CN107130223B - 一种超润滑固体涂层制备方法 - Google Patents

一种超润滑固体涂层制备方法 Download PDF

Info

Publication number
CN107130223B
CN107130223B CN201710316783.8A CN201710316783A CN107130223B CN 107130223 B CN107130223 B CN 107130223B CN 201710316783 A CN201710316783 A CN 201710316783A CN 107130223 B CN107130223 B CN 107130223B
Authority
CN
China
Prior art keywords
layer
coating
target material
fcva
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710316783.8A
Other languages
English (en)
Other versions
CN107130223A (zh
Inventor
廖斌
欧阳晓平
张旭
张丰收
吴先映
罗军
庞盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201710316783.8A priority Critical patent/CN107130223B/zh
Publication of CN107130223A publication Critical patent/CN107130223A/zh
Application granted granted Critical
Publication of CN107130223B publication Critical patent/CN107130223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Abstract

本发明公开了一种在机械设备关键部件表面制备结合力优越以及超低摩擦系数的多相混合固体润滑涂层的方法,其中,制备该涂层方法包括:采用金属真空蒸汽离子源方法(MEVVA),在基材表面注入一层能提高膜基结合力的金属″钉扎层″;然后采用磁过滤阴极真空弧沉积方法(FCVA)沉积合金应力释放层,紧接着FCVA以及MEVVA同时工作,并在进气口通入100‑250sccm的乙炔以及30‑80sccm的硫化氢气体,在基材表面沉积总厚度为1‑10微米的多相混合固体润滑TiC‑MoS2‑Ni/Ti‑(a:H‑C)涂层。该发明中磁过滤沉积系统、金属真空蒸汽离子源系统所用阴极为一定配比的TiMoNi合金靶材。通过实施本发明,在关键部件上沉积多相混合固体润滑涂层能够很好的保护机械设备的关键部件,提高设备的稳定性、精度以及服役寿命。

Description

一种超润滑固体涂层制备方法
技术领域
本发明为轴承、机械设备等关键部件的表面改性涂层制备。本发明涉及的是一种多相混合的滋润滑固体膜层及其制备方法。具体是基于离子束技术通过金属真空蒸汽离子源以及磁过滤沉积系统制备多相共混的固体滋润滑膜层。
技术背景
随着科学技术的发展以及各种极端条件的出现,现有的设备关键部件的本体材料已不能满足长寿命要求,特别是涉及摩擦磨损的关键部件。这些关键部件主要是依靠摩擦副来实现能量的传递,同时摩擦副传递能量的过程也必然导致该部件的损耗,这些不断积累的损耗将降低工作效率、工作精度、稳定性和可靠性,这对于整体设备来说是最致命的。材料表面改性是提高本体材料耐磨最为有效的关键技术之一。材料表面改性基本不改变本体材料的力学、电学性能,也基本不改变材料本身的尺寸精度,同时能够大幅提高本体材料的表面硬度,降低摩擦损耗,能够大幅减小材料成本,提高关键部件的使用寿命。能,从而显著提高材料的使用寿命和工作效率,实现节约原材料、降低能源消耗等目的。由于碳基薄膜具有硬度高和摩擦系数低的性能特点,是一种性能优异的耐磨损薄膜材料,吸引着许多薄膜材料研究工作者,成为世界各国争相研究的热点薄膜材料之一。碳基涂层如四面体类金刚石(ta-diamond-like carbon,简称ta-DLC)薄膜是以碳为基本元素构成的一种非晶材料。类金刚石薄膜(DLC)它在结构上属于非晶亚稳态结构的无定形碳,是由sp3杂化和sp2杂化碳组成:薄膜中sp3结构决定了类金刚石薄膜具有诸多类似于金刚石的优良特性,而sp2结构决定了类金刚石薄膜又具有很多石墨的特性,国际上将硬度超过金刚石硬度20%的绝缘硬质无定形碳膜称为类金刚石膜。在制备工艺方面,类金刚石薄膜(DLC)沉积温度较低,沉积面积大,膜面光滑平整,工艺相对成熟。在实际应用方面,由于DLC薄膜在真空条件下和低温下均具有良好的润滑耐磨性能,因此可有效解决某些特殊工况下活动零部件表面润滑等的技术难题。
众所周知,碳膜的耐磨性能随着环境的变化而发生较大变化,如磁过滤沉积制备的四面体类金刚石膜层(ta-C)在高湿环境下摩擦系数一般可低至0.04,但随着湿度的降低当降到20%或一下摩擦系数迅速增至0.7左右,耐磨性能迅速下降;再如化学气相沉积制备的含氢类金刚石膜层(a-H:C)在真空或者干燥气氛下摩擦系数可低至0.03,但随着湿度的增加摩擦系数也迅速增加,耐磨性也大打折扣。在实际工况下设备的关键部件可能会承受高湿、高温、真空等不同环境对膜层在各种环境下耐磨性提出了更高的要求。
发明内容
有鉴于此,本发明基于离子束技术利用磁过滤沉积(FCVA)以及金属离子源(MEVVA)系统制备了TiC-MoS2-TiS2-Ni-(a:H-C)多相共混的膜层。综合超硬相TiC在高温高湿环境下的高耐磨性,二硫化物和含氢类金刚石膜层在高真空、低湿环境下的超低摩擦系数来自主适应环境的变化。
本发明实施例的目的之一是结合TiC的高硬度、高韧性以及MoS2,DLC膜层的超低摩擦系数,同时利用金属真空蒸汽离子源(MEVVA)以及磁过滤真空弧沉积系统(FCVA),从而提出一种全新的多相共混的具有″变色龙″特性的超润滑固体润滑膜层。
进一步来讲,该多相共混超润滑固体润滑膜层方法包括:在所述基材表面制备金属″钉扎层″;在所述″钉扎层″上进行合金过渡层沉积,形成释放应力层;在所述释放应力层上沉积多相共混的具有″变色龙″特性的超润滑固体润滑膜层。
在一些实施例中,所述基材注入形成″钉扎层″包括:利用金属真空蒸汽离子源(MEVVA),向所述基材层注入合金,采用的靶材为为TiMoNi合金靶材,靶材成分Ti(20-80%),Mo(30-50%),Ni(20-40%),;其中,合金元素的注入电压为4~12kV,束流强度为1~10mA,注入剂量为1×1015~1×1017/cm2,注入深度为70~120nm。
在一些实施例中,在所述金属″钉扎层″上进行合金沉积包括:利用所述磁过滤真空弧沉积(FCVA)系统,在所述金属″钉扎层″上,磁过滤沉积出合金应力释放层;其中,所述释放层的合金元素为Ti、Mo、Ni合金,厚度为10~500nm。
在一些实施例中,在所述基材应力释放层表面制备多相共混的具有″变色龙″特性的超润滑固体润滑膜层:利用磁过滤阴极真空弧(FCVA)系统,金属真空蒸汽离子源系统同时工作,在应力释放层表面沉积多相共混的超润滑固体润滑膜层,离子束注入和磁过滤沉积同时通乙炔和硫化氢气体得到共混润滑膜层;其中,所述固体润滑膜层厚度为1~10μm,乙炔进气量在100~250sccm,硫化氢进气量为30-80sccm。
相对于现有技术,本发明各实施例具有以下优势:
1、本发明实施例提出的多相共混的具有″变色龙″特性的超润滑固体润滑膜层,通过对基材进行高能量的金属元素注入,使基材亚表面原子与注入金属形成金属-基材原子混合的″钉扎层″结构,这样形成的″钉扎层″结构与基底层乃至后续磁过滤沉积出的结构性膜层的结合力都非常好,从而使其抗剥离强度得以增强;
2、相比磁控溅射、电子束蒸发等PVD沉积方法,磁过滤电弧沉积设备原子离化率非常高,大约在90%以上。这样,由于原子离化率高,可使等离子体密度增加,成膜时大颗粒减少,有利于提高薄膜硬度、耐磨性、致密性、膜基结合力等;
3、磁过滤设备的高离化率非常有利于纳米晶的形成与调控,如TiC,Ni,Ti纳米晶的大小等,这是磁控溅射、化学气相沉积的瓶颈;
4、由于离子注入和磁过滤沉积同时工作:1)能够大大降低成膜形成的内应力,提高膜层与基底的结合力;2)能够进一步提高真空室气体的离化率,增加成膜速率;3)能够进一步促进纳米晶的形成,提高其成核效率。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明所必需的。
以上所述仅为本发明的实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明实施例的更多特点和优势将在之后的具体实施方式予以说明。
附图说明
构成本发明实施例一部分的附图用来提供对本发明实施例的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的多相共混的具有″变色龙″特性的超润滑固体润滑膜层方法的流程示意图;
图2为本发明实施例提供的多相共混固体润滑膜层结构示意图;
图3为本发明实施例提供的FCVA沉积和MEVVA注入系统的结构示意图;
附图标记说明
200 a:H-C无定形相
201 TiC纳米晶相
202 Ni/Ti纳米晶相
203 MoS2无定形相
300 FCVA合金阴极
301 磁过滤弯管
302 工件台及负压负端
303 金属真空蒸汽离子源阴极
304 进气端口
方法实施例
本实施例中,在关键部件基底层上制备多相共混的具有″变色龙″特性的超润滑固体润滑膜层,参照图1,其示出了本实施例固体润滑膜制备方法,该制备方法包括以下步骤:
S100:利用金属蒸汽真空弧(MEVVA)离子源,向基底层注入合金元素,形成金属″钉扎层″。
其中,本步骤为金属离子注入形成″钉扎层″,利用高能金属离子注入基底,能够形成金属和基底材料的混合层,提高其表面后续膜层与基底的结合力。
需要指出的是,S100中,第一金属元素为TiMoNi合金。作为一种可选实施方式,合金元素的注入电压为4~15kV,束流强度为1~15mA(含端值),注入剂量为1×1015~1×1017/cm2(含端值),注入深度为70~120nm(含端值)。
S200:利用磁过滤阴极真空弧(FCVA)系统,在基底″钉扎层″表面,磁过滤沉积得到第一层合金膜层内应力释放层。
本步骤中,可选的是,合金膜层为TiMoNi,且厚度为10~500nm。
S300:同时利用磁过滤阴极真空弧(FCVA)系统和金属真空蒸汽离子源系统,沉积得到多相共混的具有″变色龙″特性的超润滑固体润滑膜层。
本步骤中,同时利用磁过滤阴极真空弧(FCVA)系统和金属真空蒸汽离子源系统,磁过滤沉积得到固体润滑膜层的总厚度为1~10微米。
合金″钉扎层″,合金应力释放层以及固体润滑层,构成了膜层的主体结构,该结构膜层利用金属离子注入系统形成了合金混合″钉扎层″,使后续沉积膜层与基底材料有着非常好的结合强度;同时结合了合金膜层的高弹性模量以及强韧性的特点,使其作为应力释放层时具有明显的优势。
性能检测
1)摩擦学性能分析:
分别利用磁过滤沉积(FCVA)、磁控溅射和等离子体增强化学气相沉积制备了四面体类金刚石膜层(ta-C)、MoS2和a-H:C膜层;同时也利用本专利方法制备了多相共混的固体润滑膜层。这些膜层分别在不同相对湿度(10%,30%、50%、80%),不同真空度(10-3pa,100Pa,105Pa)下测试了膜层的摩擦系数,结果发现:ta-C在相对湿度为80%是摩擦系数最低,且磨损量最小为10-9mm3/(Nm),但在高真空度10-3pa以及低相对湿度下摩擦系数最大。相反地,MoS2和a-H:C在低相对湿度和高真空度下摩擦系数和磨损量最小,随着湿度的增加摩擦系数迅速增加。本方法制备的多相共混的固体润滑膜层在高湿、高真空、低湿情况下都能较好的保持低摩擦系数和低磨损量,能够自适应环境的变化。
2)硬度测试分析
分别用纳米硬度测试了四种不同方法制备膜层的硬度,结果发现:ta-C硬度最高为75Gpa,a-H:C和MoS2膜层硬度最低为12Gpa左右,多相共混的固体润滑膜层硬度为25Gpa。在多种软相(a-H:C和MoS2)相混情况下还能保持高硬度是该方法的独到之处。
3)耐温性测试
分别用高低温循环(-200-600℃)测试了四种不同方法制备膜层的耐温性能,发现ta-C,a-H:C和MoS2三种膜层耐高温性能都有限,出现了明显的石墨化以及硬度的降低;然而,多相共混的固体润滑膜层没有明显的硬度降低。

Claims (3)

1.一种超润滑固体涂层制备方法,其特征在于,包括:
沉积膜层体系为多相混合固体润滑TiC-MoS2-Ni/Ti-(a:H-C)涂层;
采用注入方法为金属真空蒸汽离子源(MEVVA)注入:在表面注入金属元素,形成金属″钉扎层″,基材为机械设备关键耐磨、抗磨损部件,金属元素为TiMoNi合金靶材,靶材成分20-80%的Ti,30-50%的Mo,20-40%的Ni,其注入电压为4~12kV,束流强度为1~10mA,注入剂量为1×1015~1×1017/cm2,注入深度为70~120nm;
第一层涂层沉积:采用沉积方法为磁过滤沉积技术(FCVA),在表面沉积第一层合金过渡层,采用的靶材为TiMoNi合金靶材,靶材成分20-80%的Ti,30-50%的Mo,20-40%的Ni,起弧电流90-120A,弯管磁场2.0~4.0A,束流200~800mA,顺序采用负压-800V、-600V、-400V、及-300V进行沉积;
第二层涂层沉积:采用金属真空蒸汽离子源(MEVVA)和磁过滤沉积技术(FCVA)沉积第二层多相混合固体润滑TiC-MoS2-Ni/Ti-(a:H-C)涂层,采用的靶材为为TiMoNi合金靶材,靶材成分20-80%的Ti,30-50%的Mo,20-40%的Ni,起弧电流90~120A,弯管磁场3.0~4.0A,负压-300~600V,沉积时间10~120min,占空比为20~100%,乙炔进气量为100~250sccm,硫化氢进气量为30-80sccm。
2.根据权利要求1所述的超润滑固体涂层制备方法,其膜层厚度特征为:第一层涂层的厚度为10-500nm,第二层涂层厚度1-10μm。
3.超润滑固体涂层, 其特征在于,采用权利要求1或2任一项所获得。
CN201710316783.8A 2017-05-08 2017-05-08 一种超润滑固体涂层制备方法 Active CN107130223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710316783.8A CN107130223B (zh) 2017-05-08 2017-05-08 一种超润滑固体涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710316783.8A CN107130223B (zh) 2017-05-08 2017-05-08 一种超润滑固体涂层制备方法

Publications (2)

Publication Number Publication Date
CN107130223A CN107130223A (zh) 2017-09-05
CN107130223B true CN107130223B (zh) 2019-07-09

Family

ID=59732767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710316783.8A Active CN107130223B (zh) 2017-05-08 2017-05-08 一种超润滑固体涂层制备方法

Country Status (1)

Country Link
CN (1) CN107130223B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913823B (zh) * 2019-04-04 2020-06-30 北京师范大学 一种轻水堆锆管涂层
TWI708866B (zh) * 2019-12-06 2020-11-01 財團法人金屬工業研究發展中心 具固態潤滑表層的金屬物件及其製造方法
CN111156255A (zh) * 2019-12-26 2020-05-15 兰州空间技术物理研究所 一种镀覆超润滑固体薄膜的滚动传动装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589676B1 (en) * 2000-07-25 2003-07-08 Seagate Technology Llc Corrosion resistant magnetic thin film media
KR20040058650A (ko) * 2002-12-27 2004-07-05 김광호 티아이 에이엘 에스아이 엔계 경질코팅막의 증착방법
CN101787512A (zh) * 2009-12-31 2010-07-28 中国地质大学(北京) 一种多元金属元素掺杂类金刚石膜的制备方法
CN105755443A (zh) * 2016-02-26 2016-07-13 北京师范大学 一种提高航天继电器中推动杆部件寿命的方法和设备
CN105779958A (zh) * 2015-12-10 2016-07-20 北京师范大学 一种在直升飞机叶片上沉积抗沙尘侵蚀纳米复合膜方法和设备
CN105773462A (zh) * 2016-01-07 2016-07-20 北京师范大学 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备
CN105779936A (zh) * 2016-01-20 2016-07-20 北京师范大学 一种针对超厚TiN膜层保持超硬特性同时提高韧性的制备方法
CN105779941A (zh) * 2015-12-23 2016-07-20 北京师范大学 一种基于离子束技术在飞机叶片上沉积超硬超厚dlc膜层的方法及设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589676B1 (en) * 2000-07-25 2003-07-08 Seagate Technology Llc Corrosion resistant magnetic thin film media
KR20040058650A (ko) * 2002-12-27 2004-07-05 김광호 티아이 에이엘 에스아이 엔계 경질코팅막의 증착방법
CN101787512A (zh) * 2009-12-31 2010-07-28 中国地质大学(北京) 一种多元金属元素掺杂类金刚石膜的制备方法
CN105779958A (zh) * 2015-12-10 2016-07-20 北京师范大学 一种在直升飞机叶片上沉积抗沙尘侵蚀纳米复合膜方法和设备
CN105779941A (zh) * 2015-12-23 2016-07-20 北京师范大学 一种基于离子束技术在飞机叶片上沉积超硬超厚dlc膜层的方法及设备
CN105773462A (zh) * 2016-01-07 2016-07-20 北京师范大学 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备
CN105779936A (zh) * 2016-01-20 2016-07-20 北京师范大学 一种针对超厚TiN膜层保持超硬特性同时提高韧性的制备方法
CN105755443A (zh) * 2016-02-26 2016-07-13 北京师范大学 一种提高航天继电器中推动杆部件寿命的方法和设备

Also Published As

Publication number Publication date
CN107130223A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
CN107130223B (zh) 一种超润滑固体涂层制备方法
Teer New solid lubricant coatings
Sánchez-López et al. Doping and alloying effects on DLC coatings
CN103334106B (zh) 一种钛及钛合金球阀密封副和摩擦副的表面硬化处理方法
CN107034440B (zh) 一种复合类金刚石碳膜及其制备方法
CN106282918B (zh) 一种类石墨纳米多层薄膜及其制备方法和应用
JP2000128516A (ja) 低摩耗性と優れた密着性を有する複合ダイヤモンドライクカーボン皮膜
CN108728802A (zh) 多层耐高温Ti/Zr共掺杂类金刚石涂层及其制备方法
CN101787521B (zh) 一种金属硫化物类金刚石复合薄膜的制备方法
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN102744930B (zh) 空调压缩机零部件表面的强韧润滑复合薄膜及其制备方法
CN105779958B (zh) 一种在直升飞机叶片上沉积抗沙尘侵蚀纳米复合膜方法和设备
CN105779936B (zh) 一种针对超厚TiN膜层保持超硬特性同时提高韧性的制备方法
Cao et al. High temperature tribological performance and thermal conductivity of thick Ti/Ti-DLC multilayer coatings with the application potential for Al alloy pistons
CN107142478B (zh) 一种新型耐磨耐腐蚀涂层
CN104278241A (zh) 一种具有多环境适应性的薄膜材料的制备技术
CN109477575A (zh) 用于内燃机的滑动元件
CN107604312B (zh) 一种表面为(Ti,Al)N多层隔热耐磨超厚涂层的活塞及其制备方法和应用
CN102758201B (zh) 镁合金表面兼具耐蚀润滑特性的复合涂层及其制备方法
JP4360082B2 (ja) 非晶質炭素被膜の製造方法及び非晶質炭素被覆摺動部品
CN106978593B (zh) 一种顶面为钛掺杂类金刚石多层隔热厚膜的活塞及其制备方法和应用
CN104294230A (zh) 高硬度、低应力的多元复合类金刚石涂层及其制备方法
CN107699859A (zh) 轴瓦用全金属自润滑减摩涂层及其制备方法
JP5077293B2 (ja) 非晶質炭素被膜の製造方法及び非晶質炭素被覆摺動部品
CN105773462B (zh) 一种基于离子束技术提高抛光光学玻璃的金刚石砂轮棒寿命的方法及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant