P.,Sardiello,M.和Segatori,L.(2014)2‐Hydroxypropyl‐betacyclodextrin promotes transcription factor EB‐mediatedactivation of autophagy:implications for therapy.J Biol Chem 289,10211‐10222
57.Tsunemi,T.,Ashe,T.D.,Morrison,B.E.,Soriano,K.R.,Au,J.,Roque,R.A.,Lazarowski,E.R.,Damian,V.A.,Masliah,E.和La Spada,A.R.(2012)PGC‐1alpha rescuesHuntington's disease proteotoxicity by preventing oxidative stress andpromoting TFEB function.Sci Transl Med 4,142ra197
58.La Spada,A.R.(2012)PPARGC1A/PGC‐1alpha,TFEB and enhancedproteostasis in Huntington disease:defining regulatory linkages betweenenergy production and protein‐organelle quality control.Autophagy8,1845‐1847
59.Decressac,M.,Mattsson,B.,Weikop,P.,Lundblad,M.,Jakobsson,J.和Bjorklund,A.(2013)TFEB‐mediated autophagy rescues midbrain dopamine neuronsfrom alpha‐synuclein toxicity.Proc Natl Acad Sci U S A110,E1817‐1826
60.Wang,F.和Segatori,L.(2013)Remodeling the proteostasis network torescue glucocerebrosidase variants by inhibiting ER‐associated degradationand enhancing ER folding.PLoS One 8,e61418
61.Song,W.,Wang,F.,Savini,M.,Ake,A.,di Ronza,A.,Sardiello,M.和Segatori,L.(2013)TFEB regulates lysosomal proteostasis.Hum Mol Genet 22,1994‐2009
62.Medina,D.L.,Fraldi,A.,Bouche,V.,Annunziata,F.,Mansueto,G.,Spampanato,C.,Puri,C.,Pignata,A.,Martina,J.A.,Sardiello,M.,Palmieri,M.,Polishchuk,R.,Puertollano,R.和Ballabio,A.(2011)Transcriptional activation oflysosomal exocytosis promotes cellular clearance.Dev Cell 21,421‐430
63.Moskot,M.,Montefusco,S.,Jakobkiewicz‐Banecka,J.,Mozolewski,P.,Wegrzyn,A.,Di Bernardo,D.,Wegrzyn,G.,Medina,D.L.,Ballabio,A.和Gabig‐Ciminska,M.(2014)The phytoestrogen genistein modulates lysosomal metabolism andTranscription Factor EB(TFEB)activation.J Biol Chem
64.Xu,X.,Grijalva,A.,Skowronski,A.,van Eijk,M.,Serlie,M.J.和Ferrante,A.W.,Jr.(2013)Obesity activates a program of lysosomal‐dependent lipidmetabolism in adipose tissue macrophages independently of classicactivation.Cell Metab 18,816‐830
65.Singh,R.和Cuervo,A.M.(2012)Lipophagy:connecting autophagy andlipid metabolism.Int J Cell Biol 2012,282041
66.Ghosh,A.,Corbett,G.T.,Gonzalez,F.J.和Pahan,K.(2012)Gemfibrozil andfenofibrate,Food and Drug Administration‐approved lipid‐lowering drugs,up‐regulate tripeptidyl‐peptidase 1in brain cells via peroxisome proliferator‐activated receptor alpha:implications for late infantile Batten diseasetherapy.J Biol Chem 287,38922‐38935
67.Xu,J.,Racke,M.K.和Drew,P.D.(2007)Peroxisome proliferator‐activatedreceptor‐alpha agonist fenofibrate regulates IL‐12family cytokine expressionin the CNS:relevance to multiple sclerosis.J Neurochem 103,1801‐1810
68.Xu,J.,Chavis,J.A.,Racke,M.K.和Drew,P.D.(2006)Peroxisomeproliferator‐activated receptor‐alpha and retinoid X receptor agonistsinhibit inflammatory responses of astrocytes.J Neuroimmunol 176,95‐105
69.Krey,G.,Mahfoudi,A.和Wahli,W.(1995)Functional interactions ofperoxisome proliferatoractivated receptor,retinoid‐X receptor,and Sp1in thetranscriptional regulation of the acylcoenzyme‐A oxidase promoter.MolEndocrinol 9,219‐231
70.Juge‐Aubry,C.E.,Gorla‐Bajszczak,A.,Pernin,A.,Lemberger,T.,Wahli,W.,Burger,A.G.和Meier,C.A.(1995)Peroxisome proliferator‐activated receptormediates cross‐talk with thyroid hormone receptor by competition for retinoidX receptor.Possible role of a leucine zipper‐like heptad repeat.J Biol Chem270,18117‐18122
71.Roy,A.,Jana,M.,Corbett,G.T.,Ramaswamy,S.,Kordower,J.H.,Gonzalez,F.J.和Pahan,K.(2013)Regulation of cyclic AMP response element binding andhippocampal plasticity‐related genes by peroxisome proliferator‐activatedreceptor alpha.Cell Rep 4,724‐737
72.Marcus,S.L.,Miyata,K.S.,Rachubinski,R.A.和Capone,J.P.(1995)Transactivation by PPAR/RXR heterodimers in yeast is potentiated by exogenousfatty acid via a pathway requiring intact peroxisomes.Gene Expr 4,227‐239
73.Parast,M.M.,Yu,H.,Ciric,A.,Salata,M.W.,Davis,V.和Milstone,D.S.(2009)PPARgamma regulates trophoblast proliferation and promotes labyrinthinetrilineage differentiation.PLoS One 4,e8055
74.Leung,F.W.(2008)Risk factors for gastrointestinal complications inaspirin users:review of clinical and experimental data.Dig Dis Sci 53,2604-2615
75.Budd,J.S.,Allen,K.,Walsh,A.和Bell,P.R.(1993)The effectiveness oflow dose slow release aspirin as an antiplatelet agent.J R Soc Med 86,261-263
76.Laudanno,O.M.(1987)Cytoprotective effect of S-adenosylmethioninecompared with that of misoprostol against ethanol-,aspirin-,and stress-induced gastric damage.Am J Med 83,43-47
虽然已参照本发明的特定示例性实施方式描述和举例说明了本发明,但并未预期将本发明限于这些示例性实施方式。本领域技术人员将认识到在不偏离随后的权利要求所限定的发明的真实范围和精神的情况下可以进行变化和修改。因此预期在本发明内包括所有这些落在随附的权利要求及其等同方案的范围内的变化和修改。
序列表
<110> 拉什大学医学中心
<120> 用于治疗溶酶体病症的组合物和方法
<130> 14904-129 (475)
<150> US 62/081,696
<151> 2014-11-19
<160> 18
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Tfeb引物,有义链
<400> 1
aacaaaggca ccatcctcaa 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Tfeb引物,反义链
<400> 2
cagctcggcc atattcacac 20
<210> 3
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Lamp2引物,有义链
<400> 3
ggtgctggtc tttcaggctt gatt 24
<210> 4
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Lamp2引物,反义链
<400> 4
accacccaat ctaagagcag gact 24
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Limp2引物,有义链
<400> 5
tgttgaaacg ggagacatca 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Limp2引物,反义链
<400> 6
tggtgacaac caaagtcgtg 20
<210> 7
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Npc1引物,有义链
<400> 7
gggatgcccg tgcctgcaat 20
<210> 8
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Npc1引物,反义链
<400> 8
ctggcagcta catggccccg 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Gapdh引物,有义链
<400> 9
gcacagtcaa ggccgagaat 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工小鼠Gapdh引物,反义链
<400> 10
gccttctcca tggtggtgaa 20
<210> 11
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 人工Tfeb引物,有义链
<400> 11
acgcgtccag gagccaggga cggggtacat ctc 33
<210> 12
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 人工Tfeb引物,反义链
<400> 12
agatctaagg agaaactgag tccgggcaga agg 33
<210> 13
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 突变启动子位点的人工引物,有义链
<400> 13
gcaacagcaa gtgcggattt gagggggggg gacggtggg 39
<210> 14
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 突变启动子位点的人工引物,反义链
<400> 14
cccaccgtcc ccccccctca aatccgcact tgctgttgc 39
<210> 15
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工Set1引物,有义链
<400> 15
gaacattcca ggtggaggca 20
<210> 16
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工Set1引物,反义链
<400> 16
cccccaacac atgcttctct 20
<210> 17
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工Set2引物,有义链
<400> 17
gagtctctcg gaggaggtga 20
<210> 18
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工Set2引物,反义链
<400> 18
actccaggca tgctttctcc 20

Claims (26)

1.一种用于治疗溶酶体贮积症的方法,包括向需要这种治疗的受试者施用治疗有效量的组合物,所述组合物包含介导转录因子EB上调的药剂。
2.权利要求1所述的方法,其中所述药剂是他汀类药物。
3.权利要求2所述的方法,其中所述他汀类药物选自阿托伐他汀、氟伐他汀、洛伐他汀、匹伐他汀、普伐他汀、罗素伐他汀、辛伐他汀及其组合。
4.权利要求1所述的方法,其中所述药剂选自镇痛剂、退热剂、阿司匹林、肉桂代谢物、肉桂酸、苯丁酸钠和苯甲酸钠。
5.权利要求1所述的方法,其中所述药剂是降脂药物。
6.权利要求5所述的方法,其中所述降脂药物是贝特类药物。
7.权利要求6所述的方法,其中所述贝特类药物是吉非罗齐或非诺贝特。
8.权利要求1至7中任一项所述的方法,其中所述组合物还包含治疗有效量的全反式维甲酸或维生素A。
9.权利要求8所述的方法,其中所述组合物包含所述贝特类药物和全反式维甲酸或维生素A。
10.权利要求9所述的方法,其中所述组合物包含所述贝特类药物和全反式维甲酸或维生素A的协同组合。
11.权利要求1至10中任一项所述的方法,其中所述溶酶体贮积症是神经退行性病症,选自神经元蜡样脂褐质沉积症、阿尔茨海默氏病、亨廷顿氏舞蹈病、肌萎缩性脊髓侧索硬化症(ALS)、帕金森氏病,包括帕金森氏附加病,如多系统萎缩症(MSA)、进行性核上性麻痹(PSP)、皮质基底节变性(CBD)和路易体痴呆(DLB)。
12.权利要求1至10中任一项所述的方法,其中所述溶酶体贮积症是自噬途径障碍,并且其中所述药剂增加溶酶体的生物生成。
13.权利要求1至10中任一项所述的方法,其中所述溶酶体贮积症选自Tay-Sachs病、法布里病、尼曼-匹克病、戈谢病、亨特氏综合征、α-甘露糖贮积病、天冬氨酰葡糖胺尿症、胆固醇酯贮积病、慢性己糖胺酶A缺乏症、胱氨酸贮积症、Danon病、Farber病、岩藻糖苷贮积症和半乳糖唾液酸贮积症。
14.权利要求1至10中任一项所述的方法,其中通过增加转录因子EB mRNA水平、增加转录因子EB蛋白水平或激活PPARa-RXRa异源二聚体来上调转录因子EB。
15.一种用于治疗溶酶体贮积症的方法,包括向需要这种治疗的受试者施用一种组合物,所述组合物包含治疗有效量的药剂,其中所述药剂恢复转录因子EB活性。
16.权利要求15所述的方法,其中所述药剂是贝特类药物。
17.权利要求16所述的方法,其中所述贝特类药物是吉非罗齐或非诺贝特。
18.权利要求16所述的方法,其中当将所述贝特类药物与全反式维甲酸或维生素A联合施用时,所述贝特类药物的治疗有效量降低。
19.一种用于治疗溶酶体贮积症的方法,包括向需要这种治疗的受试者施用一种组合物,所述组合物包含治疗有效量的介导基因上调的药剂,其中所述基因是Tfeb基因。
20.权利要求19所述的方法,其中所述溶酶体贮积症是神经退行性疾病,选自神经元蜡样脂褐质沉积症、阿尔茨海默氏病、亨廷顿氏舞蹈病、肌萎缩性脊髓侧索硬化症(ALS)、帕金森氏病,包括帕金森氏附加病,如多系统萎缩症(MSA)、进行性核上性麻痹(PSP)、皮质基底节变性(CBD)和路易体痴呆(DLB)。
21.一种药物组合,包含他汀类药物和全反式维甲酸或维生素A。
22.权利要求21所述的药物组合,还包含药学上可接受的载体。
23.权利要求21所述的药物组合,其中所述药物组合是协同药物组合。
24.权利要求4所述的方法,其中所述药剂是阿司匹林。
25.权利要求1至10中任一项所述的方法,其中所述溶酶体贮积症选自Tay-Sachs病、法布里病、尼曼-匹克病、戈谢病、亨特氏综合征、α-甘露糖贮积病、天冬氨酰葡糖胺尿症、胆固醇酯贮积病、慢性己糖胺酶A缺乏症、胱氨酸贮积症、Danon病、Farber病、岩藻糖苷贮积症、半乳糖唾液酸贮积症和巴腾氏病,包括后期婴儿型巴腾氏病和青少年型巴腾氏病。
26.权利要求15至18中任一项所述的方法,其中所述溶酶体贮积症选自Tay-Sachs病、法布里病、尼曼-匹克病、戈谢病、亨特氏综合征、α-甘露糖贮积病、天冬氨酰葡糖胺尿症、胆固醇酯贮积病、慢性己糖胺酶A缺乏症、胱氨酸贮积症、Danon病、Farber病、岩藻糖苷贮积症、半乳糖唾液酸贮积症和巴腾氏病,包括后期婴儿型巴腾氏病和青少年型巴腾氏病。
CN201580073947.8A 2014-11-19 2015-11-16 用于治疗溶酶体病症的组合物和方法 Pending CN107205976A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462081696P 2014-11-19 2014-11-19
US62/081,696 2014-11-19
PCT/US2015/060878 WO2016081365A1 (en) 2014-11-19 2015-11-16 Compositions and methods for treating lysosomal disorders

Publications (1)

Publication Number Publication Date
CN107205976A true CN107205976A (zh) 2017-09-26

Family

ID=56014423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580073947.8A Pending CN107205976A (zh) 2014-11-19 2015-11-16 用于治疗溶酶体病症的组合物和方法

Country Status (9)

Country Link
US (2) US20170354666A1 (zh)
EP (2) EP3220906B1 (zh)
JP (4) JP2017536363A (zh)
KR (1) KR20170083146A (zh)
CN (1) CN107205976A (zh)
AU (1) AU2015350223B2 (zh)
CA (2) CA3176253A1 (zh)
ES (1) ES2914085T3 (zh)
WO (1) WO2016081365A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801350A (zh) * 2018-01-30 2020-10-20 拉什大学医学中心 用于组织和细胞的多重分析的顺序染色

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536363A (ja) * 2014-11-19 2017-12-07 ラッシュ・ユニバーシティ・メディカル・センター リソソーム蓄積症治療のための組成物及び方法
RU2022101542A (ru) 2016-06-13 2022-02-03 Сайньюрекс Интернэшнл (Тайвань) Корп. Сокристаллы бензоата лития и их применения
FI3468944T3 (fi) * 2016-06-13 2023-01-31 Natriumbentsoaatin yhteiskiteitä ja niiden käyttöjä
CN110167545A (zh) * 2016-12-29 2019-08-23 拉什大学医学中心 吉非罗齐对晚期婴儿型神经元蜡样质脂褐质沉积症患者寿命的增加和自发活动的改善
WO2018146594A1 (en) * 2017-02-08 2018-08-16 Novartis Ag Fgf21 mimetic antibodies and uses thereof
WO2019156252A1 (ja) * 2018-02-06 2019-08-15 国立大学法人京都大学 ライソゾーム病の予防及び治療剤
WO2019226786A1 (en) * 2018-05-22 2019-11-28 Duke University Compositions and methods for treating neurodegenerative disorders with rifaximin
CA3118918A1 (en) * 2018-11-05 2020-05-14 Rush University Medical Center Nasal delivery of low-dose aspirin for the treatment of neurodegenerative and lysosomal storage diseases
WO2020142748A1 (en) 2019-01-03 2020-07-09 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods and materials for increasing transcription factor eb polypeptide levels
CN113473981A (zh) * 2019-02-25 2021-10-01 拉什大学医学中心 含肉桂酸的组合物以及其使用方法
KR20220062577A (ko) * 2019-09-09 2022-05-17 유니버시티 오브 피츠버그-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Tfeb의 활성화에 의해 망막 색소 상피 세포의 리소좀 기능을 회복시키는 방법
AU2020357800A1 (en) * 2019-10-01 2022-04-14 Seelos Therapeutics, Inc. Trehalose formulations and uses thereof
CA3241282A1 (en) * 2021-12-16 2023-06-22 Kalipada PAHAN Benzoic acid salts for treatment of nervous system injuries and disorders
US12042476B2 (en) * 2022-02-04 2024-07-23 Mcmaster University Methods for the treatment of lysosomal storage diseases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135612A1 (en) * 2004-12-17 2006-06-22 U.S. Department Of Veterans Affairs Method of ameliorating or abrogating the effects of a neurodegenerative disorder, such as amyotrophic lateral sclerosis (ALS), by using a HDAC inhibiting agent
WO2009040816A1 (en) * 2007-09-26 2009-04-02 Ramot At Tel Aviv University Ltd. Methods of treating lysosomal storage disorders
CN103458970A (zh) * 2011-03-07 2013-12-18 泰莱托恩基金会 Tfeb磷酸化抑制剂及其应用
WO2014089449A1 (en) * 2012-12-07 2014-06-12 Rush University Nedical Center Composition and method for treating neuronal ceroid lipofuscinosis

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038498A1 (en) 1998-01-28 1999-08-05 Warner-Lambert Company Method for treating alzheimer's disease
AU2001233299A1 (en) 2000-02-04 2001-08-14 Esperion Therapeutics Inc. Methods for treating alzheimer's disease
WO2005094333A2 (en) * 2004-03-29 2005-10-13 Wyeth Multi-vitamin and mineral nutritional supplements
ES2246737B1 (es) * 2005-06-09 2006-12-01 Jose Juan Rodriguez Jerez "composicion farmaceutica que comprende lisina y usos correspondientes".
JP2009084155A (ja) * 2006-01-16 2009-04-23 Kanazawa Univ レビー小体病治療薬及びレビー小体病予防薬
US20070225360A1 (en) 2006-03-22 2007-09-27 L'oreal Anti-aging composition containing phloretin
US20120114670A1 (en) * 2007-10-02 2012-05-10 University Of Rochester Methods and compositions related to synergistic responses to oncogenic mutations
US9388414B2 (en) * 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
US9388413B2 (en) * 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
JP2010106001A (ja) * 2008-10-31 2010-05-13 Theravalues Corp Ppar活性化剤
EP2218458A1 (en) * 2009-02-13 2010-08-18 Fondazione Telethon Molecules able to modulate the expression of at least a gene involved in degradative pathways and uses thereof
PT2490533E (pt) * 2009-10-19 2016-01-13 Amicus Therapeutics Inc Novas composições para a prevenção e/ou tratamento de distúrbios de depósito lisossómico
CN103764166B (zh) * 2011-06-22 2017-10-24 通用医疗公司 蛋白质病的治疗
PL399467A1 (pl) * 2012-06-08 2013-12-09 3G Therapeutics Inc. Zastosowanie genisteiny do obnizania poziomu zwiazków organicznych spichrzanych w komórkach w leczeniu i/lub zapobieganiu lizosomalnych chorób spichrzeniowych (LChS)
JP2017536363A (ja) * 2014-11-19 2017-12-07 ラッシュ・ユニバーシティ・メディカル・センター リソソーム蓄積症治療のための組成物及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135612A1 (en) * 2004-12-17 2006-06-22 U.S. Department Of Veterans Affairs Method of ameliorating or abrogating the effects of a neurodegenerative disorder, such as amyotrophic lateral sclerosis (ALS), by using a HDAC inhibiting agent
WO2009040816A1 (en) * 2007-09-26 2009-04-02 Ramot At Tel Aviv University Ltd. Methods of treating lysosomal storage disorders
CN103458970A (zh) * 2011-03-07 2013-12-18 泰莱托恩基金会 Tfeb磷酸化抑制剂及其应用
WO2014089449A1 (en) * 2012-12-07 2014-06-12 Rush University Nedical Center Composition and method for treating neuronal ceroid lipofuscinosis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OKEN RJ等: "Alzheimer-Disease (AD)-Aspirin Prophylaxis and Therapy", 《ALZHEIMER-DISEASE & ASSOCIATED DISORDERS》 *
PV RAO等: "Cinnamon: A Multifaceted Medicinal Plant", 《EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE》 *
S KHASNAVIS 等: "Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Neuroprotective Parkinson Disease Protein DJ-1 in Astrocytes and Neurons", 《JOURNAL OF NEUROIMMUNE PHARMACOLOGY 》 *
S KHASNAVIS等: "Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Neuroprotective Parkinson Disease Protein DJ-1 in Astrocytes and Neurons", 《JOURNAL OF NEUROIMMUNE PHARMACOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801350A (zh) * 2018-01-30 2020-10-20 拉什大学医学中心 用于组织和细胞的多重分析的顺序染色

Also Published As

Publication number Publication date
EP4026545A1 (en) 2022-07-13
US20170354666A1 (en) 2017-12-14
US12023345B2 (en) 2024-07-02
US20230037062A1 (en) 2023-02-02
EP3220906A4 (en) 2018-04-25
JP2022003060A (ja) 2022-01-11
CA3176253A1 (en) 2016-05-26
JP2021107404A (ja) 2021-07-29
AU2015350223A1 (en) 2017-05-11
KR20170083146A (ko) 2017-07-17
WO2016081365A1 (en) 2016-05-26
EP3220906B1 (en) 2022-03-02
JP2017536363A (ja) 2017-12-07
CA2967066A1 (en) 2016-05-26
JP2020100621A (ja) 2020-07-02
AU2015350223B2 (en) 2021-04-01
EP3220906A1 (en) 2017-09-27
ES2914085T3 (es) 2022-06-07

Similar Documents

Publication Publication Date Title
CN107205976A (zh) 用于治疗溶酶体病症的组合物和方法
JP7339296B2 (ja) ウロリチンまたはその前駆体の投与によるオートファジーの増強または寿命の延長
Dalvi et al. Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated neuropeptides in hypothalamic neurons in vivo and in vitro
Ashabi et al. ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1α levels in Aβ-injected rats
US20170042924A1 (en) Muscle atrophy inhibitor containing quercetin glycoside
Hu et al. The roles of GRP81 as a metabolic sensor and inflammatory mediator
Xiao et al. Relationship between the pyroptosis of fibroblast‑like synoviocytes and HMGB1 secretion in knee osteoarthritis
Wang et al. A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice
JP2018521113A (ja) ApoE4対立遺伝子の存在を決定した後のPKC活性化因子を使用した神経変性状態の治療
Chen et al. Maraviroc, an inhibitor of chemokine receptor type 5, alleviates neuroinflammatory response after cerebral Ischemia/reperfusion injury via regulating MAPK/NF-κB signaling
Manavi Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities
Yang et al. Smilagenin induces expression and epigenetic remodeling of BDNF in alzheimer's disease
US20110281852A1 (en) Pharmaceutical compositions containing berberine for treatment or prevention of weight gain and obesity associated with anti-psychotic drugs
Kim et al. Amomum villosum Lour. Fruit extract mitigates hyperlipidemia through SREBP-2/LDLR/HMGCR signaling in high-cholesterol diet-fed mice
Deng et al. Sakuranetin reduces inflammation and chondrocyte dysfunction in osteoarthritis by inhibiting the PI3K/AKT/NF-κB pathway
US20090099259A1 (en) Method for regulating gene expression
Hong et al. A novel Glycyrrhiza glabra extract liquiritin targeting NFATc1 activity and ROS levels to counteract ovariectomy-induced osteoporosis and bone loss in murine model
Luan et al. Artesunate regulates the proliferation and differentiation of neural stem cells by activating the JAK‑2/STAT‑3 signaling pathway in ischemic stroke
Paladino et al. Resveratrol reverses the effect of TNF-α on inflammatory markers in a model of autoimmune uveitis
Zhang et al. Irisin attenuates acute glaucoma-induced neuroinflammation by activating microglia-integrin αVβ5/AMPK and promoting autophagy
Park et al. Growth Hormone Deteriorates the Functional Outcome in an Experimental Model of Huntington’s Disease Induced by 3-Nitropionic Acid
Apontes New opportunities for treatment of neurodegenerative disease through the modulation of TDP-43
Sunagawa et al. Nobiletin, a Polymethoxyflavonoid, Activates the Desuccinylase Activity of SIRT5 and Prevents the Development of Heart Failure
Upadhyay et al. Analysis of oxidative stress-mediated degeneration in retina and RPE using sodium iodate (NaIO3) Model
Parsons Exploring New Perspectives in the Treatment and Management of Spinal Muscular Atrophy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170926

RJ01 Rejection of invention patent application after publication