CN107142478A - 一种新型耐磨耐腐蚀涂层 - Google Patents

一种新型耐磨耐腐蚀涂层 Download PDF

Info

Publication number
CN107142478A
CN107142478A CN201710316678.4A CN201710316678A CN107142478A CN 107142478 A CN107142478 A CN 107142478A CN 201710316678 A CN201710316678 A CN 201710316678A CN 107142478 A CN107142478 A CN 107142478A
Authority
CN
China
Prior art keywords
variety
coating
metal
layer
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710316678.4A
Other languages
English (en)
Other versions
CN107142478B (zh
Inventor
廖斌
欧阳晓平
张旭
张丰收
吴先映
罗军
庞盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201710316678.4A priority Critical patent/CN107142478B/zh
Publication of CN107142478A publication Critical patent/CN107142478A/zh
Application granted granted Critical
Publication of CN107142478B publication Critical patent/CN107142478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种机械设备关键部件表面耐腐蚀耐磨损涂层的方法,其中,制备该涂层方法包括:采用霍尔离子源在500℃以上环境下用氮离子进行轰击,产生表面强化效应提高基材致密度,紧接着采用金属真空蒸汽离子源方法(MEVVA),在基材表面注入一层能提高膜基结合力的金属″钉扎层″;在所述的金属″钉扎层″之上,采用磁过滤阴极真空弧沉积方法(FCVA),在进气口通入100‑250sccm的乙炔,基材表面沉积获得总厚度为1‑10微米的多种纳米晶混合层。通过实施本发明,在关键部件上沉积此类涂层能够很好的保护机械设备关键部件,因其多种纳米晶相互协同作用,能够有效的防止其因环境变化而带来摩擦损失和化学腐蚀损失,从而影响设备的稳定性、精度以及服役寿命。

Description

一种新型耐磨耐腐蚀涂层
技术领域
本发明提高特殊环境下机械设备等关键部件抗酸性、碱性腐蚀以及抗摩擦磨损的的表面改性涂层。本发明涉及的是一种多种纳米晶混合的类金刚石涂层及其制备方法。具体技术是基于离子束技术的金属真空蒸汽离子源以及磁过滤沉积系统。
技术背景
随着科学技术的发展以及各种极端条件的出现,如盐雾环境、酸性环境或者碱性环境,现有设备的关键部件的本体材料已不能满足长寿命要求。在特殊环境下关键部件将受到环境气氛的腐蚀以及摩擦带来的磨损,关键部件的损耗将降低工作效率、工作精度、稳定性和可靠性,这对于整体设备来说是最致命的。材料表面改性是提高本体材料耐磨最为有效的关键技术之一。材料表面改性基本不改变本体材料的力学、电学性能,也基本不改变材料本身的尺寸精度,同时能够大幅提高本体材料的表面致密性、表面硬度、降低摩擦损耗,能够大幅减小材料成本,提高关键部件的使用寿命,从而显著提高材料的使用寿命和工作效率,实现节约原材料、降低能源消耗等目的。众所周知,类金刚石涂层具有很好的物理、化学稳定性。同时具有硬度高和摩擦系数低的性能特点,是一种性能优异的抗磨耐腐蚀薄膜材料,吸引着许多薄膜材料研究工作者,成为世界各国争相研究的热点薄膜材料之一。碳基涂层如四面体类金刚石(ta-diamond-like carbon,简称ta-DLC)薄膜是以碳为基本元素构成的一种非晶材料。类金刚石薄膜(DLC)它在结构上属于非晶亚稳态结构的无定形碳,是由sp3杂化和sp2杂化碳组成:薄膜中sp3结构决定了类金刚石薄膜具有诸多类似于金刚石的优良特性,而sp2结构决定了类金刚石薄膜又具有很多石墨的特性,国际上将硬度超过金刚石硬度20%的绝缘硬质无定形碳膜称为类金刚石膜。在制备工艺方面,类金刚石薄膜(DLC)沉积温度较低,沉积面积大,膜面光滑平整,工艺相对成熟。在实际应用方面,由于DLC薄膜在真空条件下和低温下均具有良好的润滑耐磨性能,因此可有效解决某些特殊工况下活动零部件表面润滑等的技术难题。
众所周知,碳膜的耐磨性能随着环境的变化而发生较大变化,如磁过滤沉积制备的四面体类金刚石涂层(ta-C)在高湿环境下摩擦系数一般可低至0.04,但随着湿度的降低当降到20%或一下摩擦系数迅速增至0.7左右,耐磨性能迅速下降,耐腐蚀性也随之变差;再如化学气相沉积制备的含氢类金刚石涂层(a-H:C)在真空或者干燥气氛下摩擦系数可低至0.03,但随着湿度的增加摩擦系数也迅速增加,耐磨性和耐腐蚀性也大打折扣。现公知的抗磨涂层采用物理或化学气相沉积技术抗摩擦性能良好,但防腐蚀性能远远达不到要求。现尚没有基于物理气相沉积技术提出在抗磨和防腐蚀效果皆能满足工业需求的涂层。
发明内容
有鉴于此,本发明基于离子束技术利用磁过滤沉积(FCVA)以及金属离子源(MEVVA)系统制备了多种纳米晶混合的类金刚石涂层。综合碳、超硬碳化物相、过渡金属Hf在高湿环境下的高耐磨性和高耐腐蚀能力,以及这种互嵌结构高致密性,制备的涂层能够很好的兼顾耐磨性和耐腐蚀性。
进一步来讲,该多相共混超润滑固体润滑涂层方法包括:
在基材表面通过气体离子轰击形成表面强化,提高表面密度;
在基材表面制备金属″钉扎层″;
在所述″钉扎层″上进行合金过渡层沉积,形成释放应力层;
在所述释放应力层上沉积多种纳米晶混合的类金刚石涂层。
在一些实施例中,所述基材表面强化过程包括:利用霍尔气体离子源,对所述基材进行气体轰击,采用的气体为N2,霍尔源工作电压为300-2000V,束流强度为100~900mA,轰击环境温度500-900℃,轰击时间30-120min。
在一些实施例中,所述基材注入形成″钉扎层″包括:利用金属真空蒸汽离子源(MEVVA),向所述基材层注入合金,采用的靶材为TiAlHfNi合金靶材,靶材成分Ti(20-80%),Al(30-50%),Hf(1-10%),Ni(10-20%);其中,合金元素的注入电压为4~12kV,束流强度为1~10mA,注入剂量为1×1015~1×1017/cm2,注入深度为70~120nm。
在一些实施例中,在所述金属″钉扎层″上进行合金沉积包括:利用所述磁过滤真空弧沉积(FCVA)系统,在所述金属″钉扎层″上,磁过滤沉积出合金应力释放层;其中,所述释放层的合金元素为Ti、Al、Hf、Ni合金厚度为10~500nm。
在一些实施例中,在所述基材应力释放层表面制备多种纳米晶混合的类金刚石涂层:利用磁过滤阴极真空弧(FCVA)系统,在应力释放层表面沉积多种纳米晶混合的类金刚石涂层,磁过滤沉积同时通乙炔气体得到多种纳米晶混合的类金刚石涂层;其中,所述多种纳米晶混合的类金刚石涂层厚度为1~10μm,乙炔进气量在100~250sccm。
相对于现有技术,本发明各实施例具有以下优势:
1、本发明实施例提出的多种纳米晶混合的类金刚石涂层,通过对基材进行大面积大剂量的气体离子源轰击有很多方面的效果:1)提高表面致密度;2)能够活化基材表面;3)气体进入亚表面形成化学键提高表面强度。在应用霍尔离子源的同时还进行了高能量的金属元素注入,使基材亚表面原子与注入金属形成金属-基材原子混合的″钉扎层″结构,这样的双强化效果使得后续磁过滤沉积出的结构性涂层的结合力都非常好,从而使其抗剥离强度得以增强;
2、相比磁控溅射、电子束蒸发等PVD沉积方法,磁过滤电弧沉积设备原子离化率非常高,大约在90%以上。这样,由于原子离化率高,可使等离子体密度增加,成膜时大颗粒减少,有利于提高薄膜硬度、耐磨性、致密性、膜基结合力等;
3、磁过滤设备的高离化率非常有利于纳米晶的形成与调控,如TiC,Hf,Ti等纳米晶的大小等,这是其他公知技术如磁控溅射、化学气相沉积的瓶颈;
4、由于过渡金属Hf和Al同时作为靶材:1)Hf和Al能够大大降低成膜形成的内应力,提高涂层与基底的结合力;2)成膜时进一步提高涂层的致密性,同时能促进等离子体中气体的电离度增加成膜速率;3)能够进一步促进纳米晶的形成,提高其成核效率;
5、公知理论知道膜层晶界越多越容易发生基底的侵蚀,但本发明中存在着大量晶界,但涂层的抗酸和碱腐蚀性非常好。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明所必需的。
以上所述仅为本发明的实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明实施例的更多特点和优势将在之后的具体实施方式予以说明。
附图说明
构成本发明实施例一部分的附图用来提供对本发明实施例的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1为本发明实施例提供的多种纳米晶混合的类金刚石涂层流程示意图;
图2为本发明实施例提供的多种纳米晶混合的类金刚石涂层结构示意图;
图3为本发明实施例提供的FCVA沉积和MEVVA注入系统的结构示意图;
图4为四面体DLC(Ta-C),含氢DLC(a-H:C)以及多种纳米晶混合DLC在65%浓硝酸中那腐蚀性能对比
图5为四面体DLC(Ta-C),含氢DLC(a-H:C)以及多种纳米晶混合DLC在不同空气湿度下摩擦系数的变化对比
图6四面体DLC(Ta-C),含氢DLC(a-H:C)以及多种纳米晶混合DLC在不同氯化钠含量盐雾环境下的摩擦系数对比
附图标记说明
200 基底
210 合金钉扎层
220 合金应力释放层
230 多种纳米晶共混DLC
300 FCVA合金阴极
301 阳极筒
302 磁过滤弯管
303 工件台及负压负端
304 金属真空蒸汽离子源阴极
305 气体离子源端口
方法实施例
本实施例中,在关键部件基底层上制备多种纳米晶混合DLC涂层,参照图1,其示出了本实施例固体润滑膜制备方法,该制备方法包括以下步骤:
S100:利用霍尔气体离子源,对基底层进行大面积轰击,形成表面强化层。
S200:利用金属蒸汽真空弧(MEVVA)离子源,向基底层注入合金元素,形成合金″钉扎层″。
其中,本步骤为金属离子注入形成″钉扎层″,利用高能合金离子注入基底,能够形成合金和基底材料的混合层,提高其表面后续涂层与基底的结合力。
需要指出的是,S200中,第一金属元素为TiAlHfNi合金。作为一种可选实施方式,合金元素的注入电压为4~15kV,束流强度为1~15mA(含端值),注入剂量为1×1015~1×1017/cm2(含端值),注入深度为70~120nm(合端值)。
S300:利用磁过滤阴极真空弧(FCVA)系统,在基底″钉扎层″表面,磁过滤沉积得到第一层合金涂层内应力释放层。
本步骤中,可选的是,合金涂层为TiAlHfNi,且厚度为10~500nm。
S400:利用磁过滤阴极真空弧(FCVA)系统,沉积得到多种纳米晶混合DLC涂层。
本步骤中,利用磁过滤阴极真空弧(FCVA)系统和金属真空蒸汽离子源系统,磁过滤沉积得到多种纳米晶混合DLC涂层的总厚度为1~10微米。
合金″钉扎层″,合金应力释放层以及多种纳米晶混合DLC涂层,构成了涂层的主体结构,该结构涂层利用霍尔气体离子源以及金属离子注入系统形成了合金混合″钉扎层″,使后续沉积涂层与基底材料有着非常好的结合强度;同时结合了合金涂层的高弹性模量以及强韧性的特点,使其作为应力释放层时具有明显的优势。
性能检测
1)耐酸性能测试
四面体DLC(Ta-C),含氢DLC(a-H:C)以及多种纳米晶混合DLC分别浸泡在浓度为65%的浓硝酸中,浸泡时间总计18小时如图4。结果显示多种纳米晶混合DLC在浸泡18小时之后没有任何明显的腐蚀,抗腐蚀性能非常优良。然而四面体DLC(Ta-C)和含氢DLC(a-H:C)在浸泡6小时后表面明显出现腐蚀坑,抗腐蚀性能相对较差。
2)不同湿度下摩擦学性能分析:
四面体DLC(Ta-C),含氢DLC(a-H:C)以及多种纳米晶混合DLC三种涂层分别在不同相对湿度(20%,40%、60%、80%)下测试了涂层的摩擦系数,结果发现:ta-C和多种纳米晶混合DLC在相对湿度为80%条件下摩擦系数最低为0.06如图5。相反地,含氢DLC(a-H:C)在低相对湿度和高真空度下摩擦系数最小为0.03,随着湿度的增加摩擦系数迅速增加。本方法制备的多种纳米晶混合DLC涂层在高湿、低湿情况下都能较好的保持低摩擦系数能够自适应环境的变化。
3)不同氯化钠浓度盐雾试验耐温性测试
分别用了七种不同氯化钠浓度测试三种涂层的耐盐雾能力,发现ta-C和a-H:C三种涂层耐盐雾性能都有限,出现了明显的摩擦系数的升高;然而,多种纳米晶混合DLC涂层在氯化钠浓度变化从10g/L到70g/L没有明显的摩擦系数的变化。综合试验结果来看,多种纳米晶混合DLC涂层能够很好的兼顾抗酸、碱腐蚀以及抗磨损性能。

Claims (9)

1.一种在关键部件表面沉积的防腐蚀耐磨的多种纳米晶混合的类金刚石涂层的方法,
其特征在于,包括:
采用霍尔离子源进行高温表面强化,提高表面致密性;
采用金属真空蒸汽离子源(MEVVA)注入方法,在基底表面注入金属元素,形成金属″钉扎层″;
采用磁过滤沉积技术(FCVA)在基材表面沉积第一层合金金属过渡层;
采用磁过滤沉积技术(FCVA),并在真空室内通入反应气体乙炔沉积获得多种纳米晶混合的类金刚石涂层。
2.根据权利要求1所述的表面强化方法,其特征在于所用设备为霍尔离子源,温度在500℃以上。
3.根据权利要求1所述的金属″钉扎层″的制备方法,其特征在于:所述基底层为机械设备关键耐磨、抗磨损部件。
4.根据权利要求3所述的金属″钉扎层″的制备方法,其特征在于:所述第一金属元素为TiAlHfNi合金靶材,靶材成分Ti(20-80%),Al(30-50%),Hf(1-10%),Ni(10-20%)。其注入电压为8~15kV,束流强度为1~10mA,注入剂量为1×1015~1×1017/cm2,注入深度为70~120nm。
5.根据权利要求1所述的在基底上沉积多种纳米晶混合的类金刚石涂层方法,其特征在于:
(a)在沉积所述第一层合金过渡层时,采用的靶材为TiAlHfNi合金靶材,靶材成分Ti(20-80%),Al(30-50%),Hf(1-10%),Ni(10-20%),起弧电流90-120A,弯管磁场2.0~4.0A,束流200~800mA,顺序采用负压-800V、-600V、-400V、及-300V进行沉积;
(b)在沉积所述多种纳米晶混合的类金刚石涂层,采用的靶材为为TiAlHfNi合金靶材,靶材成分Ti(20-80%),Al(30-50%),Hf(1-10%),Ni(10-20%),起弧电流90~120A,弯管磁场3.0~4.0A,负压-300~600V,沉积时间10~120min,占空比为20~100%,乙炔进气量为10~250sccm。
6.根据权利要求书4、5所述的合金靶材,其特征是四元金属靶材,其中至少有一元与碳是弱键合的,能独立形成金属纳米晶镶嵌,如Ni和C是弱键合。
7.根据权利要求书4、5所述的合金靶材,其特征是四元金属靶材,其中至少有一元金属是不与稀盐酸、稀硫酸和强碱溶液作用。
8.根据权利要求4所述的在关键部件上沉积多相混合固体润滑涂层的方法,其特征在于,所述第一层合金金属过渡层的厚度为10-500nm,所述第二层多种纳米晶混合的类金刚石涂层1-10μm。
9.一种耐腐蚀抗磨损的多种纳米晶混合的类金刚石涂层,其特征在于,设置有采用权利要求1至8任一项所述的在关键部件上沉积多种纳米晶混合的类金刚石涂层方法。
CN201710316678.4A 2017-05-08 2017-05-08 一种新型耐磨耐腐蚀涂层 Active CN107142478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710316678.4A CN107142478B (zh) 2017-05-08 2017-05-08 一种新型耐磨耐腐蚀涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710316678.4A CN107142478B (zh) 2017-05-08 2017-05-08 一种新型耐磨耐腐蚀涂层

Publications (2)

Publication Number Publication Date
CN107142478A true CN107142478A (zh) 2017-09-08
CN107142478B CN107142478B (zh) 2019-06-04

Family

ID=59777511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710316678.4A Active CN107142478B (zh) 2017-05-08 2017-05-08 一种新型耐磨耐腐蚀涂层

Country Status (1)

Country Link
CN (1) CN107142478B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097735A (zh) * 2018-08-31 2018-12-28 北京师范大学 一种防潮高透明度的类金刚石涂层的制备方法
CN114232052A (zh) * 2020-09-09 2022-03-25 北京师范大学 一种锆合金包壳表面抗高温腐蚀的复合涂层制备方法
CN114592176A (zh) * 2021-12-31 2022-06-07 核工业西南物理研究院 一种替代金属过渡连接层的离子注入方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504294B1 (en) * 1997-07-25 2003-01-07 Morgan Chemical Products, Inc. Method and apparatus for deposition of diamond-like carbon and silicon-doped diamond-like carbon coatings from a hall-current ion source
CN101139675A (zh) * 2007-09-30 2008-03-12 北京航空航天大学 一种钛镍铝铌铪高温合金材料
CN101787521A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 一种金属硫化物类金刚石复合薄膜的制备方法
CN105755443A (zh) * 2016-02-26 2016-07-13 北京师范大学 一种提高航天继电器中推动杆部件寿命的方法和设备
CN105773462A (zh) * 2016-01-07 2016-07-20 北京师范大学 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备
CN106011771A (zh) * 2016-08-04 2016-10-12 北京师范大学 一种在活塞环表面快速沉积dlc膜层的设备及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504294B1 (en) * 1997-07-25 2003-01-07 Morgan Chemical Products, Inc. Method and apparatus for deposition of diamond-like carbon and silicon-doped diamond-like carbon coatings from a hall-current ion source
CN101139675A (zh) * 2007-09-30 2008-03-12 北京航空航天大学 一种钛镍铝铌铪高温合金材料
CN101787521A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 一种金属硫化物类金刚石复合薄膜的制备方法
CN105773462A (zh) * 2016-01-07 2016-07-20 北京师范大学 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备
CN105755443A (zh) * 2016-02-26 2016-07-13 北京师范大学 一种提高航天继电器中推动杆部件寿命的方法和设备
CN106011771A (zh) * 2016-08-04 2016-10-12 北京师范大学 一种在活塞环表面快速沉积dlc膜层的设备及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097735A (zh) * 2018-08-31 2018-12-28 北京师范大学 一种防潮高透明度的类金刚石涂层的制备方法
CN114232052A (zh) * 2020-09-09 2022-03-25 北京师范大学 一种锆合金包壳表面抗高温腐蚀的复合涂层制备方法
CN114232052B (zh) * 2020-09-09 2023-03-10 北京师范大学 一种锆合金包壳表面抗高温腐蚀的复合涂层制备方法
CN114592176A (zh) * 2021-12-31 2022-06-07 核工业西南物理研究院 一种替代金属过渡连接层的离子注入方法
CN114592176B (zh) * 2021-12-31 2023-02-21 核工业西南物理研究院 一种替代金属过渡连接层的离子注入方法

Also Published As

Publication number Publication date
CN107142478B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN103334106B (zh) 一种钛及钛合金球阀密封副和摩擦副的表面硬化处理方法
CN103726012B (zh) 一种耐腐蚀硬质防护涂层的制备方法
CN107142478B (zh) 一种新型耐磨耐腐蚀涂层
CN108728802A (zh) 多层耐高温Ti/Zr共掺杂类金刚石涂层及其制备方法
Yan et al. Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (aC: H/TiC) films prepared on titanium bipolar plates in PEMFCs
CN111183269B (zh) 具有耐蚀滑动面的涂覆阀门部件
CN107034440A (zh) 一种复合类金刚石碳膜及其制备方法
CN107326360B (zh) 一种纳米多层梯度复合的抗冲蚀涂层结构及其制备方法
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN107083551A (zh) 一种三元掺杂纳米复合多层类金刚石涂层及其制备方法和应用
CN109913771A (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN104726873A (zh) 一种石油管道表面的防腐绝缘耐磨处理方法
CN107130223B (zh) 一种超润滑固体涂层制备方法
CN107313018A (zh) 不锈钢基材表面的具有高硬耐蚀性的CrB2涂层及其制备方法
CN105773462B (zh) 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备
Zhao et al. Influence of N concentration on structure and properties of (AlCrMoTiV) Nx films by co-filter cathodic vacuum arc deposition
Liang et al. Effect of cermet interlayer on the electrochemical behavior of Cr3C2-NiCr/DLC duplex coating
CN110055490A (zh) 一种奥氏体不锈钢表层的复合处理方法
CN109778119A (zh) 一种Ni-CrSiN耐磨耐蚀涂层及其制备方法
CN108265291A (zh) 一种软质基体表面的碳基涂层及其制备方法
CN103757614B (zh) 一种镁及镁合金的镀层及其制备方法
CN102644054A (zh) 钛合金表面制备非晶-纳米晶二硅化钼基耐磨耐蚀涂层的复合表面处理工艺
CN109627816A (zh) 低摩擦碳基固体润滑涂层及其制备方法和应用
CN111926302B (zh) 一种六硼化镧复合碳薄膜的沉积方法及耐腐蚀应用
Yan et al. Construction of a dense structure for GLC coatings by tailoring the nitrogen content to improve the aqueous-adaptability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant