CN107188772B - 一种脲类衍生物双水相体系及其应用 - Google Patents

一种脲类衍生物双水相体系及其应用 Download PDF

Info

Publication number
CN107188772B
CN107188772B CN201710392055.5A CN201710392055A CN107188772B CN 107188772 B CN107188772 B CN 107188772B CN 201710392055 A CN201710392055 A CN 201710392055A CN 107188772 B CN107188772 B CN 107188772B
Authority
CN
China
Prior art keywords
aqueous
phase system
urea derivative
phase
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710392055.5A
Other languages
English (en)
Other versions
CN107188772A (zh
Inventor
陈律宇
黄洁
金志敏
张银华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710392055.5A priority Critical patent/CN107188772B/zh
Publication of CN107188772A publication Critical patent/CN107188772A/zh
Application granted granted Critical
Publication of CN107188772B publication Critical patent/CN107188772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/40Separation, e.g. from natural material; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • C07H17/07Benzo[b]pyran-4-ones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种脲类衍生物双水相体系及其在分离纯化含黄酮类化合物中的应用,所述的脲类衍生物双水相体系由式Ⅰ所示的脲类衍生物和无机盐构成,所述的无机盐为K2CO3、K2HPO4、KH2PO4或硫酸铵中的一种或几种,脲类衍生物占双水相体系的质量分数为15%~25%,无机盐占双水相体系的质量分数为10%~20%,余量为水,
Figure DDA0001307745150000011
式Ⅰ中,R1、R2、R3、R4各自独立为氢、甲基或乙基。本发明的双水相体系对黄酮类物质有分离纯化作用,目标产物在分离纯化过程中不易变性,分配平衡,保持生物活性;萃取分相时间短,节省萃取时间,节省能耗;分离环境温和,不经高温、高压在常态静态中进行分相,生物相容性高。

Description

一种脲类衍生物双水相体系及其应用
技术领域
本发明涉及分离纯化领域,尤其涉及一种脲类衍生物双水相体系及其应用。
背景技术
黄酮类化合物是在植物中分布非常广泛的一类天然产物,在植物体内大部分与糖结合成苷类,有一部分是以游离态(苷元)形式存在的。绝大多数的植物体内都含有黄酮类化合物,其对植物的生长、发育、开花、结果及防菌防病等方面起着重要的作用。黄酮类化合物是许多中草药的有效成分,且具有抗氧化活性、抗肿瘤活性、抗炎和免疫调节活性、抗病毒活性、解毒护肝和细胞保护作用、对心血管疾病的作用、对机体内分泌和代谢的影响、对细胞的影响作用、抗菌作用等多种生物活性,近年来国内外学者对其颇为重视。而近十年来,黄酮类化合物的研究以倾向于其药用价值的开发,更多地涉及提取分离纯化方法的应用研究、含量测定及制剂研究等。
现有的分离纯化黄酮类物质的常用的方法有:以芦丁的生产为例,目前,我国各地大都从槐米中提取芦丁,主要方法为:①热水提取法:该法提取率低(8%);②热醇提取法:该法提取率高(21%),但醇易燃,操作困难,成本高;③碱水煮法:该法耗能大,提取率低(8-12%);④冷碱水浸提法:该法节省能源,提取率较高(14-17%),但该法工艺流程太长,工作效率低(冯启蒙,徐聪,槐米中提芦丁纯化工艺研究[J],价值工程,307-308)。
双水相萃取技术是上个世纪末发展起来的新型分离技术。双水相分离技术与传统的有机相一水相萃取原理相似,依据物质在两相间选择性分配。但双水相体系的萃取性质有所不同,当待分离物质进入双水相体系后,由于成相物质与目标物之间的表面性质、电荷作用和各种力如憎水键、氧键和离子键等的存在和环境影响,使得目标物在上、下相中的分配浓度不同。对于某类或某种物质,选择合适的双水相体系及合理的分离条件,可以得到较好的分离效果,从而实现分离纯化。
双水相系统之间的传质和平衡过程速度快、回收效率高、能耗较小、分离速度快,易于进行连续化操作,设备简单,且可直接与后续提纯工序相连接,无需进行特殊处理双水相体系的相间张力大大低于有机溶剂与水相之间的相间张力,相分离条件温和,因而会保持绝大部分生物分子的活性。影响双水相体系的因素比较复杂,从某种意义上说,可以采取多种手段来提高选择性或提高收率该分离方法易于放大,各种分离参数可以按比例放大而产物收率并不降低。双水相萃取技术已经用于中药有效成分、天然产物、酶、蛋白质和其他生物活性物质分离。
但目前,现有双水相分离纯化黄酮类物质的方法尚处于发展阶段,双水相体系组成不同,应用的范围不同,目前用于提取的物质种类较少,且存在分离纯化工艺偏复杂、回收率低、纯度不高的缺点。
发明内容
为解决现有技术存在的缺陷,本发明的目的之一在于提供一种脲类衍生物双水相体系。
一种脲类衍生物双水相体系,其特征在于:由式Ⅰ所示的脲类衍生物和无机盐构成,所述的无机盐为K2CO3、K2HPO4、KH2PO4或硫酸铵中的一种或几种,脲类衍生物占双水相体系的质量分数为15%~25%,无机盐占双水相体系的质量分数为10%~20%,余量为水,
Figure BDA0001307745140000031
式Ⅰ中,R1、R2、R3、R4各自独立为氢、甲基或乙基。
进一步,所述的R1、R2为氢,R3、R4各自独立为氢、甲基或乙基。
进一步,脲类衍生物占双水相体系的质量分数为20%,无机盐占双水相体系的质量分数为15%,水占双水相体系的65%。
本发明的目的之二在于提供一种脲类衍生物双水相体系在分离纯化含黄酮类化合物中的应用。
进一步,所述的含黄酮类化合物为芦丁、葛根素或黄芩苷。
进一步,所述的脲类衍生物双水相体系分离纯化黄酮类化合物的具体方法为:
(1)将含有黄酮类化合物的原料粉碎,过筛20~80目;
(2)按照权利要求1的配比关系配置脲类衍生物双水相体系,将步骤(1)所得原料粉末与所述的脲类衍生物双水相体系混合,用搅拌分散机强力搅拌15~60min,静置0.5~1.5h,分层所得有机相经浓缩吸晶得到黄酮类物质;所述原料粉末与双水相体系的质量比为1:6~14。
再进一步,步骤(1)中,过筛60~80目。
与现有技术相比,本发明的有益效果在于:
(1)生产成本低,环境污染小,产物纯度高,收率高;
(2)脲类衍生物双水相体系中含水量50%以上,目标产物在分离纯化过程中不易变性,分配平衡,保持生物活性;
(3)脲类衍生物双水相体系在分离纯化应用中萃取分相时间短,节省萃取时间,节省能耗;
(4)脲类衍生物双水相体系在分离纯化应用分离环境温和,不经高温、高压在常态静态中进行分相,生物相容性高;
(5)脲类衍生物双水相体系中脲类衍生物能通过氢键结合黄酮类物质,对黄酮类物质的分子结构有稳定和保护作用;
(6)脲类衍生物双水相体系分离纯化工艺不复杂,易于产业化和连续性操作。
具体实施方式
通过以下实施例,进一步明确本发明。应理解,这些实施例虽然指出的是优选的本发明实施方案,但给出这些实施例仅用于举例说明。根据以上论述和这些实施例,本领域技术人员可确定本发明的必要特征,并且不偏离本发明的宗旨和范围,可对本发明进行各种变化和修改,以使其适应各种用途和条件。
通用方法:
所用粉碎机为湖南中诚制药机械厂的XFB-500小型中药粉碎机,原料经60℃烘干后粉碎至20-80目;
所用分散机为泰松企业的400W电动实验室升降搅拌分散机,转速为2000rpm。
所用检验方法为HPLC法
A.HPLC法检验槐米中芦丁与黄芩中黄芩苷色谱条件:所用仪器为高效液相色谱仪:Agilent 1100系列二级管阵列检测器,HP ChemStation化学工作站,Agilent 1100系列自动进样器,Agilent 1100系列柱温箱,Agilent 1100系列双元泵。采用Zorbox SBC18色谱柱,流动相为水-甲醇-乙酸(45:50:5),流速1.0mL·min-1,检测波长256nm,进样量5μL。
B.HPLC法检验葛根中总黄酮色谱条件:所用仪器为高效液相色谱仪:Agilent1100系列二级管阵列检测器,HP ChemStation化学工作站,Agilent 1100系列自动进样器,Agilent 1100系列柱温箱,Agilent 1100系列双元泵。采用InertsiLODSC18色谱柱,流动相为甲醇-水(20:80),流速1.0mL·min-1,检测波长250nm,进样量5μL。
实施例1-9
这些实施例的目的是用不同的脲类衍生物与不同的无机盐组成双水相体系,分离纯化槐米中的芦丁。
在这些实施例中,槐米经60℃干燥后粉碎过筛60目,双水相体系的组成质量分数为:脲类衍生物20%,无机盐15%,水65%,原料粉末与双水相体系的质量比为1:9,将200g槐米粉末、360g脲类衍生物、270g无机盐加入1170g水中,用搅拌分散机强力搅拌30min,静置1h,分层,取有机层(上层)浓缩析晶得芦丁纯品,以HPLC法检验纯度,收率和纯度见表1。
表1双水相体系分离纯化槐米中芦丁
Figure BDA0001307745140000051
Figure BDA0001307745140000061
由表1结果可知,用1,2-二甲基脲和1-甲基-2-乙基脲与KH2PO4和硫酸铵形成的双水相体系对槐米中芦丁的分离提取收率>90.7%,纯度>93.1%
实施例10
槐米经60℃干燥后粉碎过筛60目,将300g槐米粉末、360g1,2-二甲基脲、270g硫酸铵加入1170g水中,用搅拌分散机强力搅拌60min,静置1.5h,分层,取有机层(上层)浓缩析晶得芦丁纯品,以HPLC法检验纯度,收率为84.2%,纯度为99.0%。
实施例11
槐米经60℃干燥后粉碎过筛60目,将128.6g槐米粉末、360g1,2-二甲基脲、270g硫酸铵加入1170g水中,用搅拌分散机强力搅拌15min,静置0.5h,分层,取有机层(上层)浓缩析晶得芦丁纯品,以HPLC法检验纯度,收率为92.3%,纯度为99.6%。
实施例12
葛根经60℃干燥后粉碎过筛40目,将100g葛根粉末、180g1-甲基-2-乙基脲、135gKH2PO4加入585g水中,用搅拌分散机强力搅拌20min,静置1h,分层,取有机层(上层)浓缩析晶得葛根中总黄酮,以HPLC法检验纯度,收率为93.4%,纯度为99.7%。
实施例13
葛根经60℃干燥后粉碎过筛80目,将100g葛根粉末、180g1,2-二甲基脲、135gKH2PO4加入585g水中,用搅拌分散机强力搅拌45min,静置1h,分层,取有机层(上层)浓缩析晶得葛根中总黄酮,以HPLC法检验纯度,收率为95.7%,纯度为99.7%。
实施例14
黄芩经60℃干燥后粉碎过筛60目,将100g黄芩粉末、180g1-甲基-2-乙基脲、135g硫酸铵加入585g水中,用搅拌分散机强力搅拌30min,静置1h,分层,取有机层(上层)浓缩析晶得葛根中总黄酮,以HPLC法检验纯度,收率为95.4%,纯度为99.8%。
实施例15
葛根经60℃干燥后粉碎过筛60目,将100g葛根粉末、180g1-甲基脲、135gK2CO3加入585g水中,用搅拌分散机强力搅拌45min,静置1h,分层,取有机层(上层)浓缩析晶得葛根中总黄酮,以HPLC法检验纯度,收率为92.5%,纯度为98.7%。
实施例16
葛根经60℃干燥后粉碎过筛60目,将100g葛根粉末、135g1-甲基脲、90gK2CO3加入675g水中,用搅拌分散机强力搅拌45min,静置1h,分层,取有机层(上层)浓缩析晶得葛根中总黄酮,以HPLC法检验纯度,收率为83.4%,纯度为98.6%。
实施例17
葛根经60℃干燥后粉碎过筛60目,将100g葛根粉末、225g1-甲基脲、180gK2CO3加入495g水中,用搅拌分散机强力搅拌45min,静置1h,分层,取有机层(上层)浓缩析晶得葛根中总黄酮,以HPLC法检验纯度,收率为84.7%,纯度为99.1%。

Claims (7)

1.一种脲类衍生物双水相体系,其特征在于:由式Ⅰ所示的脲类衍生物和无机盐构成,所述的无机盐为K2CO3、K2HPO4、KH2PO4或硫酸铵中的一种或几种,脲类衍生物占双水相体系的质量分数为15%~25%,无机盐占双水相体系的质量分数为10%~20%,余量为水,
Figure FDA0002635134060000011
式Ⅰ中,R1、R2、R3、R4各自独立为氢、甲基或乙基,但不全为氢。
2.如权利要求1所述的脲类衍生物双水相体系,其特征在于:所述的R1、R2为氢,R3、R4各自独立为氢、甲基或乙基。
3.如权利要求1所述的脲类衍生物双水相体系,其特征在于:脲类衍生物占双水相体系的质量分数为20%,无机盐占双水相体系的质量分数为15%,水占双水相体系的65%。
4.一种如权利要求1所述的脲类衍生物双水相体系在分离纯化含黄酮类化合物中的应用。
5.如权利要求4所述的应用,其特征在于:所述的含黄酮类化合物为芦丁、葛根素或黄芩苷。
6.如权利要求4所述的应用,其特征在于:所述的脲类衍生物双水相体系分离纯化黄酮类化合物的具体方法为:
(1)将含有黄酮类化合物的原料粉碎,过筛20~80目;
(2)按照权利要求1的配比关系配置脲类衍生物双水相体系,将步骤(1)所得原料粉末与所述的脲类衍生物双水相体系混合,用搅拌分散机强力搅拌15~60min,静置0.5~1.5h,分层所得有机相经浓缩吸晶得到黄酮类物质;所述原料粉末与双水相体系的质量比为1:6~14。
7.如权利要求6所述的方法,其特征在于:步骤(1)中,过筛60~80目。
CN201710392055.5A 2017-05-27 2017-05-27 一种脲类衍生物双水相体系及其应用 Active CN107188772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710392055.5A CN107188772B (zh) 2017-05-27 2017-05-27 一种脲类衍生物双水相体系及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710392055.5A CN107188772B (zh) 2017-05-27 2017-05-27 一种脲类衍生物双水相体系及其应用

Publications (2)

Publication Number Publication Date
CN107188772A CN107188772A (zh) 2017-09-22
CN107188772B true CN107188772B (zh) 2021-04-06

Family

ID=59876068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710392055.5A Active CN107188772B (zh) 2017-05-27 2017-05-27 一种脲类衍生物双水相体系及其应用

Country Status (1)

Country Link
CN (1) CN107188772B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107556347B (zh) * 2017-10-24 2019-06-18 陕西师范大学 一种双水相萃取苦杏仁苷的方法
CN109053706A (zh) * 2018-08-07 2018-12-21 上海诺德生物实业有限公司 一种分离纯化葛根素的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709542A (zh) * 2004-06-17 2005-12-21 西北工业大学 一种双水相萃取提取柿叶黄酮类物质的方法
CN103772255A (zh) * 2014-01-27 2014-05-07 甘肃凯源生物技术开发中心 一种低分子有机物/无机盐双水相萃取藻类中β-胡萝卜素的方法
CN105131080A (zh) * 2015-09-30 2015-12-09 商洛学院 一种蛋白质分离纯化的方法
CN110664851A (zh) * 2019-09-23 2020-01-10 西安工程大学 一种银杏黄酮的纯化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709542A (zh) * 2004-06-17 2005-12-21 西北工业大学 一种双水相萃取提取柿叶黄酮类物质的方法
CN103772255A (zh) * 2014-01-27 2014-05-07 甘肃凯源生物技术开发中心 一种低分子有机物/无机盐双水相萃取藻类中β-胡萝卜素的方法
CN105131080A (zh) * 2015-09-30 2015-12-09 商洛学院 一种蛋白质分离纯化的方法
CN110664851A (zh) * 2019-09-23 2020-01-10 西安工程大学 一种银杏黄酮的纯化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"双水相萃取技术的应用研究进展",马春宏等,广谱实验学,第27卷第5期,第1906-1914页;马春宏等;《光谱实验学》;20100930;第27卷(第5期);第1906-1914页 *
Deep eutectic solvents as novel extraction media for protein partitioning;Qun Zeng et al.;《Analyst》;20140219;第139卷;第2565-2573页 *
PEG+Potassium Phosphate+Urea Aqueous Two-Phase Systems:Phase Equilibrium and Protein Partitioning;Antonio J. A. Meirelles et al.;《J. Chem. Eng. Data》;20010217;第251-255页 *

Also Published As

Publication number Publication date
CN107188772A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Cui et al. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves
Wang et al. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media
CN101139320B (zh) 从荷叶中分离制备荷叶碱和荷叶黄酮的方法
CN101544995A (zh) 一种萝卜硫素的提取方法
CN110746275A (zh) 一种利用连续色谱系统分离大麻二酚的方法
CN100473657C (zh) 栀子苷的分离纯化方法
CN106967142B (zh) 一种同时提取罗汉果甜苷v、ⅵ和11-o基苷v的方法
CN104906153A (zh) 一种高效提取银杏黄酮的工艺方法
CN104173438A (zh) 一种紫苏总黄酮的制备方法
WO2015103974A1 (zh) 麦角硫因的提取及纯化方法
CN102234245A (zh) 一种莱菔子素的制备方法
CN107188772B (zh) 一种脲类衍生物双水相体系及其应用
Wei et al. Dienzyme-assisted salting-out extraction of flavonoids from the seeds of Cuscuta chinensis Lam.
CN105061529A (zh) 桑葚花色苷的提取工艺
CN101229335B (zh) 酶法制备黑刺菝葜总皂苷提取物的方法
CN105367424B (zh) 用紫茎泽兰制备高纯度绿原酸的方法
CN104764846A (zh) 一种从茶树鲜叶中萃取、纯化、鉴定花青素的方法
CN101492350B (zh) 从植物刺槐中制备d-松醇的方法
CN104940280A (zh) 一种应用酶制剂提取葛根总黄酮的方法
CN101190910A (zh) 表没食子儿茶素没食子酸酯乙酰化物的制备方法
CN109432814B (zh) 一种六甲基磷酰三胺双水相体系及其应用
CN107362198B (zh) 黄芩黄酮提取工艺、黄芩黄酮提取物及其应用
CN102060706A (zh) 一种从紫锥菊中提取纯化菊苣酸的方法
CN109224505B (zh) 一种n-甲基咪唑双水相体系及其应用
CN105481817A (zh) 一种异香豆素类化合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant