CN107164404A - 巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途 - Google Patents
巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途 Download PDFInfo
- Publication number
- CN107164404A CN107164404A CN201710520452.6A CN201710520452A CN107164404A CN 107164404 A CN107164404 A CN 107164404A CN 201710520452 A CN201710520452 A CN 201710520452A CN 107164404 A CN107164404 A CN 107164404A
- Authority
- CN
- China
- Prior art keywords
- plant
- egrzfp6
- stress
- osmotic stress
- purposes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000196324 Embryophyta Species 0.000 title claims abstract description 57
- 241000006109 Eucalyptus delegatensis Species 0.000 title claims abstract description 20
- 230000008723 osmotic stress Effects 0.000 title claims abstract description 20
- 230000035882 stress Effects 0.000 title claims description 15
- 230000002018 overexpression Effects 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 16
- 239000011701 zinc Substances 0.000 claims abstract description 16
- 108091023040 Transcription factor Proteins 0.000 claims abstract description 14
- 102000040945 Transcription factor Human genes 0.000 claims abstract description 14
- 230000008859 change Effects 0.000 claims abstract description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 25
- 210000003811 finger Anatomy 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 15
- 230000012010 growth Effects 0.000 claims description 9
- 230000006698 induction Effects 0.000 claims 1
- 241000219194 Arabidopsis Species 0.000 abstract description 20
- 238000012545 processing Methods 0.000 abstract description 9
- 241000219195 Arabidopsis thaliana Species 0.000 abstract description 6
- 230000009466 transformation Effects 0.000 abstract description 5
- 239000013598 vector Substances 0.000 abstract description 5
- 206010061217 Infestation Diseases 0.000 abstract description 2
- 230000002068 genetic effect Effects 0.000 abstract description 2
- 102000004169 proteins and genes Human genes 0.000 description 13
- 235000018102 proteins Nutrition 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 8
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 230000009261 transgenic effect Effects 0.000 description 7
- 240000007594 Oryza sativa Species 0.000 description 6
- 101710185494 Zinc finger protein Proteins 0.000 description 6
- 102100023597 Zinc finger protein 816 Human genes 0.000 description 6
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000036579 abiotic stress Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 230000004960 subcellular localization Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 244000291564 Allium cepa Species 0.000 description 3
- 101000730644 Homo sapiens Zinc finger protein PLAGL2 Proteins 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000006353 environmental stress Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 241000219927 Eucalyptus Species 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 240000007377 Petunia x hybrida Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100032571 Zinc finger protein PLAGL2 Human genes 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009456 molecular mechanism Effects 0.000 description 2
- 230000008121 plant development Effects 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- JLIDBLDQVAYHNE-LXGGSRJLSA-N 2-cis-abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\C1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-LXGGSRJLSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 235000005255 Allium cepa Nutrition 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 108010001572 Basic-Leucine Zipper Transcription Factors Proteins 0.000 description 1
- 102000000806 Basic-Leucine Zipper Transcription Factors Human genes 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241001233195 Eucalyptus grandis Species 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- 241001149081 Gossypium raimondii Species 0.000 description 1
- 235000014718 Gossypium raimondii Nutrition 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 241000219828 Medicago truncatula Species 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101000915547 Oryza sativa subsp. japonica Probable E3 ubiquitin-protein ligase ZFP1 Proteins 0.000 description 1
- 239000008118 PEG 6000 Substances 0.000 description 1
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- -1 WRKY Proteins 0.000 description 1
- 108091007916 Zinc finger transcription factors Proteins 0.000 description 1
- 102000038627 Zinc finger transcription factors Human genes 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 150000002411 histidines Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000005080 plant death Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012882 sequential analysis Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明公开了巨桉C2H2型锌指结构蛋白转录因子EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途。本发明构建35S::EgrZFP6超表达载体,采用花序侵染法进行拟南芥遗传转化;和对照相比,EgrZFP6超表达拟南芥转化植株在PEG(1g·L‑1以上)处理下,能大幅度促进侧根增加和伸长,改变植株根构型。
Description
技术领域
本发明属于植物生物技术领域,具体涉及巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途。
背景技术
低温、干旱等非生物胁迫会制约植物生长和发育,对农林业生产有严重影响。研究植物抗逆生理和分子机制对提高植物非生物逆境胁迫抗性具有重要意义(Dos Reis etal.,2012;Roychoudhury et al.,2015)。为了应对逆境胁迫,植物在长期进化过程中形成了一定的响应机制,植物感受到逆境信号后,通过相应基因调控,改变一系列代谢过程,产生应对胁迫的响应,如提高可溶性糖含量,增加抗渗透胁迫物质如脯氨酸、甜菜碱等,进而提高植物抗逆性(Takabe,2012)。在植物抗逆分子响应机制中,作为基因开关的转录因子(transcription factor,TF)发挥重要作用。植物中转录因子数量庞大,相当一部分成员与逆境调控相关,如bZIP、WRKY、AP2/EREBP、MYB和NAC等,近年来锌指类转录因子(ZincFinger Protein:ZFP)也被证明在植物逆境胁迫响应中发挥重要作用(Gujjar et al.,2014;Reddy et al.,2013)。
根据ZFP转录因子具有的半胱氨酸(C)和组氨酸(H)残基数量和位置,可将锌指蛋白转录因子分为C2H2,C2H,C2C2,C2HCC2C2,C2C2C2等类型。其中C2H2型锌指蛋白是植物中研究较多、功能较为明确的一类锌指蛋白。其锌指结构域由约30个氨基酸组成,包含两个半胱氨酸和两个组氨酸,以及一段植物所特有的高度保守序列(QALGGH)(Kubo et al.,1998;黄骥等,2004)。
C2H2型锌指蛋白在植物中成员众多,拟南芥(Arabidopsis thaliana)中发现176个成员(Englbrecht et al.,2004),水稻(Oryza sativa)基因组数据显示水稻上有182个(Agarwal et al.,2007)。C2H2型锌指蛋白广泛参与植物生长、发育和代谢,以及植物对低温,高盐和干旱等非生物逆境的响应(Agnieszka and 2012)。水稻OsZFP1作为负调控因子,能抑制盐胁迫相关基因表达,转基因植株对盐胁迫抗性降低。同时,其逆境响应还受脱落酸(ABA)影响,暗示其可能参与ABA依赖的逆境响应过程(Kong etal.,2004)。水稻另外一个C2H2型锌指蛋白转录因子基因OsZFP245的超表达则能够提高植株对低温、干旱和氧化逆境的抗性(Huang et al.,2009)。矮牵牛(Petunia hybrid)基因ZPT2-3也可被低温、干旱和重金属等非生物胁迫诱导表达,其转基因植株干旱耐受力有效提高(Sugano et al.,2003)。这些表明C2H2型锌指蛋白转录因子能够在植物非生物逆境胁迫响应中发挥作用。
目前植物C2H2型锌指蛋白研究主要集中在模式植物中,在林木中研究较少。巨桉(Eucalyptus grandis)作为世界三大用材树种之一,在我国南方各省栽培广泛,为我国林业产业发展作出重要贡献。但其对低温敏感,不耐干旱、盐渍,这严重限制其栽培范围的扩大;低温、干旱等不良天气条件还经常对桉树生产造成损失。因此,研究其非生物逆境胁迫响应分子机制对桉树抗逆分子育种具有重要意义。
发明内容
为了解决上述问题,本发明提供巨桉C2H2型锌指结构蛋白转录因子EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途。
在本发明一个实施方案中,在植物中过表达巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,在渗透胁迫下改变植株根构型,提高植物在渗透胁迫下适应胁迫的用途。
其中,所述改变植物根构型包括增加侧根数量以及促进侧根的伸长生长。
其中,所述的逆境胁迫包括但不限于干旱、高盐等渗透胁迫。
另一方面,本发明还提供一种提高植物在渗透胁迫下的适应性的方法,向目标植物转入巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,并使其在目标植物体内进行过量表达。
其中,所述的渗透胁迫包括但不限于干旱,高盐等。
另一方面本发明还提供一种在渗透胁迫下改变植株根构型的方法,其特征在于,向目标植物转入巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,并使其在目标植物体内进行过量表达。
在本发明一个实施方案中,将转入所述EgrZFP6基因的目标植物进行干旱诱导,进一步促进侧根增加和伸长,改变植株根构型。
其中,所述改变植物根构型包括增加侧根数量以及促进侧根的伸长生长。
其中,可采用本领域已知的所有方法向目标植物转入巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,包括但不限于,农杆菌介导、基因枪等。
本发明构建35S::EgrZFP6超表达载体,采用花序侵染法进行拟南芥遗传转化;和对照相比,EgrZFP6超表达拟南芥转化植株在PEG(1g·L-1以上)处理下,能大幅度促进侧根增加和伸长,改变植株根构型。
附图说明
图1所示为巨桉EgrZFP6蛋白序列与其他植物同源蛋白序列比对。锌指结构域,L-box和EAR基序用加粗黑线标示。MesZAT11:木薯Manihotesculenta(OAY41302.1);MtrZAT11:蒺藜苜蓿Medicago truncatula(XP_013468307.1);GraZAT11:雷蒙德氏棉Gossypiumraimondii(XP_012483278.1);LusZAT11:亚麻Linumusitatissimum(XP_002533000);AtZAT11:拟南芥Arabidopsis thaliana(AEC09397.1)
图2EgrZFP6的亚细胞定位。
图3所示为野生型和超表达EgrZFP6拟南芥转基因株系鉴定。COL:野生型;EgrZFP6-OX1和EgrZFP6-OX2:超表达株系。
图4所示为野生型和超表达EgrZFP6拟南芥转基因株系生长7天后表型(A)和根长差异(B)。
图5所示为盐胁迫下野生型和超表达EgrZFP6基因拟南芥表型。
图6所示为模拟干旱胁迫下野生型和超表达EgrZFP6基因拟南芥。
具体实施方式
以下实例用于说明本发明,但不用来限制本发明的范围。
实施例1
1.材料与方法
1.1材料
巨桉幼苗生长在浙江农林大学苗圃地。所选试验材料为长势一致的6个月苗龄幼苗。拟南芥野生型为COL。实验处理均在snijders微气候控制生长箱(MC1000,荷兰)中进行。培养条件为,拟南芥:白天24℃15h,夜间22℃9h;巨桉:白天25℃15h,夜间22℃12h。光照强度150μmol·m-2s-1,相对湿度(RH)70%。
1.2EgrZFP6蛋白序列分析
在巨桉数据库phytozome(http://www.phytozome.net/search.php)下载EgrZFP6全长序列,设计引物,进行全长序列测序验证后,将其编码蛋白序列在https://blast.ncbi.nlm.nih.gov/Blast.cgi进行Blast比对,选择5个与该蛋白序列相似程度比较高的不同物种蛋白序列,利用Clastalx1.83进行多重比对。同时,用CDD在线软件(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)分析蛋白序列保守域。
1.3EgrZFP6亚细胞定位
设计引物(表1),PCR扩增去掉终止密码子的EgrZFP6开放阅读框序列,以pCAMBIA1300为载体骨架,利用多克隆位点处的Kpn I和Xba I酶切位点,构建EgrZFP6-GFP融合蛋白表达载体。提取质粒,金粉包埋后轰击洋葱(Allium cepa)表皮细胞。激光共聚焦显微镜扫描成像。
1.4EgrZFP6超表达载体构建、异源转化拟南芥和超表达拟南芥低温、盐和PEG处理
超表达载体骨架为含35S启动子的pCAMBIA1301,EgrZFP6全长序列扩增引物见表1,利用多克隆位点处的Kpn I和Xba I酶切位点,双酶切法构建35S::EgrZFP6超表达载体。提取质粒,选取健壮盛花期拟南芥采用农杆菌蘸花法转化拟南芥(许红梅等,2010)。收获侵染植株种子,于含20mg·L-1潮霉素的1/4MS培养基上(Hygromycin)进行筛选,阳性植株继续繁殖,收获,筛选,PCR检测,直到获得T3代转基因纯合株系。提取10天苗龄的野生型和两个超表达EgrZFP6拟南芥纯合株系RNA,逆转录后,设计引物(表1)以AtActin为内参基因进行半定量RT-PCR,鉴定EgrZFP6在转基因株系中的表达情况。
野生型和超表达EgrZFP6拟南芥种子均匀播种在1/2MS培养基上,4℃暗处理24h后置于生长箱中生长。一周后,比较和分析野生型和超表达株系表型变化;参考Zhao等(2016)的方法,将10天苗龄的幼苗于-8℃低温处理3天,然后正常培养条件下缓苗3天,拍照观察表型,统计植株死亡率;盐(NaCl)处理梯度为0mmol·L-1,50mmol·L-1和100mmol·L-1;使用PEG6000模拟干旱处理,处理梯度为1g·L-1,5g·L-1和9g·L-1,种子发芽后,于生长箱中生长一周,观察表型并拍照(Nikon,D7000)。
1.5RNA提取,cDNA合成及基因定量表达分析
巨桉RNA提取参考CTAB+Trizol法(王亚红等,2010),拟南芥RNA提取参照Trizol法(金美芳,2004)。cDNA反转录试剂盒由康为世纪公司提供,定量荧光染料SYBR由TAKARA公司(大连,中国)提供。设计引物(表1)用BIO-Rad CFX96定量RT-PCR系统(BioRad,美国)以及系统自带的Bio-Rad CFX Manager(Ver 1.5.5.34)软件进行实验和结果分析。
表1相关引物序列
引物名称 | 引物序列(5′-3′) |
EgrZFP6-sGFP-F | cggggtaccTCAACGACATTCTCTTCAGCA |
EgrZFP6-sGFP-R | gctctagaCAGGAGCAAGGCATCTATCT |
35S-EgrZFP6-F | cggggtaccGAAAAGGCACCCCACAAA |
35S-EgrZFP6-R | gctctagaCCTAAACTCAGTCGGTCCAAA |
AtActin-RT-F | TGCCCATCGGGTAATTCATAGTTC |
AtActin-RT-R | CCTCATGCCATCCTCCGTCTT |
EgrZFP6-RT-F | ATCCCAAGATGCACGAGTGCTC |
EgrZFP6-RT-R | CGGACCAACCACGAAAATCTCA |
2结果与分析
2.1EgrZFP6编码蛋白结构分析
EgrZFP6编码蛋白含有2个锌指结构域,对该基因蛋白序列进行保守结构域搜索,并将其与其他不同植物中的同源蛋白比对分析结果表明,该基因编码蛋白含有2个高度保守的锌指蛋白结构域,且2个锌指结构域核心序列均为QALGGH,该序列是植物锌指蛋白所特有的(Takatsuji,1999)。另外,EgrZFP6蛋白序列还分别含有1个乙烯响应元件结合因子相关双性抑制子(ERF associated amphiphilic repression:EAR)基序:DLNLTP和1个L-box基序(图1)。
2.2EgrZFP6亚细胞定位结果分析
构建EgrZFP6-GFP表达载体,利用基因枪轰击洋葱表皮的方法对EgrZFP6蛋白进行亚细胞定位分析,结果表明该基因表达的蛋白定位于细胞核中(图2)。其可能是作为转录因子在细胞核内发挥基因表达调控作用。
2.3超表达EgrZFP6转基因拟南芥株系鉴定
半定量RT-PCR分析结果(图3)表明,野生型COL中没有检测到EgrZFP6表达,在两个转基因纯合株系EgrZFP6-OX1和EgrZFP6-OX2中EgrZFP6具有明显表达(图3)。
2.4超表达EgrZFP6基因拟南芥株系正常条件及低温、高盐和PEG处理下表型分析
超表达EgrZFP6拟南芥2个纯合株系EgrZFP6-OX1和EgrZFP6-OX2,播种7天后和对照(COL)相比,根长生长明显受到抑制(图4A)。2个转基因株系的根长分别为野生型的89.4%和87.0%(图4B)。
盐处理下,EgrZFP6超表达拟南芥株系与野生型拟南芥随盐浓度提高,主根、侧根生长都表现为受盐抑制,但受抑制程度相对于野生型有所减弱,表示超表达EgrZFP6在一定程度上能够提高植株对盐胁迫的耐受性(图5)。
在PEG处理中,1g·L-1以上的浓度即能诱导EgrZFP6超表达拟南芥株系侧根大量发生,同时侧根伸长作用也明显被促进。但伸长和对照相比,在PEG处理下并没有受到明显抑制,表示超表达EgrZFP6株系根长生长对渗透胁迫的抑制作用敏感性下降(图6),9g·L-1时侧根数目增多为野生型3.2倍以上,5g·L-1侧根长度为野生型的4.0倍左右。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
SEQUENCE LISTING
<110> 浙江农林大学
<120> 巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途
<130>
<160> 8
<170> PatentIn version 3.3
<210> 1
<211> 30
<212> DNA
<213> 人工序列
<400> 1
cggggtacct caacgacatt ctcttcagca 30
<210> 2
<211> 28
<212> DNA
<213> 人工序列
<400> 2
gctctagaca ggagcaaggc atctatct 28
<210> 3
<211> 27
<212> DNA
<213> 人工序列
<400> 3
cggggtaccg aaaaggcacc ccacaaa 27
<210> 4
<211> 29
<212> DNA
<213> 人工序列
<400> 4
gctctagacc taaactcagt cggtccaaa 29
<210> 5
<211> 24
<212> DNA
<213> 人工序列
<400> 5
tgcccatcgg gtaattcata gttc 24
<210> 6
<211> 21
<212> DNA
<213> 人工序列
<400> 6
cctcatgcca tcctccgtct t 21
<210> 7
<211> 22
<212> DNA
<213> 人工序列
<400> 7
atcccaagat gcacgagtgc tc 22
<210> 8
<211> 22
<212> DNA
<213> 人工序列
<400> 8
cggaccaacc acgaaaatct ca 22
Claims (9)
1.巨桉C2H2型锌指结构蛋白转录因子EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途。
2.如权利要求1所述的用途,其特征在于,在植物中过表达巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,在渗透胁迫下改变植株根构型,提高植物在渗透胁迫下适应胁迫的用途。
3.如权利要求2所述的用途,其特征在于,所述改变植物根构型包括增加侧根数量以及促进侧根的伸长生长。
4.如权利要求1-3任一项所述的用途,其特征在于,所述的渗透胁迫包括但不限于干旱,高盐。
5.一种提高植物在渗透胁迫下的适应性的方法,其特征在于,向目标植物转入巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,并使其在目标植物体内进行过量表达。
6.如权利要求5所述的方法,其特征在于,所述的渗透胁迫包括但不限于干旱,高盐。
7.一种在渗透胁迫下改变植株根构型的方法,其特征在于,向目标植物转入巨桉C2H2型锌指结构蛋白转录因子EgrZFP6,并使其在目标植物体内进行过量表达。
8.如权利要求7所述的方法,其特征在于,将转入所述EgrZFP6基因的目标植物进行干旱诱导,进一步促进侧根增加和伸长,改变植株根构型。
9.如权利要求7或8所述的方法,其特征在于,所述改变植物根构型包括增加侧根数量以及促进侧根的伸长生长。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710520452.6A CN107164404B (zh) | 2017-06-30 | 2017-06-30 | 巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710520452.6A CN107164404B (zh) | 2017-06-30 | 2017-06-30 | 巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107164404A true CN107164404A (zh) | 2017-09-15 |
CN107164404B CN107164404B (zh) | 2020-10-20 |
Family
ID=59827314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710520452.6A Expired - Fee Related CN107164404B (zh) | 2017-06-30 | 2017-06-30 | 巨桉EgrZFP6在提高植物在渗透胁迫下适应胁迫的用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107164404B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109486838A (zh) * | 2018-12-21 | 2019-03-19 | 中国农业科学院北京畜牧兽医研究所 | 一种调控植物类黄酮合成的转录因子基因及其用途 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1632123A (zh) * | 2005-01-12 | 2005-06-29 | 林忠平 | 沙蒿AdZFP1转录因子基因及其在培育耐旱植物中的应用 |
CN101182520A (zh) * | 2007-11-14 | 2008-05-21 | 南京农业大学 | 一个水稻锌指蛋白基因及其耐逆性基因工程应用 |
CN101875689A (zh) * | 2009-04-08 | 2010-11-03 | 中国科学院上海生命科学研究院 | 水稻锌指蛋白转录因子新基因及抗旱耐盐应用 |
CN102659934A (zh) * | 2011-08-16 | 2012-09-12 | 江苏省农业科学院 | 植物的一个锌指蛋白转录因子及其编码基因与应用 |
CN102703467A (zh) * | 2012-05-04 | 2012-10-03 | 吉林农业大学 | 大豆耐旱锌指蛋白基因stf-2 |
CN104004070A (zh) * | 2014-04-24 | 2014-08-27 | 中国农业大学 | 一种具有锌指蛋白结构bbx24的基因及其应用 |
CN104829700A (zh) * | 2015-05-11 | 2015-08-12 | 安徽农业大学 | 一种玉米CCCH型锌指蛋白及其编码基因ZmC3H54与应用 |
CN105624172A (zh) * | 2016-02-05 | 2016-06-01 | 南京农业大学 | 水稻锌指蛋白基因zfp214的基因工程应用 |
CN106350526A (zh) * | 2016-11-30 | 2017-01-25 | 山东大学 | 大豆圣豆9号MYB转录因子家族基因GmMYB84及其应用 |
-
2017
- 2017-06-30 CN CN201710520452.6A patent/CN107164404B/zh not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1632123A (zh) * | 2005-01-12 | 2005-06-29 | 林忠平 | 沙蒿AdZFP1转录因子基因及其在培育耐旱植物中的应用 |
CN101182520A (zh) * | 2007-11-14 | 2008-05-21 | 南京农业大学 | 一个水稻锌指蛋白基因及其耐逆性基因工程应用 |
CN101875689A (zh) * | 2009-04-08 | 2010-11-03 | 中国科学院上海生命科学研究院 | 水稻锌指蛋白转录因子新基因及抗旱耐盐应用 |
CN102659934A (zh) * | 2011-08-16 | 2012-09-12 | 江苏省农业科学院 | 植物的一个锌指蛋白转录因子及其编码基因与应用 |
CN102703467A (zh) * | 2012-05-04 | 2012-10-03 | 吉林农业大学 | 大豆耐旱锌指蛋白基因stf-2 |
CN104004070A (zh) * | 2014-04-24 | 2014-08-27 | 中国农业大学 | 一种具有锌指蛋白结构bbx24的基因及其应用 |
CN104829700A (zh) * | 2015-05-11 | 2015-08-12 | 安徽农业大学 | 一种玉米CCCH型锌指蛋白及其编码基因ZmC3H54与应用 |
CN105624172A (zh) * | 2016-02-05 | 2016-06-01 | 南京农业大学 | 水稻锌指蛋白基因zfp214的基因工程应用 |
CN106350526A (zh) * | 2016-11-30 | 2017-01-25 | 山东大学 | 大豆圣豆9号MYB转录因子家族基因GmMYB84及其应用 |
Non-Patent Citations (2)
Title |
---|
AN YAN ET AL.: "Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis", 《JOURNAL OF INTEGRATIVE PLANT BIOLOGY》 * |
S.WANG ET AL.: "Identification of a C2H2-type zinc finger gene family from Eucalyptus grandis and its response to various abiotic stresses", 《BIOLOGIA PLANTARUM》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109486838A (zh) * | 2018-12-21 | 2019-03-19 | 中国农业科学院北京畜牧兽医研究所 | 一种调控植物类黄酮合成的转录因子基因及其用途 |
CN109486838B (zh) * | 2018-12-21 | 2021-09-17 | 中国农业科学院北京畜牧兽医研究所 | 一种调控植物类黄酮合成的转录因子基因及其用途 |
Also Published As
Publication number | Publication date |
---|---|
CN107164404B (zh) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.) | |
Su et al. | Genome-wide analysis and identification of stress-responsive genes of the NAM–ATAF1, 2–CUC2 transcription factor family in apple | |
Wei et al. | A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco | |
CN102659934B (zh) | 植物的一个锌指蛋白转录因子及其编码基因与应用 | |
Chen et al. | Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity | |
Liang et al. | JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana | |
CN104480117B (zh) | 花生nbs‑lrr基因及其在烟草抗青枯病中的应用 | |
Liu et al. | TaHsfA2-1, a new gene for thermotolerance in wheat seedlings: Characterization and functional roles | |
CN107840872B (zh) | 蜡梅CpWOX13基因及其编码的蛋白和应用 | |
Tahir et al. | Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock | |
CN109797157B (zh) | 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用 | |
Li et al. | Genome-wide analysis of NF-Y genes in potato and functional identification of StNF-YC9 in drought tolerance | |
Li et al. | GmWRKY45 enhances tolerance to phosphate starvation and salt stress, and changes fertility in transgenic Arabidopsis | |
CN110643618A (zh) | 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用 | |
Li et al. | Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants | |
CN103740731A (zh) | 紫花苜蓿逆境响应基因MsNAC3及其应用 | |
CN101775398B (zh) | 菊花NAC蛋白基因DlNAC的耐逆性基因工程应用 | |
CN103695438A (zh) | 拟南芥MYB家族转录因子AtMYB17基因、编码序列及其应用 | |
Liu et al. | The L-type lectin receptor-like kinase (PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis | |
Xuanyuan et al. | Genome-wide screening and identification of nuclear Factor-Y family genes and exploration their function on regulating abiotic and biotic stress in potato (Solanum tuberosum L.) | |
Yang et al. | Comparative analysis of R2R3‐MYB transcription factors in the flower of Iris laevigata identifies a novel gene regulating tobacco cold tolerance | |
Zhang et al. | Single-repeat R3 MYB transcription factors from Platanus acerifolia negatively regulate trichome formation in Arabidopsis | |
Yun et al. | Phylogenetic and expression analyses of HSF gene families in wheat (Triticum aestivum L.) and characterization of TaHSFB4-2B under abiotic stress | |
Li et al. | Drought resistance of tobacco overexpressing the AfNAC1 gene of Amorpha fruticosa Linn. | |
Yin et al. | Rice gene OsDSR-1 promotes lateral root development in Arabidopsis under high-potassium conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201020 |
|
CF01 | Termination of patent right due to non-payment of annual fee |