CN1071973A - 交流热交换器用非晶材料 - Google Patents

交流热交换器用非晶材料 Download PDF

Info

Publication number
CN1071973A
CN1071973A CN92111398A CN92111398A CN1071973A CN 1071973 A CN1071973 A CN 1071973A CN 92111398 A CN92111398 A CN 92111398A CN 92111398 A CN92111398 A CN 92111398A CN 1071973 A CN1071973 A CN 1071973A
Authority
CN
China
Prior art keywords
rare earth
earth alloy
heat exchanger
alloy
specific heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92111398A
Other languages
English (en)
Other versions
CN1033707C (zh
Inventor
花上康宏
木村悦治
武下拓夫
水谷宇一郎
星野善树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Electric Corp
Publication of CN1071973A publication Critical patent/CN1071973A/zh
Application granted granted Critical
Publication of CN1033707C publication Critical patent/CN1033707C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Continuous Casting (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种用于交流热交换器的箔形非 晶态材料,是通过把一种稀土合金熔体喷射到一个高 速旋转的辊子表面骤冷而制成的。所述合金包括50 —99%(原子)的一种或几种稀土元素,其余部分是 一种或几种铁族元素。这种非晶态材料在极低温度 下有大而稳定的比热容。

Description

本发明涉及一种具有优良机械性能和热性能,适用于致冷机交流热交换器的非晶材料。
现在小型致冷机一般用于采取离子注入法或溅射法生产半导体的真空设备中。它们主要有两种类型:一种具有交流热交换器,另一种具有热交换器。那些属于第一种类型的,基于吉弗特一麦克马洪(Gifford-McMahon)循环或斯特林(Stirling)循环的致冷机,由于其结构简单和高度可靠通常用于在液氮温度或液氢温度下致冷。
与此同时,装在致冷机交流热交换器中的材料在运行温度范围内需要具有大的比热容和良好的导热性。过去使用铜和铅及其合金作为交流热交换器材料。它们的缺点是在20°K或更低温度时比热容迅速减小,这表明难于产生上述的低温。
为解决这个问题,已经提出过一种稀土合金作为交流热交换器材料,由于磁相转变它具有异常的热容(日本专利特公昭No.30473/1977)。其改进也已公开(日本专利特开昭No.310269/1989和1050/1991)。
普通用作交流热交换器材料的稀土合金是一种低机械强度的金属间化合物。换言之,它太脆而不能成形为箔或盘条。因此它主要以颗粒直径为10μm-1mm的细粉末形式使用。由于稀土合金细粉末的化学活性很大,因此在处理时需要极其小心。除此之外,超细粉末会增大工作流体流动的阻力,并会从容纳它的网中漏失。
因此,本发明的主要目的是提供一种用于交流热交换器的非晶稀土合金材料,它没有在现有技术中包括的上述问题。本发明的交流热交换器材料是机械强度得到改善的非晶态材料,因此它可以制成箔和盘条,并且在相对大的极低温度范围内保持大的比热容。
本发明体现为一种用于交流热交换器的非晶态材料,其包括50-99%(原子)的一种或几种稀土元素,其余部分是一种或几种铁族元素。
根据本发明稀土元素包括选自Er、Ho、Dy和Tb中的一种或几种元素,铁族元素包括选自Ni、Co、Ru、Pd、Rh、Ir、Os、Pt和Fe中的一种或几种元素。
图1显示实施例1和2中的非晶态稀土合金和普通稀土合金的比热容随温度变化的曲线图。
图2显示实施例3中的非晶态稀土合金和普通稀土合金的比热容随温度变化的曲线图。
根据本发明,该稀土合金应含有50-99%(原子)的稀土元素。当含量小于50%(原子)时,该稀土合金的比热容不适当的低。当含量超过99%时,该稀土合金不易制成非晶态。合金的其余组分应当是选自Ni、Co、Ru、Pd、Rh、Ir、Os、Pt和Fe中的一种或几种元素。由于稀土元素与铁族元素的结合,合金易于制成非晶态,并且有高的比热容。附带指出,小于50%的铁族元素可由选自Au、Ag、Cu、Al、Ga、Si和Ge中的任何一种或几种元素取代,以便改善合金的上述性能。
通常使用单辊法来制造非晶态合金,这种方法包括将一种合金熔体喷射到一个高速旋转辊的表面,使熔体急骤冷却。这种单辊法可以用来制造本发明的非晶态稀土合金。所得的产品是一种厚度范围在几微米至几十微米的箔形物。这种箔的韧性比金属间化合物高得多,可以容易地卷曲。因此这种卷曲的箔可以更密实地组装交流热交换器,另外它对工作流体流动的阻力要小于普通粉末状的稀土合金。
对于普通的稀土合金来说,由于磁相转变造成其很狭峰值的异常热容。通过观察,本发明的非晶态稀土合金给出了一个平缓斜率的宽峰值。换言之,它表现出的热性质(比热容)更适合于致冷机的交流热交换器。当用于氦液化致冷机的极低温度(4°K或更低)中时,非晶态稀土合金的作用有着重要意义。
根据本发明,用于交流热交换器的非晶态稀土合金具有高的机械强度,能够制成箔或盘条。因此它对工作流体的流动阻力要小于以粉末形式的普通交流热交换器。除此之外,它在很低的温度下有大的热容,因此它能在一个长的时间周期中产生良好的致冷作用。
实施例1
用氩弧熔炼炉熔化42g的Er(纯度99.9%)和7.8g的Ni(纯度99.9%)制备65%(原子)Er和35%(原子)Ni的稀土合金(Er65Ni35)。在氩气气氛下用高频感应加热使该合金在一个石英玻璃坩埚中熔化。将约1000℃的熔体通过氩气加压的喷嘴喷射在一个以约5000rpm转速旋转的钢辊表面,使熔体骤冷。由此得到非晶态稀土合金箔(17μm厚)。用X-射线衍射仪确定其非晶性。测量该箔在1.6°K至6°K温度范围的比热容。其结果表示在图1中(实线1)。作为对比,测量与上述同样(Er65Ni35)的结晶态稀土合金(Er3Ni+Er3N2)在上述同样温度范围的比热容。其结果表示在图1中(点划线3)。
从图1中可看到,温度对本实施例中的稀土合金比热容的影响要小于对通常结晶态稀土合金比热容的影响。在低于2.5°K的极低温度下,前者大于后者。在2.5°K至6°K的温度范围,前者保持在0.8至2.5的范围。这表明在如上述的极低温度下,本发明的非晶态稀土合金在比热容方面表现了良好特性。
实施例2
重复与实施例1相同的步骤制造由60%(原子)的Er和40%(原子)的Ni组成的稀土合金(Er60Ni40)。用与实施例1相同的方法通过将该稀土合金加热到约1100℃制成非晶态合金箔(22μm厚)。测出该非晶态合金箔在1.6°K至6°K温度范围的比热容。将结果表示在图1中(实线2)。为了比较,测出与上述组成相同的结晶态稀土合金(Er3Ni+ErNi2)在与上述相同的温度范围内的比热容。将结果表示在图1中(点划线4)。
从图1可看到,如实施例1情况,温度对本实施例中的稀土合金比热容的影响要小于对通常结晶态稀土合金比热容的影响。在低于2.7°K的极低温度下前者大于后者。在2.7°K至6°K的温度范围前者保持在约1.5至2.0的范围内。这表明在如上述的极低温度下,本发明的非晶态稀土合金在比热容方面表现了良好的特性。
实施例3
重复与实施例1相同的步骤制备由70%(原子)的Er和30%(原子)的Ru(纯度99.9%)组成的稀土合金(Er70Ru30)。用与实施例1相同的方法通过将该稀土合金加热到约1250℃制成非晶态合金箔(8μm厚)。测出该非晶态合金箔在1.6°K至6°K温度范围的比热容。将结果表示在图2中(线5)。为了比较,还测出与上述组成相同的结晶态稀土合金(Er3Ru+Er3Ru2)在与上述相同的温度范围内的比热容。将结果表示在图2中(线6)。
从图2中可以看到,结晶态稀土合金的比热容在3°K至4°K的温度范围内是不稳定的,起伏很大,而本实施例中的非晶态稀土合金的比热容在同样的温度范围内要大于前者并且是稳定的。这表明本发明的非晶态稀土合金具有交流热交换器要求的优良特性。
实施例4
重复实施例1中的相同步骤制备具有表1所列组成的几种稀土合金。把它们制成非晶态合金箔,测出它们在2°K至6°K温度范围的比热容。结果列入表1中。表1表明在特定的温度范围内本例中的非晶态稀土合金的比热容仅有少许变化。它们在极低温度下具有大的比热容,这是它们用于交流热交换器所需要的。
表1
组成    厚度    比热容(J/K-mol)
(摩尔比)    (μm)    2°K    3°K    4°K    5°K    6°K
67.5Er-32.5Ni    15    0.69    1.14    1.58    1.97    2.91
65Er-35Ni    17    0.67    1.23    1.73    2.16    2.30
60Er-40Ni    22    0.56    1.00    1.40    1.82    2.14
65Ho-35Ni    22    0.68    0.32    1.08    1.41    1.79
65Dy-35Ni    13    0.14    0.24    0.87    0.54    0.71
60Er-40Co    15    0.34    0.56    0.82    1.11    1.37
60Ho-40Co    13    0.71    0.64    0.78    1.01    1.29
70Er-30Ru    8    1.06    2.09    2.70    2.81    2.60
80Dy-20Ru    14    0.21    0.25    0.41    0.57    0.75
对比例1
重复实施例1的同样步骤制备由45%(原子)的Er和55%(原子)的Ni组成的稀土合金,并把该合金喷射到一个旋转辊的表面制成箔。X一射线衍射仪发现箔中有结晶相。这说明如果稀土元素的含量小于50%(原子),本发明的目的不能达到。

Claims (3)

1、一种用于交流热交换器的非晶态材料,包括50-99%(原子)的一种或几种稀土元素,其余部分是一种或几种铁族元素。
2、一种如权利要求1所述的用于交流热交换器的非晶态材料,其特征在于稀土元素包括选自Er、Ho、Dy和Tb中的一种或几种,铁族元素包括选自Ni、Co、Ru、Pd、Rh、Ir、Os、Pt和Fe中的一种或几种。
3、一种如权利要求1所述的用于交流热交换器的非晶态材料,通过将稀土合金熔体喷射到一个高速旋转的辊子表面骤冷而制成非晶态箔的形状,所述合金包括50-99%(原子)的一种或几种稀土元素,其余部分是一种或n种铁族元素。
CN92111398A 1991-09-13 1992-09-12 交流热交换器用非晶材料 Expired - Fee Related CN1033707C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3263108A JP2835792B2 (ja) 1991-09-13 1991-09-13 非晶質蓄冷材
JP263108/91 1991-09-13

Publications (2)

Publication Number Publication Date
CN1071973A true CN1071973A (zh) 1993-05-12
CN1033707C CN1033707C (zh) 1997-01-01

Family

ID=17384942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92111398A Expired - Fee Related CN1033707C (zh) 1991-09-13 1992-09-12 交流热交换器用非晶材料

Country Status (7)

Country Link
US (1) US5372657A (zh)
EP (1) EP0532001B1 (zh)
JP (1) JP2835792B2 (zh)
KR (1) KR0142859B1 (zh)
CN (1) CN1033707C (zh)
DE (1) DE69220156T2 (zh)
TW (1) TW230269B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073643C (zh) * 1998-04-17 2001-10-24 燕山大学 一种原子团簇触发过冷熔体凝固的方法
CN107419198A (zh) * 2017-03-21 2017-12-01 上海大学 稀土钴镍基低温非晶磁制冷材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117282A (en) * 1997-09-23 2000-09-12 Kuo; Po-Cheng Method of producing amorphous Co-Tb magnetic recording thin films
WO2002103259A1 (fr) * 2001-06-18 2002-12-27 Konoshima Chemical Co., Ltd. Matiere d'entreposage au froid a base d'un oxysulfure metallique de terre rare et dispositif d'entreposage au froid
US7067020B2 (en) * 2002-02-11 2006-06-27 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
WO2005024075A2 (en) * 2003-06-02 2005-03-17 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US7763125B2 (en) * 2003-06-02 2010-07-27 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
USRE47863E1 (en) 2003-06-02 2020-02-18 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
WO2006091875A2 (en) * 2005-02-24 2006-08-31 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities
CN102864356B (zh) * 2011-07-08 2014-11-26 中国科学院物理研究所 一种稀土-镍材料及其制备方法和用途
JP6648884B2 (ja) * 2015-08-21 2020-02-14 国立研究開発法人物質・材料研究機構 磁気冷凍材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL161196C (nl) * 1974-09-02 1980-01-15 Philips Nv Warmtegenerator, waarvan de vulmassa een zeldzaam aardelement bevat.
JPS5230473A (en) * 1975-09-03 1977-03-08 Fujitsu Ltd Apparatus for measuring power line current
EP0191107B1 (en) * 1984-07-27 1992-01-29 Research Development Corporation of Japan Amorphous material which operates magnetically
US4849017A (en) * 1985-02-06 1989-07-18 Kabushiki Kaisha Toshiba Magnetic refrigerant for magnetic refrigeration
JPH07101134B2 (ja) * 1988-02-02 1995-11-01 株式会社東芝 蓄熱材料および低温蓄熱器
US4995923A (en) * 1988-10-17 1991-02-26 Mitsui Petrochemical Industries, Ltd. Thin film of amorphous alloy
US5186765A (en) * 1989-07-31 1993-02-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073643C (zh) * 1998-04-17 2001-10-24 燕山大学 一种原子团簇触发过冷熔体凝固的方法
CN107419198A (zh) * 2017-03-21 2017-12-01 上海大学 稀土钴镍基低温非晶磁制冷材料及其制备方法
CN107419198B (zh) * 2017-03-21 2019-03-29 上海大学 稀土钴镍基低温非晶磁制冷材料及其制备方法

Also Published As

Publication number Publication date
EP0532001A1 (en) 1993-03-17
DE69220156D1 (de) 1997-07-10
KR930006135A (ko) 1993-04-20
EP0532001B1 (en) 1997-06-04
US5372657A (en) 1994-12-13
KR0142859B1 (ko) 1998-07-01
JP2835792B2 (ja) 1998-12-14
TW230269B (zh) 1994-09-11
JPH05239447A (ja) 1993-09-17
CN1033707C (zh) 1997-01-01
DE69220156T2 (de) 1998-01-29

Similar Documents

Publication Publication Date Title
CN1071973A (zh) 交流热交换器用非晶材料
US5362339A (en) Magnetic refrigerant and process for producing the same
US5961745A (en) Fe Based soft magnetic glassy alloy
US20060054245A1 (en) Nanocomposite permanent magnets
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
US20210287831A1 (en) Magnetic calorific composite material and method for manufacturing thereof
JP2923705B2 (ja) 低温蓄冷材
US6953770B2 (en) MgB2—based superconductor with high critical current density, and method for manufacturing the same
Lin et al. Fe–Y–M–B (M= Nb or Ta) bulk metallic glasses with ultrahigh strength and good soft magnetic properties
US5593514A (en) Amorphous metal alloys rich in noble metals prepared by rapid solidification processing
JP5944580B2 (ja) スパッタリングターゲット
WO2018199278A1 (ja) HoCu系蓄冷材並びにこれを備えた蓄冷器及び冷凍機
CN1246491C (zh) 一种具有高玻璃形成能力的铁基块体非晶合金
Inoue et al. Nonequilibrium phases in rapidly quenched Co-C-Si and Ni-C-Si alloys
JP2021097229A (ja) 磁気熱量複合材料及びその製造方法
JPS63179052A (ja) 蓄冷材料の製造方法
JP2879715B2 (ja) 低温蓄冷材
JPH0765823B2 (ja) 冷凍方法
CN1184345C (zh) 大块非晶合金材料
JP2002212716A (ja) 高スパッタ電力ですぐれた耐割損性を発揮する光磁気記録媒体の記録層形成用焼結スパッタリングターゲット材
Inoue et al. The effect of IIIB and IVB elements on the superconducting properties of zirconium-based amorphous alloys
JP2005108782A (ja) Nb3Al基超伝導線材および該線材の製造方法
Stadnik et al. Mössbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys
JPH0784957B2 (ja) 低温蓄熱器
JPH045737B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee